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Abstract: This paper aimed to introduce novel neutrosophic primal and neutrosophic proximity
operators, derived from a new abstract framework called “neutrosophic primal topology”. We began
by examining the core properties of neutrosophic primal operators. Next, we defined a neutrosophic
primal closure operator derived from the neutrosophic primal operator and explored the relationships
between them. Based on this neutrosophic primal closure operator, we constructed a neutrosophic
topology and identified the conditions under which the image of a neutrosophic primal remained
a neutrosophic primal. In the next stage, we defined the neutrosophic point-primal proximity
operator and explored a range of fundamental properties characterizing neutrosophic primal proximity
topological spaces derived from this operator. We also introduced the concept of neutrosophic proximal
closed sets and demonstrated that the collection of complements of neutrosophic primal closed sets
constituted a neutrosophic topology. Finally, we defined a neutrosophic operator on a neutrosophic
primal proximity topological space that satisfies the neutrosophic Kuratowski closure axioms and used
it to construct a neutrosophic topology. All results established in this study were thoroughly supported
and clarified through illustrative examples.
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1. Introduction

In 1995, Zadeh [1] revolutionized classical set theory by introducing fuzzy set theory, a profound
generalization that has since transformed the mathematical landscape, sparking significant interest
among researchers. This led to further developments such as intuitionistic fuzzy sets [2] and interval-
valued intuitionistic fuzzy sets [3]. Sarkar [4] introduced the notion of fuzzy ideals within the
framework of ideal fuzzy topology. Koam [5] subsequently investigated several properties associated
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with ideal fuzzy topological spaces, while Gähler [6] utilized fuzzy filters to construct particular classes
of fuzzy topologies. Later, Azad [7] defined the structure of fuzzy grills to facilitate the study of fuzzy
approximation spaces. Building on this, Mukherjee and Das [8] developed a form of fuzzy topology
that can be referred to as grill fuzzy topology.

Recently, Acharjee et al. [9] introduced a novel structure termed a primal, which is regarded as
the dual of the concept of grills. This structure led to the development of a new topology known as
the primal topology. Furthermore, several new operators have been defined within primal topological
spaces, giving rise to various derived topologies. Al-Omari et al. [10] explored this concept from
multiple perspectives. Subsequently, in [11, 12], primal structure was utilized to construct additional
operators in primal topological spaces. Al-Shami et al. [13] contributed by constructing a primal soft
topological space, which integrates a soft topological space with a soft primal. Then, some operators
within soft primal topological spaces were proposed in [14]. Various types of topologies have been
generated within different structural frameworks using soft topological operators. Notable examples
include grill soft topologies [15], cluster soft topologies [16], and density soft topologies [17, 18].

Proximity, a fundamental notion in topology [19] has also received considerable attention. Various
generalizations, including multiset proximity [20], I-proximity [21], µ-proximity [22, 23], and quasi-
proximity [24] have been explored by numerous researchers. More recently, Al-Omari et al. [25]
introduced and analyzed primal proximity spaces along with their properties.

Later, in 1998, Smarandache [26] pioneered the concept of neutrosophic sets, significantly
broadening the scope of intuitionistic fuzzy set theory. Subsequently, Salama and Alblowi [27]
have provided a neutrosophic topology on an extension of the concept of fuzzy topology and
intuitionistic topology. This topology’s generalization has proven to be an interesting area
of research. Jafari et al. [28] pioneered the idea of neutrosophic singletons along with the
corresponding induced neutrosophic topology. In the neutrosophic context, numerous researchers have
investigated neutrosophic ideals and neutrosophic filters across diverse frameworks and mathematical
structures [29–31]. Then, Pal et al. [32] later defined the neutrosophic grill topological space. Building
on this, Selvaraj [33] developed various types of neutrosophic grill structures, including neutrosophic
grill α-open, neutrosophic grill pre-open, among others.

The motivations for writing this paper are as follows: First, we aim to introduce new neutrosophic
primal and neutrosophic proximity operators grounded in neutrosophic primal topology. This is
achieved by developing distinctive frameworks that facilitate the construction of new neutrosophic
topologies, thereby offering a novel approach to generating topological structures. Subsequently, we
examine several fundamental topological properties derived from these constructions. Ultimately, this
work lays a foundational basis for further research across various branches of mathematics.

The subsequent sections of this paper are structured as follows. Some fundamentals of neutrosophic
sets and neutrosophic topology concepts required in our work are briefly recalled in Section 2. In
Section 3, we establish the foundational framework of the neutrosophic primal to obtain a new structure
called neutrosophic primal topological spaces. The neutrosophic primal operator is introduced through
the concept of neutrosophic topology and neutrosophic primal in detail. We provide some comparisons
between neutrosophic primal and neutrosophic grill. In Section 4, we present a new neutrosophic
primal closure operator based on the neutrosophic primal operator, and study some connections
between them. In addition, we present a neutrosophic topology via a neutrosophic primal closure
operator. Finally, we successfully identify the conditions under which the image of a neutrosophic
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primal is a neutrosophic primal. In Section 5, we define the neutrosophic point primal proximity
operator and introduce many features of a neutrosophic primal proximity topological space through this
operator. In Section 6, we define a neutrosophic proximal closed set. Then, different results between
a neutrosophic primal proximity space and a neutrosophic primal topological space are introduced via
neutrosophic proximal closed sets and related concepts.

2. Fundamentals of neutrosophic sets and neutrosophic topology

We now obtain the following notions and findings, which are necessary for the following section:

Definition 2.1. [26] Let S , ∅ be a fixed set. A neutrosophic set Q is an object having the form Q =
{≺ s, ξQ(s), ζQ(s), λQ(s) ≻: s ∈ S }, where ξQ : S →]−0, 1+[, ζQ : S →]−0, 1+[, and λQ : S →]−0, 1+[,
respectively, denote the degree membership, indeterminacy, and non-membership of an object s ∈ S to
the set ]−0, 1+[ such that −0 ≤ ξQ(s) + ζQ(s) + λQ(s) ≤ 3+ for each s ∈ S .

Q(S ) refers to the collection of all neutrosophic sets over S . For short, we will use the symbol
Q =≺ s, ξQ(s), ζQ(s), λQ(s) ≻ instead of Q = {≺ s, ξQ(s), ζQ(s), λQ(s) ≻: s ∈ S }.

We must introduce the empty and universal neutrosophic sets ∅̃ and S̃ over S , respectively, as
follows:

Definition 2.2. [27] ∅̃ = {≺ s, 0, 0, 1 ≻: s ∈ S } and S̃ = {≺ s, 1, 1, 0 ≻: s ∈ S }.

Proposition 2.1. [27] For any neutrosophic set Q ∈ Q(S ), the following hold:

(1) ∅̃ ⊆ Q, ∅̃ ⊆ ∅̃;
(2) Q ⊆ S̃ , S̃ ⊆ S̃ .

Definition 2.3. [27] Let Q1 =≺ s, ξQ1(s), ζQ1(s), λQ1(s) ≻ and Q2 =≺ s, ξQ2(s), ζQ2(s), λQ2(s) ≻ be two
neutrosophic sets over S . Then,

(1) Q1 ∩ Q2 =≺ s, ξQ1(s) ∧ ξQ2(s), ζQ1(s) ∧ ζQ2(s), λQ1(s) ∨ λQ2(s) ≻;
(2) Q1 ∪ Q2 =≺ s, ξQ1(s) ∨ ξQ2(s), ζQ1(s) ∨ ζQ2(s), λQ1(s) ∧ λQ2(s) ≻;
(3) Q

c

1 =≺ s, λQ1(s), 1 − ζQ1(s), ξQ1(s) ≻ [Complement of Q1].

Definition 2.4. [27] A neutrosophic topology on a set S , ∅ is a collection J of neutrosophic sets
over S complying with the ensuing requirements:

(1) ∅̃, S̃ ∈ J .
(2) Q1 ∩ Q2 ∈ J for every Q1,Q2 ∈ J .
(3)
⋃

Qα ∈ J for every {Qα : α ∈ Λ} ⊆ J .

Remark 2.1. (1) The pair (S ,J) is called a neutrosophic topology space over S , where the members
of J are called neutrosophic open sets;
(2) A neutrosophic closed set in (S ,J) is the neutrosophic complement of a neutrosophic open set. The
collection of all neutrosophic closed sets is denoted by CN(S ).

Each neutrosophic set in a neutrosophic topology is called a neutrosophic open set. Its complements
are called neutrosophic closed sets.
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Definition 2.5. [27] Let (S ,J) be a neutrosophic topological space and Q =≺ s, ξQ(s), ζQ(s), λQ(s) ≻
be a neutrosophic set in S . Then,

(1) neutrosophic closure of Q =
⋂
{Q1 : Q1 is a neutrosophic closed and Q ⊆ Q1} and it is termed

by n-cl(Q);
(2) neutrosophic interior of Q =

⋃
{Q1 : Q1 is a neutrosophic open set and Q1 ⊆ Q} and it is termed

by n-int(Q).

Definition 2.6. [32] Let S , ∅ be a set. A collection G of neutrosophic sets over S is termed a grill
on S if it satisfies the criteria outlined below.

(1) ∅̃ < G.
(2) If Q1 ∈ G and Q1 ⊆ Q2, then Q2 ∈ G.
(3) If Q1,Q2 ⊆ S̃ and Q1 ∪ Q2 ∈ G, then Q1 ∈ G or Q2 ∈ G.

Definition 2.7. [34] Let S be a non-empty set. If p, q, r ∈]−0, 1+[, then the neutrosophic set ep,q,r is
called a neutrosophic point or singleton over S given by

ep,q,r(se) =
{

(p, q, r), i f e = se,

∅̃, i f e , se.

We call se ∈ S is the support of ep,q,r, where p denotes the degree of membership value, q denotes
the degree of indeterminacy and r is the degree of non-membership value of ep,q,r.

We denote a neutrosophic point by e =≺ ξe, ζe, λe ≻ and the collection of all neutrosophic singleton
points over S by E(S ). Let J(e) stand for the collection of all neutrosophic open neighbourhoods of
(p, q, r).

It is obvious that E(S ) ⊆ Q(S ). Throughout this paper any neutrosophic point e ∈ E(S ), we have
e , ∅̃.

Definition 2.8. [34] Let S , ϕ be a set. A neutrosophic singleton e defined on S is said to belong to
a neutrosophic set Q =≺ s, ξQ(s), ζQ(s), λQ(s) ≻ (e ∈ Q) if ξe ≤ ξQ, ζe ≤ ζQ, λe ≥ λQ.

Definition 2.9. [25] A binary relation ↪→ on P(S ) (P(S ) the power set of S ) with a primal L on a
nonempty set S is termed a primal proximity on S if ↪→ satisfies the criteria outlined below for any
J1, J2 ⊆ S .

(1) If J1 ↪→ J2, then J2 ↪→ J1.
(2) If J1 ↪→ (J2 ∪ J3)⇔ J1 ↪→ J2 or J1 ↪→ J3.
(3) If J

c

1 < L, then J1 ̸↪→ J2, for each J2 ⊆ S .
(4) If (J1 ∩ J2)

c
∈ L, then J1 ↪→ J2.

(5) If J1 ̸↪→ J2, then there exist H1,H2 ⊆ S such that J1 ̸↪→ H
c

1, H
c

2 ̸↪→ J2, and (H1 ∩ H2)
c
< L.

Definition 2.10. [25] A primal-proximity space is a pair (S , ↪→) comprising of a nonempty set S
and primal-proximity relation on S . Then, J1 ↪→ J2, if the sets J1, J2 ⊆ S are ↪→-related, otherwise
J1 ̸↪→ J2.

Definition 2.11. [35] Let S be a nonempty set. Then, the operator h : 2S → 2S is a Kuratowski
closure operator if the following statements hold:
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(1) h(∅) = ∅.
(2) For each J ∈ 2S , J ⊆ h(J).
(3) For each J,H ∈ 2S , h(J ∪ H) = h(J) ∪ h(H).
(4) For each J ∈ 2S , h(h(J)) = h(J).

3. Neutrosophic topological structure and neutrosophic operators

Here, we introduce a novel class of operators associated with neutrosophic primal topological spaces
and examine their essential properties.

Definition 3.1. Let S , ∅. A familyL of neutrosophic sets over S (L ⊆ Q(S )) is a neutrosophic primal
over S if, and only if, it adheres to the following stipulations:

(1) S̃ < L.
(2) If Q1 ∈ L and Q2 ⊆ Q1, then Q2 ∈ L.
(3) If Q1 ∩ Q2 ∈ L, then Q1 ∈ L or Q2 ∈ L.

Corollary 3.1. Let S , ∅. A collection L of neutrosophic sets over S (L ⊆ Q(S )) is referred to as a
neutrosophic primal on S if it adheres to the following stipulations:

(1) S̃ < L.
(2) If Q2 < L and Q2 ⊆ Q1, then Q1 < L.
(3) If Q1 < L and Q2 < L, then Q1 ∩ Q2 < L.

Proof. (1) Obvious;
(2) Suppose that Q1 ∈ L. Since Q2 ⊆ Q1, then by part (2) of Definition 3.1, Q2 ∈ L. Thus, contradicts
the assumption that Q2 < L. Hence, Q1 < L.
(3) Suppose that Q1 ∩ Q2 ∈ L, then by part (3) of Definition 3.1, Q1 ∈ L or Q2 ∈ L. Thus, contradicts
the assumption that Q1 < L and Q2 < L. Hence, Q1 ∩ Q2 < L.

Example 3.1. Suppose S , ϕ is a set, then Q(S ) \ {S̃ } is a neutrosophic primal on S , where Q(S )
denote to all neutrosophic sets over S .

Example 3.2. For S = {s}, the family L = {{≺ s, a, b, 1,≻} : a, b ∈ [0, 1]} is a neutrosophic primal
on S .

The following theorem explains the relationship between primal and grill of neutrosophic sets
over S .

Theorem 3.1. Let G ⊆ Q(S ) be a grill on S . Then, {Q|Q
c
∈ G} is a primal on S .

Proof. Suppose that G ⊆ Q(S ) is a grill on S and L = {Q|Q
c
∈ G}. Since ∅̃ < G and (S̃ )c = ∅̃, then

S̃ < L. Let Q1 ∈ L and Q2 ⊆ Q1. Then, Q
c

1 ⊆ Q
c

2, hence, Q
c

2 ∈ G. Thus, Q2 ∈ L. Now, let Q1∩Q2 ∈ L.
Then, Q

c

1 ∪ Q
c

2 = (Q1 ∩ Q2)
c
∈ G. Therefore, we get Q

c

1 ∈ G or Q
c

2 ∈ G. Hence, Q1 ∈ L or Q2 ∈ L.
Therefore, L is a primal on S .

Theorem 3.2. The union of two neutrosophic primals on S is a neutrosophic primal on S .
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Proof. Let K ,H be two neutrosophic primals on S . Then, S̃ < K and S̃ < H . Hence, S̃ < K ∪ H .
Now, let Q1 ∈ K ∪H and Q2 ⊆ Q1. Then, Q1 ∈ K or Q1 ∈ H . Hence, Q2 ∈ K or Q2 ∈ H . Therefore,
Q2 ∈ K ∪ H . Finally, let Q1 ∩ Q2 ∈ K ∪ H . Then, Q1 ∩ Q2 ∈ K or Q1 ∩ Q2 ∈ H . If Q1 ∩ Q2 ∈ K ,
then either Q1 ∈ K or Q2 ∈ K . Also, if Q1 ∩ Q2 ∈ H , then either Q1 ∈ H or Q2 ∈ H . Therefore,
Q1 ∈ K ∪H or Q2 ∈ K ∪H .

Definition 3.2. A neutrosophic topological space (S ,J) with a neutrosophic primalL ⊆ Q(S ) is called
a neutrosophic primal topological space (S ,J ,L) and indicated by NPTS.

Example 3.3. Suppose that (S ,J) be an NTS, where S = {s}, J = {̃∅, S̃ , {≺ s, 0.5, 0.5, 0.4 ≻:
s ∈ S }, {≺ s, 0.4, 0.6, 0.8 ≻: s ∈ S }, {≺ s, 0.5, 0.6, 0.4 ≻: s ∈ S }, {≺ s, 0.4, 0.5, 0.8 ≻: s ∈ S }} and
L = Q(S ) \ {S̃ }. Then, (S ,J ,L) is an NPTS.

Remark 3.1. Any neutrosophic set can be written as a union of neutrosophic points.

Based on what was presented earlier, we now define a new type of a neutrosophic primal operator
based on primal. The new structure is presented below.

Definition 3.3. Let (S ,J ,L) be an NPTS. For J ∈ Q(S ), we define a map ζ : Q(S ) → Q(S ) as
ζ(J)(S ,J ,L) =

⋃
{e ∈ E(S ) : J

c
∪G

c
∈ L, f or each G ∈ J(e)}. To be clear, ζ(J)(S ,J ,L) is denoted

as ζ(J) for brevity and is called the neutrosophic primal operator of J with respect to J and L.

Theorem 3.3. Let (S ,J ,L) be an NPTS. Then, the following statements hold for each J ∈ Q(S ):

(1) ζ (̃∅) = ∅̃.
(2) n-cl(ζ(J)) = ζ(J).
(3) ζ(J) ⊆ cl(J).
(4) ζ(ζ(J)) ⊆ ζ(J) for each ζ(J) ⊆ J.
(5) If Jc ∈ J , then ζ(J) ⊆ J.

Proof. (1) From Definition 3.3, for any neutrosophic point e ∈ E(S ) and G ∈ J(e), we have (̃∅)c∪Gc =

(S̃ ∪G
c
) = S̃ < L, hence, ζ (̃∅) = ∅̃.

(2) We have always ζ(J) ⊆ n-cl(ζ(J)). Conversely, let e ∈ n-cl(ζ(J)), where e ∈ E(S ) is a neutrosophic
point and G ∈ J(e). Hence, G∩ζ(J) , ∅̃, which implies there exists a neutrosophic point e1 ∈ G∩ζ(J).
Thus, J

c
∪G

c
∈ L, because e1 ∈ ζ(J). Hence, for any G ∈ J(e), we have J

c
∪G

c
∈ L, then e ∈ ζ(J).

Therefore, n-cl(ζ(J)) = ζ(J).
(3) Suppose that e < cl(J), then there exists G ∈ J(e) such that G ∩ J = ∅̃, hence, G

c
∪ J

c
= S̃ < L.

Thus, e < ζ(J). Therefore, ζ(J) ⊆ cl(J).
(4) Let e ∈ ζ(ζ(J)), where e ∈ E(S ) is a neutrosophic point and G ∈ J(e). From Definition 3.3,
(ζ(J))

c
∪ G

c
∈ L. Since ζ(J) ⊆ J, then (J

c
∪ G

c
) ⊆ ((ζ(J))

c
∪ G

c
). By the primality, we have

(J
c
∪G

c
) ∈ L, hence, e ∈ ζ(J). Therefore, ζ(ζ(J)) ⊆ ζ(J).

(5) Let e ∈ ζ(J). Suppose that e < J, which implies Jc ∈ J(e). Hence, (Jc)c ∪ Jc = S̃ ∈ L, which is a
contradiction since S̃ < L. Hence, e ∈ J, and so, ζ(J) ⊆ J.

Theorem 3.4. Let (S ,J ,L) be anNPTS. Then, the following statements hold for each J1, J2 ∈ Q(S ).

(1) If J1 ⊆ J2, then ζ(J1) ⊆ ζ(J2).
(2) ζ(J1) ∪ ζ(J2) = ζ(J1 ∪ J2).
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(3) ζ(J1 ∩ J2) ⊆ ζ(J1) ∩ ζ(J2).

Proof. (1) Suppose that J1 ⊆ J2 and e ∈ ζ(J1), then for all G ∈ J(e), we have J
c

1 ∪ G
c
∈ L. Since

J1 ⊆ J2, then (J
c

2 ∪ G
c
) ⊆ (J

c

1 ∪ G
c
) ∈ L. By primality, (J

c

2 ∪ G
c
) ∈ L. Hence, e ∈ ζ(J2). Therefore,

ζ(J1) ⊆ ζ(J2).
(2) Obvious from (1), ζ(J1) ⊆ ζ(J1 ∪ J2) and ζ(J2) ⊆ ζ(J1 ∪ J2). Hence, ζ(J1) ∪ ζ(J2) ⊆ ζ(J1 ∪ J2).
On the other hand, suppose that e < ζ(J1) ∪ ζ(J2), then e < ζ(J1) and e < ζ(J2). Consequently, there
are neutrosophic open sets G1 and G2 including e, for which J

c

1 ∪G
c

1 < L and J
c

2 ∪G
c

2 < L. Now, put
G = (G1 ∩ G2), hence, G ∈ J(e). Since G ⊆ G1 and G ⊆ G2, then (J

c

1 ∪ G
c

1) ⊆ (J
c

1 ∪ G
c
) < L and

(J
c

2 ∪G
c

2) ⊆ (J
c

2 ∪G
c
) < L. Thus, (J

c

1 ∪G
c
) < L and (J

c

2 ∪G
c
) < L. Then, we have ((J1 ∪ J2)

c
∪G

c
) =

(J
c

1∩ J
c

2)∪G
c
= ((J

c

1∪G
c
)∩ (J

c

2∪G
c
)) < L. Hence, e < ζ(J1∪ J2). Therefore, ζ(J1∪ J2) ⊆ ζ(J1)∪ζ(J2).

(3) From (1), we have the desired result.
Here is an example to illustrate that the inclusion of part (3) of Theorem 3.4 need not be reversible.

Example 3.4. Let (S ,J ,L) be an NPTS, where S = {s}, J = {̃∅, S̃ } and L = Q(S ) \ {S̃ }. Put
J1 = {≺ s, 0.5, 0, 1 ≻: s ∈ S } and J2 = {≺ s, 0, 0.5, 1 ≻: s ∈ S }, then ζ(J1) = S̃ and ζ(J2) = S̃ . Hence,
ζ(J1) ∩ ζ(J2) = S̃ , ∅̃ = ζ (̃∅) = ζ(J1 ∩ J2).

Lemma 3.1. Let (S ,J ,L) be an NPTS and J1, J2 ∈ Q(S ). If J1 ∈ J . Then, J1 ∩ ζ(J2) ⊆ ζ(J1 ∩ J2).

Proof. Let e ∈ J1 ∩ ζ(J2). Then, e ∈ J1 and e ∈ ζ(J2). Since J1 ∈ J and e ∈ J1, then for all G ∈ J(e),
we have G ∩ J1 ∈ J(e). From Definition 3.3, we have (J

c

2 ∪ (G ∩ J1)
c
) ∈ L. Hence, (J1 ∩ J2)

c
∪G

c
=

J
c

2 ∪ J
c

1 ∪G
c
= (J

c

2 ∪ (G ∩ J1)
c
) ∈ L. Thus, e ∈ ζ(J1 ∩ J2). Therefore, J1 ∩ ζ(J2) ⊆ J1 ∩ ζ(J2).

Lemma 3.2. Let (S ,J ,L) be an NPTS. If J
c
< L, then ζ(J) = ∅̃.

Proof. Suppose that ζ(J) , ∅̃, then there exists a neutrosophic point e , ∅̃ and e ∈ ζ(J). Hence, for
all G ∈ L(e), we have G

c
∪ J

c
∈ L. Since J

c
< L, then G

c
∪ J

c
< L for some neutrosophic open set

G ∈ J(e). This is a contradiction. Therefore, ζ(J) = ∅̃.

Theorem 3.5. Let (S ,J ,L) be an NPTS. If CN(S ) \ {S̃ } ⊆ L, then J ⊆ ζ(J) for all J ∈ J .

Proof. If J = ∅̃, we are done, because ζ (̃∅) = ∅̃. Suppose that J , ∅̃. Now, let J = S̃ and e < ζ(S̃ ).
Then, for all G ∈ J(e), we have G

c
∪ (S̃ )

c
= G

c
∪ ∅̃ = G

c
< L, but G

c
∈ CN(S ). This contradicts the

fact that CN(S ) \ {S̃ } ⊆ L, hence, S̃ ⊆ ζ(S̃ ). Since we always have ζ(S̃ ) ⊆ S̃ , then ζ(S̃ ) = S̃ . Assume
that J , S̃ , then by Lemma 3.1, for any J ∈ J we have J = J ∩ S̃ = J ∩ ζ(S̃ ) ⊆ ζ(J ∩ S̃ ) = ζ(J).
Therefore, J ⊆ ζ(J).

4. Neutrosophic primal closure operators and its main characteristics

In this section, we introduce a neutrosophic primal closure operator derived from the neutrosophic
primal operator and investigate the interrelations between them. Utilizing this neutrosophic primal
closure operator, we construct a neutrosophic topology and determine the conditions under which the
image of a neutrosophic primal remains a neutrosophic primal.

Definition 4.1. Let (S ,J ,L) be an NPTS. We define a map clζ : Q(S ) → Q(S ) by clζ(J) = J ∪ ζ(J)
for any J ∈ Q(S ).
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Theorem 4.1. Let (S ,J ,L) be an NPTS. Then, the following statements hold for each J ∈ Q(S ):

(1) clζ (̃∅) = ∅̃.
(2) clζ(S̃ ) = S̃ .
(3) J ⊆ clζ(J).

Proof. (1) From part (1) of Theorem 3.3, ζ (̃∅) = ∅̃. Hence, ∅̃ ∪ ζ (̃∅) = ∅̃ ∪ ∅̃ = ∅̃, which implies
clζ (̃∅) = ∅̃.
(2) Since S̃ ∪ ζ(S̃ ) = S̃ , then clζ(S̃ ) = S̃ .
(3) Since J ⊆ (J ∪ ζ(J)), then J ⊆ clζ(J).

Theorem 4.2. Let (S ,J ,L) be anNPTS. Then, the following statements hold for each J1, J2 ∈ Q(S ):

(1) If J1 ⊆ J2, then clζ(J1) ⊆ clζ(J2).
(2) clζ(J1) ∪ clζ(J2) = clζ(J1 ∪ J2).
(3) clζ(clζ(J1)) = clζ(J1) for each ζ(J1) ⊆ J1.

Proof. (1) Let J1 ⊆ J2. Then, by part (1) of Theorem 3.4, ζ(J1) ⊆ ζ(J2), hence, J1 ∪ ζ(J1) ⊆ J2 ∪ ζ(J2).
Thus, clζ(J1) ⊆ clζ(J2).
(2) Since clζ(J1 ∪ J2) = (J1 ∪ J2) ∪ ζ(J1 ∪ J2), then by part (2) of Theorem 3.4, clζ(J1 ∪ J2) =
(J1 ∪ J2) ∪ (ζ(J1) ∪ ζ(J2)) = (J1 ∪ ζ(J1)) ∪ (J2 ∪ ζ(J2)) = clζ(J1) ∪ clζ(J2).
(3) It is clear by part (3) of Theorem 4.1, clζ(J1) ⊆ clζ(clζ(J1)). Conversely, clζ(clζ(J1)) = clζ(J1) ∪
ζ(clζ(J1)) = clζ(J1)∪ζ(J1∪ζ(J1)). From part (2) of Theorem 3.4, clζ(clζ(J1)) = clζ(J1)∪ζ(J1)∪ζ(ζ(J1))
Since ζ(J1) ⊆ J1 and by part (4) of Theorem 3.3, clζ(clζ(J1)) ⊆ clζ(J1)∪ζ(J1)∪ζ(J1) = clζ(J1)∪ζ(J1) ⊆
clζ(J1) ∪ J1 = clζ(J1). Therefore, clζ(clζ(J1)) = clζ(J1) for each ζ(J1) ⊆ J1.

Theorem 4.3. Let (S ,J ,L) be an NPTS. Then, the collection J ζ
L
= {J ∈ Q(S ) : clζ(J

c
) = J

c
} is a

neutrosophic topology in S induced by neutrosophic topology J and neutrosophic primal L.

Proof. For condition (1): From part (1) of Theorem 3.3, clζ((S̃ )
c
) = (S̃ )

c
∪ ζ((S̃ )

c
) = ∅̃ ∪ ζ (̃∅) = ∅̃ ∪ ∅̃ =

∅̃ = (S̃ )
c
. Also, clζ((̃∅)

c
) = (̃∅)

c
∪ζ((̃∅)

c
) = S̃∪ζ(S̃ ) = S̃ = (̃∅)

c
. Therefore, ∅̃, S̃ ∈ J ζ

L
. For condition (2):

Let J1, J2 ∈ J
ζ

L
. Then, clζ(J

c

1) = J
c

1 and clζ(J
c

2) = J
c

2. Now, clζ((J1 ∩ J2)
c
) = (J1 ∩ J2)

c
∪ ζ[(J1 ∩ J2)

c
] =

J
c

1 ∪ J
c

2 ∪ ζ[J
c

1 ∪ J
c

2]. From part (2) of Theorem 3.4, clζ((J1 ∩ J2)
c
) = J

c

1 ∪ J
c

2 ∪ ζ(J
c

1) ∪ ζ(J
c

2) =
clζ(J

c

1) ∪ clζ(J
c

1) = J
c

1 ∪ J
c

2 = (J1 ∩ J2)
c
. Thus, J1 ∩ J2 ∈ J

ζ

L
. Now, let {Jξ : ξ ∈ Λ} ⊆ J ζ

L
.

Then, we have always (
⋃
ξ∈Λ Jξ)

c
⊆ clζ((

⋃
ξ∈Λ Jξ)

c
). Conversely, clζ(J

c

ξ) = J
c

ξ for each ξ ∈ Λ, hence,
clζ[(
⋃
ξ∈Λ Jξ)

c
] = (

⋃
ξ∈Λ Jξ)

c
∪ ζ[(

⋃
ξ∈Λ Jξ)

c
] = (

⋂
ξ∈Λ J

c

ξ) ∪ ζ(
⋂
ξ∈Λ J

c

ξ) ⊆ (
⋂
ξ∈Λ J

c

ξ) ∪ (
⋂
ξ∈Λ ζ(J

c

ξ)) =⋂
ξ∈Λ(J

c

ξ ∪ ζ(J
c

ξ)) =
⋂
ξ∈Λ clζ(J

c

ξ) =
⋂
ξ∈Λ J

c

ξ = (
⋃
ξ∈Λ Jξ)

c
. Hence, clζ((

⋃
ξ∈Λ Jξ)

c
) = (

⋃
ξ∈Λ Jξ)

c
. Thus,⋃

ξ∈Λ Jξ ∈ J
ζ

L
. Therefore, J ζ

L
is a neutrosophic topology in S induced by neutrosophic topology J

and neutrosophic primal L.

For simplicity, we will use the symbol J ζ instead of J ζ
L

if there is no confusion.

Theorem 4.4. Let (S ,J ,L) be an NPTS. Then, the floating topology J ζ is finer than J.

Proof. Let J ∈ J . Then, Jc is J-closed in S , and by part (5) of Theorem 3.3, ζ(Jc) ⊆ Jc. Thus,
clζ(Jc) = Jc ∪ ζ(Jc) = Jc, which implies J ∈ J ζ . Therefore, J ⊆ J ζ .

Theorem 4.5. Let (S ,J ,L) be an NPTS. Then, the following statements hold:
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(1) If L = {̃∅}, then J ζ = Q(S ).
(2) If L = Q(S ) \ {S̃ }, then J ζ = J .

Proof. (1) We have always J ζ ⊆ Q(S ). Conversely, we have two cases:
Case 1. If J ∈ Q(S ) \ {S̃ }, then ζ(J) = ∅̃. Suppose that ζ(J) , ∅̃. Consequently, a neutrosophic

point e , ∅̃ can be found where e ∈ ζ(J), hence, for any G ∈ J(e), we have G
c
∪ J

c
∈ L. Thus,

G = J = S̃ , because L = {̃∅} and thus contradicts the fact J ∈ Q(S ) \ {S̃ }. Hence, ζ(J) = ∅̃, which
implies clζ(J

c
) = J

c
. Therefore, J ∈ J ζ .

Case 2. If J = S̃ , then clζ(S̃
c
) = S̃

c
∪ ζ((S̃ )

c
) = (S̃ )

c
∪ ζ (̃∅) = (S̃ )

c
. Hence, J ∈ J ζ . Therefore,

J ζ = Q(S ).
(2) By Theorem 4.4, J ⊆ J ζ . Now, let J ∈ J ζ . If J = ∅̃, then J ∈ J . Suppose that J , ∅̃. Since
J ∈ J ζ , then Jc ∪ ζ(Jc) = Jc, which implies ζ(Jc) ⊆ Jc. Assume that e < ζ(Jc), then there exists
G ∈ J(e) such that (Jc)c ∪ Gc < L. Since L = Q(S ) \ {S̃ }, then (Jc)c ∪ Gc = S̃ and so, Jc ∩ G = ∅̃.
Hence, e < cl(Jc). Thus, we have cl(Jc) ⊆ ζ(Jc) ⊆ Jc. Therefore, cl(Jc) = Jc, which implies Jc is
J-closed in S and so, J ∈ J . Hence, J ζ ⊆ J . Therefore, J ζ = J .

Theorem 4.6. Let (S ,J ,L) and (S ,J ,F ) be two NPTSs. If L ⊆ F , then J ζ
F
⊆ J

ζ

L
.

Proof. Let J ∈ J ζ
F

. Then, clζF (J
c
) = J

c
∪ζF (J

c
) = J

c
, hence, ζF (J

c
) ⊆ J

c
. Let e < J

c
. Then, e < ζF (J

c
),

hence, there exists G ∈ J(e) such that G
c
∪ J < F . Since J ζ

F
⊆ J

ζ

J
, then we obtain G ∈ J(e) such

that G
c
∪ J < L. Thus, we have e < ζL(J

c
), and so, ζL(J

c
) ⊆ J

c
. Hence, clζL(J

c
) = J

c
∪ ζL(J

c
) = J

c
.

Thus, J ∈ J ζ
L

. Therefore, J ζ
F
⊆ J

ζ

L
.

Lemma 4.1. Let (S ,J ,L) be an NPTS and J ∈ Q(S ). Then, the followings hold:

(1) J ∈ J ζ if, and only if, for all neutrosophic point e ∈ J, there exists a neutrosophic open set G
containing e such that Gc ∪ J < L.

(2) If J < L, then J ∈ J ζ .

Proof. (1) Let J ∈ J ζ . Then,

J ∈ J ζ ⇔ clζ(Jc) = Jc

⇔ Jc ∪ ζ(Jc)) = Jc

⇔ ζ(Jc) ⊆ Jc

⇔ J ⊆ (ζ(Jc))c

⇔ (∀e ∈ J)(e < ζ(Jc))
⇔ (∀e ∈ J)(∃G ∈ J(e))(Gc ∪ (Jc)c = Gc ∪ J < L).

(2) Let J < L and e ∈ J. Put G = S̃ , then G is a neutrosophic J-open set containing e. Since J < L
and Gc ∪ J = J, then we have Gc ∪ J < L. By part (1), we have J ∈ J ζ .

Theorem 4.7. Let (S ,J ,L) be anNPTS. Then,HJ
L
= {G∩ J : G ∈ J and J < L} is a neutrosophic

open base for the neutrosophic topology J ζ on S .

Proof. Let H ∈ HJ
L

. Then, there exist G ∈ J and J < L, where H = G∩J. From Theorem 4.4, we have
J ⊆ J ζ , hence, G ∈ J ζ . Also, from part (2) of Lemma 4.1, J ∈ J ζ . Thus, H = G∩J ∈ J ζ . Therefore,
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H
J

L
⊆ J ζ . Now, let J ∈ J ζ and a neutrosophic point e in J. Then, from part (1) of Lemma 4.1, there

exists a neutrosophic open set G containing e such that Gc ∪ J < L. Put H = G ∩ (Gc ∪ J). Hence, we
get H ∈ HJ

L
, where e ∈ H ⊆ J.

Theorem 4.8. Let Π : Q(S )→ Q(F) be a one-to-one map and L ⊆ Q(S ). If L is a primal over S and
Π(J) , F̃ for all J ∈ L, then F = {Π(J) : J ∈ L} is a primal over F.

Proof. (1) Since Π(J) , F̃ for all J ∈ L, then F̃ < F .
(2) Let J1 ∈ F and J2 ⊆ J1. Then, there exists J ∈ L such that Π(J) = J1. Put D = Π−1(J2). Since Π is
one-to-one, then D ⊆ J, which implies D ∈ L. Hence, J2 = Π(D). Therefore, J2 ∈ F .
(3) Let J1 ∩ J2 ∈ F . Then, there exists J,D ∈ L such that Π(J) = J1 and Π(D) = J2. Since J ∩ D ⊆ J,
then by primality, J ∩ D ∈ L, hence, J ∈ L or D ∈ L. Thus, J1 ∈ F or J2 ∈ F . Therefore, F is a
primal over F.

In general, the following example shows that condition Π(J) , S̃ for all J ∈ L in the previous
theorem is necessary.

Example 4.1. Let Π : Q(S ) → Q(S ) be a one-to-one map defined by Π(J) = J
c

for all J ∈ Q(S ).
Hence, Π(̃∅) = (̃∅)

c
= S̃ . Thus, S̃ ∈ F , hence, F is not primal over F.

5. Neutrosophic primal proximity spaces

Here, we present the concept of neutrosophic primal proximity and study several of its master
characteristics.

Definition 5.1. A binary relation ⊢ on Q(S ) with a neutrosophic primal L over a nonempty set S is
designated as a neutrosophic primal proximity on S if ⊢ meets the ensuing criteria:

(1) If J1 ⊢ J2, then J2 ⊢ J1.
(2) If J1 ⊢ (J2 ∪ J3)⇔ J1 ⊢ J2 or J1 ⊢ J3.
(3) If J1 ⊢ J2, then J

c

1 ∈ L and J
c

2 ∈ L.
(4) If (J1 ∩ J2)

c
∈ L, then J1 ⊢ J2.

(5) If J1 ⊬ J2, then there exist F1, F2 ∈ Q(S ) such that J1 ⊬ F
c

1, F
c

2 ⊬ J2, and (F1 ∩ F2) = ∅̃.

Definition 5.2. A neutrosophic primal proximity space (briefly NPPS ) is a pair (S , ⊢) consisting of
a set S and neutrosophic primal proximity relation (briefly NPPR) on a nonempty set S . We write
J1 ⊢ J2, if the sets J1, J2 ∈ Q(S ) are ⊢-related, otherwise we denote J1 ⊬ J2.

Corollary 5.1. Let ⊢ be an NPPR on a nonempty set S . Then,

(1) if J2 ⊬ J1, then J1 ⊬ J2;
(2) if J1 ⊬ (J2 ∪ J3)⇔ J1 ⊬ J2 and J1 ⊬ J3;
(3) if there exist J

c

1 < L or J
c

2 < L, then J1 ⊬ J2;
(4) if J1 ⊬ J2, then (J1 ∩ J2)

c
< L;

(5) if J1 ⊬ J2, then there exist F1, F2 ∈ Q(S ) such that J1 ⊬ F
c

1, F
c

2 ⊬ J2, and (F1 ∩ F2) = ∅̃.

Example 5.1. Let L = Q(S ) \ {S̃ } be a neutrosophic primal over a nonempty set S and J1, J2 ∈ Q(S ).
We define a binary relation ⊢ on Q(S ) as follows:

J1 ⊢ J2 ⇔ J
c

1, J
c

2 ∈ L.

AIMS Mathematics Volume 11, Issue 1, 644–660.



654

Then, ⊢ is an NPPR on S .

Proof. (1) Let J1 ⊢ J2. Then, J
c

1, J
c

2 ∈ L. Hence, J
c

2, J
c

1 ∈ L, thus J2 ⊢ J1.
(2) Let J1 ⊢ (J2 ∪ J3). Then, J

c

1, (J2 ∪ J3)
c
∈ L. Hence, J

c

2 ∩ J
c

3 ∈ L. By primality, J
c

2 ∈ L or J
c

3 ∈ L.
Hence, J

c

1, J
c

2 ∈ L or J
c

1, J
c

3 ∈ L. Therefore, J1 ⊢ J2 or J1 ⊢ J3. Conversely, let J1 ⊢ J2 or J1 ⊢ J3. Then,
J

c

1, J
c

2 ∈ L or J
c

1, J
c

3 ∈ L. If J
c

1, J
c

2 ∈ L or J
c

1, J
c

3 ∈ L, then J
c

2 ∩ J
c

3 ⊆ J
c

2 or J
c

2 ∩ J
c

3 ⊆ J
c

3. Then, by
primality, (J2 ∪ J3)

c
= (J

c

2 ∩ J
c

3) ∈ L. Thus, J
c

1, (J2 ∪ J3)
c
∈ L. Therefore, J1 ⊢ (J2 ∪ J3).

(3) Obvious by definition.
(4) Let (J1 ∩ J2)

c
∈ L. Then, J

c

1 ∪ J
c

2 ∈ L. Since J
c

1 ⊆ J
c

1 ∪ J
c

2 and J
c

2 ⊆ J
c

1 ∪ J
c

2, then by primality,
J

c

1, J
c

2 ∈ L. Therefore, J1 ⊢ J2.
(5) Let J1 ⊬ J2. Then, J

c

1 < L or J
c

2 < L. If J
c

1 < L, then put F1 = J
c

1 and F2 = J1. Hence, J1 ⊬ F
c

1,
F

c

2 ⊬ J2. Since J
c

1 < L and J
c

1 ⊆ (F
c

1∪F
c

2) = (F1∩F2)
c
, then by Corollary 3.1, (F1∩F2)

c
< L. However,

L = Q(S ) \ {S̃ }, hence, F1 = ∅̃ or F2 = ∅̃. Hence, (F1 ∩ F2) = ∅̃. If J
c

2 < L, then in the same way, we
get the required.

Example 5.2. Let L = Q(S ) \ {S̃ } be a neutrosophic primal over a nonempty set S and J1, J2 ∈ Q(S ).
We define a binary relation ⊢ on Q(S ) as follows:

J1 ⊢ J2 ⇔ (J1 ∩ J2)
c
∈ L.

Then, ⊢ is an NPPR on S .

Proof. (1), (2), (3) and (4) all follow directly by the definition.
(5) Let J1 ⊬ J2, then (J1 ∩ J2)

c
< L. Since L = Q(S ) \ {S̃ }, then J1 = ∅̃ or J2 = ∅̃. If J1 = ∅̃, then

put F1 = J
c

1, F2 = J1, and use the same process of part (5) of Example 5.1, hence, we get the required.
Also, if J2 = ∅̃ then put F1 = J

c

2, F2 = J2, and use the same process of part (5) of Example 5.1, hence,
we get the required.

In the following, we define the neutrosophic point-primal proximity operator and study its main
properties.

Definition 5.3. Let (S , ⊢) be anNPPS. Then, we define a map (·)
⊢

: Q(S )→ Q(S ) as J
⊢

(S , ⊢,J ,L) =⋃
{e ∈ E(S ) : e ⊢ J}. To be clear, J

⊢

(S , ⊢,J ,L) is denoted as J
⊢

for brevity and is designated as
the neutrosophic point-primal proximity operator of J with respect to J , ⊢ and L. Moreover, J

⊢

It is
termed the neutrosophic point-primal proximity of J.

Theorem 5.1. Let S be a nonempty set, e ∈ E(S ) and J1, J2 ∈ Q(S ), where L = Q(S ) \ {S̃ }. Then, the
followings hold:

(1) If J
c

1 < L, then J1 ∩ J
⊢

2 = ∅̃.
(2) e ⊢ J1 for each e ∈ J1.
(3) If J1 ⊬ J2, then J1 ∩ J2 = ∅̃.

Proof. (1) Let J
c

1 < L. Since L = Q(S ) \ {S̃ }, then J1 = ∅̃. Therefore, J1 ∩ J
⊢

2 = ∅̃.
(2) Let e ∈ J1. Then, (e ∩ J1)

c
= e

c
∈ L, because L = Q(S ) \ {S̃ }. By part (4) of Definition 5.1, e ⊢ J1

for each e ∈ J1.
(3) Let J1 ⊬ J2. Assume that J1 ∩ J2 , ∅̃, then there exists a neutrosophic point e ∈ J1 ∩ J2. Hence,
(J1∩ J2)

c
, S̃ . Thus, (J1∩ J2)

c
∈ L, becauseL = Q(S )\ {S̃ }. Hence, J1 ⊢ J2, and this is a contradiction

the fact J1 ⊬ J2. Therefore, J1 ∩ J2 = ∅̃.
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Corollary 5.2. Let S be a nonempty set, e ∈ E(S ), where L = Q(S ) \ {S̃ }. Then,

(1) e ⊢ S̃ for each e ∈ S̃ .
(2) (S̃ )

⊢

= S̃ .

Lemma 5.1. Let L be a neutrosophic primal on S , ∅. If J1 ⊢ J2, J1 ⊆ D1 and J2 ⊆ D2, then D1 ⊢ D2.

Proof. Let J1 ⊢ J2, J1 ⊆ D1 and J2 ⊆ D2. Suppose that D1 ⊬ D2, then by part (5) of Definition 5.1, there
exist F1, F2 ∈ Q(S ) such that D1 ⊬ F

c

1, F
c

2 ⊬ D2, and (F1∩F2) = ∅̃. Hence, F1 = ∅̃ or F2 = ∅̃. If F1 = ∅̃,
then by D1 ⊬ F

c

1, and by part (4) of Corollary 5.1, (D1∩F
c

1)
c
< L. Thus, D

c

1 = D
c

1∪F1 = (D1∩F
c

1)
c
< L.

Since J1 ⊆ D1, then D
c

1 ⊆ J
c

1, and by primality, J
c

1 < L. Hence, by part (3) of Corollary 5.1, J1 ⊬ J2, and
this is a contradiction the fact J1 ⊢ J2. Therefore, D1 ⊢ D2. If F2 = ∅̃, then we use the same previous
way to get the required.

Lemma 5.2. Let (S , ⊢,J ,L) be an NPPTS and J1, J2 ∈ Q(S ). If J2 ⊬ J1, then J
⊢

1 ⊆ J
c

2.

Proof. Suppose that J
⊢

1∩ J2 , ∅̃. Then, there exists a neutrosophic point e such that e ∈ J
⊢

1∩ J2. Hence,
e ⊢ J1 and e ⊆ J2, then by Lemma 5.1, J2 ⊢ J1, which is a contradiction. Therefore, J

⊢

1 ⊆ J
c

2.

Theorem 5.2. Let (S , ⊢,J ,L) be an NPPTS and J1, J2 ∈ Q(S ). If J2 ⊬ J1, then J2 ⊬ J
⊢

1.

Proof. Let J2 ⊬ J1. Then, by part (5) of Definition 5.1, there exist F1, F2 ∈ Q(S ) such that J2 ⊬ F
c

1,
F

c

2 ⊬ J1, and (F1 ∩ F2) = ∅̃. Hence, F1 = ∅̃ or F2 = ∅̃. If F1 = ∅̃, then by J2 ⊬ F
c

1, and by part (4) of
Corollary 5.1, (J2∩F

c

1)
c
< L. Thus, J

c

2 = J
c

2∪F1 = (J2∩F
c

1)
c
< L. Hence, by part (3) of Corollary 5.1,

J2 ⊬ J
⊢

1. If F2 = ∅̃, then by F
c

2 ⊬ J1, and Lemma 5.2, J
⊢

1 ⊆ F2. Hence, (J
⊢

1)
c
= S̃ < L, and by part (3) of

Corollary 5.1, J2 ⊬ J
⊢

1.

Theorem 5.3. Let (S , ⊢,J ,L) be anNPPTS and J1, J2 ∈ Q(S ). Then, the following statements hold:

(1) (̃∅)
⊢

= ∅̃.
(2) If J1 ⊆ J2, then J

⊢

1 ⊆ J
⊢

2.
(3) (J1 ∩ J2)

⊢

⊆ J
⊢

1 ∩ J
⊢

2.
(4) (J1 ∪ J2)

⊢

= J
⊢

1 ∪ J
⊢

2.
(5) If J

c

1 < L, then J
⊢

1 = ∅̃.
(6) (J

⊢

1)
⊢

⊆ J
⊢

1.

Proof. (1) let e ∈ E(S ). Then, by part (3) of Definition 5.1, e ⊬ ∅̃, because (̃∅)
c
= S̃ < L. Hence,

(̃∅)
⊢

= ∅̃.
(2) Let J1 ⊆ J2 and e ∈ J

⊢

1. Then, e ⊢ J1. Since J1 ⊆ J2, and by Lemma 5.1, e ⊢ J2. Hence, e ∈ J
⊢

2.
Therefore, J

⊢

1 ⊆ J
⊢

2.
(3) Let J1, J2 ∈ Q(S ). Since J1 ∩ J2 ⊆ J1 and J1 ∩ J2 ⊆ J2, then by part (2), (J1 ∩ J2)

⊢

⊆ J
⊢

1 and
(J1 ∩ J2)

⊢

⊆ J
⊢

2. Thus, (J1 ∩ J2)
⊢

⊆ J
⊢

1 ∩ J
⊢

2.
(4) Let J1, J2 ∈ Q(S ). Since J1, J2 ⊆ (J1∪J2) and by part (2), we have J

⊢

1 ⊆ (J1∪J2)
⊢

and J
⊢

2 ⊆ (J1∪J2)
⊢

.
Hence, J

⊢

1 ∪ J
⊢

2 ⊆ (J1 ∪ J2)
⊢

. Conversely, let e ∈ (J1 ∪ J2)
⊢

. Then, e ⊢ J1 ∪ J2, and by part (2)
of Definition 5.1, e ⊢ J1 or e ⊢ J2. Hence, e ∈ J

⊢

1 or e ∈ J
⊢

2, which implies e ∈ J
⊢

1 ∪ J
⊢

2. Thus,
(J1 ∪ J2)

⊢

⊆ J
⊢

1 ∪ J
⊢

2. Therefore, (J1 ∪ J2)
⊢

= J
⊢

1 ∪ J
⊢

2.
(5) Let J

c

1 < L. Then, by part (3) of Corollary 5.1, e ⊬ J1. Hence, e ⊬ J1 for each e ∈ E(S ). Therefore,
J
⊢

1 = ∅̃.
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(6) Let J1 ∈ Q(S ) and e < J
⊢

1. Then, e ⊬ J1, and by Theorem 5.2, e ⊬ J
⊢

1. Hence, e ⊬ (J
⊢

1)
⊢

. Thus,
(J
⊢

1)
⊢

⊆ J
⊢

1.

6. Neutrosophic proximal closed sets and neutrosophic topologies

This section introduces neutrosophic proximal closed sets. Additionally, various results relating
NPPS and NPTS are established using these neutrosophic proximal closed sets.

Definition 6.1. Let (S , ⊢,J ,L) be an NPPTS. Then, a subset J of Q(S ) is termed neutrosophic
proximity closed set (briefly NPCS ) if, and only if, e ⊢ J means e ∈ J.

Lemma 6.1. Let (S , ⊢,J ,L) be an NPPTS. Then, the following statements hold:

(1) Arbitrary intersections of neutrosophic proximity closed sets are neutrosophic proximity closed.
(2) Finite unions of neutrosophic proximity closed sets are neutrosophic proximity closed.

Proof. (1) Let {J j : j ∈ Λ} be a family of NPCS. Let e ⊢
⋂
{J j : j ∈ Λ}. Since

⋂
J j ⊆ J j for each

j ∈ Λ, then by Lemma 5.1, e ⊢ J j for each j ∈ Λ. Since J j is neutrosophic proximity closed for each
e ∈ J j, then e ∈ J j for each j ∈ Λ. Hence, e ∈

⋂
{J j : j ∈ Λ}, which implies

⋂
{J j : j ∈ Λ}, is

neutrosophic proximity closed.
(2) Let J j be a neutrosophic proximity closed set for each j ∈ {1, 2, 3, . . . , n}. Let e ⊢

⋃n
j=1 J j. Then,

by part (2) of Definition 5.1 and e ⊢ [J1 ∪ (
⋃n

j=2 J j)], we have e ⊢ J1 or e ⊢
⋃n

j=2 J j. If e ⊢ J1, then
e ⊢
⋃n

j=1 J j (because J1 is neutrosophic proximity closed, hence, e ∈ J1, which implies e ∈
⋃n

j=1 J j.
Assume that e ⊬ J1, then e ⊢

⋃n
j=2 J j. Then, we use the same process until e ⊢ (Jn−1 ∪ Jn). Hence,

e ⊢ Jn−1 or e ⊢ Jn, and in both cases we have e ⊢
⋃n

j=1 J j. Therefore,
⋃n

j=1 J j is neutrosophic proximity
closed.

Theorem 6.1. The family of complements of allNPCSs of (S , ⊢,J ,L) forms a neutrosophic topology
on S . This neutrosophic topology is denoted by J

⊢

.

Proof. For condition (1): From part (1) of Corollary 5.2 and e ⊢ S̃ for each e ∈ S̃ , then S̃ is a
neutrosophic proximity closed set. Thus, ∅̃ ∈ J

⊢

. Also, e ⊢ ∅̃ for each e ∈ ∅̃, hence, ∅̃ is a neutrosophic
proximity closed set. Thus, S̃ ∈ J

⊢

.
For condition (2): Let J1, J2 ∈ J

⊢

. Then, J
c

1 and J
c

2 are neutrosophic proximity closed sets. By
part (2) of Lemma 6.1, J

c

1 ∪ J
c

2 is neutrosophic proximity closed. Since (J1 ∩ J2)
c
= J

c

1 ∪ J
c

2, then
J1 ∩ J2 ∈ J

⊢

.
For condition (3): Let {J j : j ∈ Λ} ⊆ J

⊢

. Then, J
c

j for each j ∈ Λ is a neutrosophic proximity
closed set. By part (1) of Lemma 6.1,

⋂
{J

c

j : j ∈ Λ} is neutrosophic proximity closed. Since [
⋃
{J j :

j ∈ Λ}]
c
= [
⋂
{J

c

j : j ∈ Λ}], then
⋃
{J j : j ∈ Λ} ∈ J

⊢

.

Theorem 6.2. Let (S , ⊢,J ,L) be anNPPTS and J ⊆ J
⊢

. The set J
⊢

is the neutrosophic closure of the
neutrosophic set J in which the neutrosophic closure is taken with respect to the neutrosophic topology
J
⊢

and symbolized by clJ⊢ (J).

Proof. Let e be a neutrosophic point such that e ∈ J
⊢

. Then, e ⊢ J. Since J ⊆ clJ⊢ (J), and by
Lemma 5.1, we have e ⊢ clJ⊢ (J). Since clJ⊢ (J) is neutrosophic proximity closed, then e ∈ clJ⊢ (J).
Hence, J

⊢

⊆ clJ⊢ (J). Conversely, Let e be a neutrosophic point such that e < J
⊢

. Then, e ⊬ J. Assume

AIMS Mathematics Volume 11, Issue 1, 644–660.



657

that e ⊢ clJ⊢ (J). Since J ⊆ clJ⊢ (J), and by Lemma 5.1, we have e ⊢ J. Since J ⊆ J
⊢

. Hence, by
Lemma 5.1, e ⊢ J

⊢

. However, this is a contradictions the fact e ⊬ J
⊢

. Hence, e ⊬ clJ⊢ (J). Thus,
clJ⊢ (J) ⊆ J

⊢

. Therefore, clJ⊢ (J) = J
⊢

.

Definition 6.2. The operator Ξ : Q(S ) → Q(S ) is a neutrosophic Kuratowski closure operator if it
satisfies the following conditions:

(1) Ξ(̃∅) = ∅̃.
(2) For each J1 ∈ Q(S ), J1 ⊆ Ξ(J1).
(3) For each J1, J2 ∈ Q(S ), Ξ(J1 ∪ J2) = Ξ(J1) ∪ Ξ(J2).
(4) For each J1 ∈ Q(S ), Ξ(Ξ(J1)) = Ξ(J1).

Theorem 6.3. Let (S , ⊢,J ,L) be anNPPTS, whereL = Q(S )\{S̃ }. Then, the neutrosophic operator
J
⊢

=
⋃
{e ∈ E(S ) : e ⊢ J} on a neutrosophic primal proximity space (S , ⊢,J ,L) is a neutrosophic

Kuratowski closure operator.

Proof. (1) By part (1) of Theorem 5.3, (̃∅)
⊢

= ∅̃.
(2) If e ∈ J1, then by part (2) of Theorem 5.1, e ⊢ J1. Hence, e ∈ J

⊢

1. Therefore, J1 ⊆ J
⊢

1.
(3) By part (4) of Theorem 5.3, (J1 ∪ J2)

⊢

= J
⊢

1 ∪ J
⊢

2 for each J1, J2 ∈ Q(S ).
(4) By part (6) of Theorem 5.3, (J

⊢

1)
⊢

⊆ J
⊢

1. On the other side, let e < (J
⊢

1)
⊢

. Then, e ⊬ J
⊢

1. By part (4)
of Corollary 5.1, (e ∩ J

⊢

1)
c
< L. Since L = Q(S ) \ {S̃ }, then (e ∩ J

⊢

1)
c
= S̃ , which implies e ∩ J

⊢

1 = ∅̃.
Hence, e = ∅̃ or J

⊢

1 = ∅̃, and by part (3) of Corollary 5.1, e < J
⊢

1. Thus, J
⊢

1 ⊆ (J
⊢

1)
⊢

. Therefore, (J
⊢

1)
⊢

= J
⊢

1
for each J1 ∈ Q(S ).

Theorem 6.4. Let (S , ⊢,J ,L) be anNPPTS. For any J ∈ Q(S ), we define a map cl
Υ

: Q(S )→ Q(S )
by cl

Υ
(J) = J ∪ J

⊢

satisfies neutrosophic Kuratowski closure axioms.

Proof. (1) By part (1) of Theorem 5.3, cl
Υ
(̃∅) = ∅̃.

(2) Let J ∈ Q(S ). Since cl
Υ
(J) = J ∪ J

⊢

, then J ⊆ cl
Υ
(J).

(3) Let J1, J2 ∈ Q(S ). Then, by part (4) of Theorem 5.3, we get

cl
Υ
(J1 ∪ J2) = (J1 ∪ J2) ∪ (J1 ∪ J2)

⊢

= (J1 ∪ J2) ∪ (J
⊢

1 ∪ J
⊢

2)
= (J1 ∪ J

⊢

1) ∪ (J2 ∪ J
⊢

2)
= cl

Υ
(J1) ∪ cl

Υ
(J2).

(4) Let J ∈ Q(S ). Then, by parts (4) and (6) of Theorem 5.3, we get

cl
Υ
(cl

Υ
(J)) = cl

Υ
(J) ∪ [cl

Υ
(J)]

⊢

= (J ∪ J
⊢

) ∪ [J ∪ J
⊢

]
⊢

= (J ∪ J
⊢

) ∪ [J
⊢

∪ (J
⊢

)
⊢

]
= (J ∪ J

⊢

) ∪ J
⊢

= J ∪ J
⊢

= cl
Υ
(J).
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Theorem 6.5. Let (S , ⊢,J ,L) be an NPPTS. Then, the collection J
Υ

L
= {J ∈ Q(S ) : cl

Υ
(J

c
) = J

c
}

is a neutrosophic topology in S induced by neutrosophic topology J , neutrosophic primal L and
neutrosophic primal proximity ⊢ on a nonempty set S .

Proof. From part (1) of Theorem 5.3, clΥ((S̃ )
c
) = (S̃ )

c
∪ ((S̃ )

c
)⊢ = ∅̃ ∪ (̃∅)⊢ = ∅̃ ∪ ∅̃ = ∅̃ = (S̃ )

c
. Also,

clΥ((̃∅)
c
) = (̃∅)

c
∪ ((̃∅)

c
)⊢ = S̃ ∪ (S̃ )⊢ = S̃ = (̃∅)

c
. Therefore, ∅̃, S̃ ∈ J⊢

L
.

Now, let J1, J2 ∈ J
⊢
L

. Then, clΥ(J
c

1) = J
c

1 and clΥ(J
c

2) = J
c

2. Now, clΥ((J1 ∩ J2)
c
) = (J1 ∩ J2)

c
∪ [(J1 ∩

J2)
c
]⊢ = J

c

1 ∪ J
c

2 ∪ [J
c

1 ∪ J
c

2]⊢. From part (4) of Theorem 5.3, clΥ((J1 ∩ J2)
c
) = J

c

1 ∪ J
c

2 ∪ (J
c

1)⊢ ∪ (J
c

2)⊢ =
clΥ(J

c

1) ∪ clΥ(J
c

1) = J
c

1 ∪ J
c

2 = (J1 ∩ J2)
c
. Thus, J1 ∩ J2 ∈ J

⊢
L

. Now, let {Jξ : ξ ∈ Λ} ⊆ J⊢
L

.
Then, we have always (

⋃
ξ∈Λ Jξ)

c
⊆ clΥ((

⋃
ξ∈Λ Jξ)

c
). Conversely, clΥ(J

c

ξ) = J
c

ξ for each ξ ∈ Λ, hence,
clΥ[(
⋃
ξ∈Λ Jξ)

c
] = (

⋃
ξ∈Λ Jξ)

c
∪ [(
⋃
ξ∈Λ Jξ)

c
]⊢ = (

⋂
ξ∈Λ J

c

ξ) ∪ (
⋂
ξ∈Λ J

c

ξ)
⊢ ⊆ (

⋂
ξ∈Λ J

c

ξ) ∪ (
⋂
ξ∈Λ(J

c

ξ)
⊢) =⋂

ξ∈Λ(J
c

ξ ∪ (J
c

ξ)
⊢) =

⋂
ξ∈Λ clΥ(J

c

ξ) =
⋂
ξ∈Λ J

c

ξ = (
⋃
ξ∈Λ Jξ)

c
. Hence, clΥ((

⋃
ξ∈Λ Jξ)

c
) = (

⋃
ξ∈Λ Jξ)

c
. Thus,⋃

ξ∈Λ Jξ ∈ J⊢L. Therefore, J⊢
L

is a neutrosophic topology in S induced by neutrosophic topology J
and neutrosophic primal L.

For simplicity, we will use the symbol J
Υ

instead of J
Υ

L
if there is no confusion.

Theorem 6.6. Let (S , ⊢,J ,L) be an NPPTS and J, F ∈ Q(S ). Then, the following statements hold:

(1) J ⊬ F ⇔ J ⊬ cl
Υ
(F).

(2) cl
Υ
(J
⊢

) = J
⊢

.
(3) cl

Υ
(J
⊢

) = [cl
Υ
(J)]

⊢

.

Proof. (1) Let J ⊬ F. Then, by Theorem 5.2, we get J ⊬ F
⊢

. By part (2) of Definition 5.1, J ⊬ (F∪F
⊢

) =
cl
Υ
(F)⇔ J ⊬ F and J ⊬ F

⊢

.
(2) By part (6) of Theorem 5.3, we have cl

Υ
(J
⊢

) = J
⊢

∪ (J
⊢

)
⊢

= J
⊢

.
(3) By part (4) of Theorem 5.3, we have cl

Υ
(J
⊢

) = J
⊢

∪ (J
⊢

)
⊢

= (J ∪ J
⊢

)
⊢

= [cl
Υ
(J)]

⊢

.

7. Conclusions and further work

Our work concentrated on creating a new abstract structure called the “neutrosophic primal
topology”. Then, we have shown some comparisons between neutrosophic primal and neutrosophic
grill. After that, we have introduced new operators via neutrosophic primal and neutrosophic primal
proximity spaces, respectively, and studied their basic properties. In addition, we have presented a new
neutrosophic topology induced by the neutrosophic primal closure operator.We also have defined the
neutrosophic point primal proximity operator and introduced many features of a neutrosophic primal
proximity space. Furthermore, we have defined a neutrosophic proximal closed set. Finally, we have
introduced different facts between a neutrosophic primal and a neutrosophic primal proximity spaces
through neutrosophic proximal closed sets and related concepts.

The results we have obtained in this work are early. Further research into the features of the
neutrosophic primal topology may provide more insights. This work intends to contribute to the
direction of merging neutrosophic primal structures with other fields of sciences.
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9. S. Acharjee, M. Özkoç, F. Y. Issaka, Primal topological spaces, Bol. Soc. Parana. Mat., 43 (2025),
1–9. https://doi.org/10.5269/bspm.66792

10. A. Al-Omari, M. H. Alqahtani, Primal structure with closure operators and their applications,
Mathematics, 11 (2023), 1–13. https://doi.org/10.3390/math11244946
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