The main purpose of this paper was to study the global existence for the Cauchy problem for three-component Cahn-Hilliard phase-field model in 2D whole space. We first constructed the local classical solutions, then by combining some a priori estimates and the continuity argument, the local classical solutions were extended step by step to all $ t > 0 $.
Citation: Ning Duan, Yinghao Wang. Global classical solution to three-component Cahn-Hilliard phase-field model[J]. AIMS Mathematics, 2026, 11(1): 618-643. doi: 10.3934/math.2026027
The main purpose of this paper was to study the global existence for the Cauchy problem for three-component Cahn-Hilliard phase-field model in 2D whole space. We first constructed the local classical solutions, then by combining some a priori estimates and the continuity argument, the local classical solutions were extended step by step to all $ t > 0 $.
| [1] |
J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. Ⅰ. Interfacial free energy, J. Chem. Phys., 28 (1958), 258–267. https://doi.org/10.1063/1.1744102 doi: 10.1063/1.1744102
|
| [2] |
A. Novick-Cohen, L. A. Segel, Nonlinear aspects of the Cahn-Hilliard equation, Phys. D, 10 (1984), 277–298. https://doi.org/10.1016/0167-2789(84)90180-5 doi: 10.1016/0167-2789(84)90180-5
|
| [3] | R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Springer-Verlag, 1988. https://doi.org/10.1007/978-1-4612-0645-3 |
| [4] |
C. M. Elliott, S. M. Zheng, On the Cahn-Hilliard equation, Arch. Rational Mech. Anal., 96 (1986), 339–357. https://doi.org/10.1007/BF00251803 doi: 10.1007/BF00251803
|
| [5] | G. R. Sell, Y. You, Dynamics of evolutionary equations, Springer-Verlag, 2002. https://doi.org/10.1007/978-1-4757-5037-9 |
| [6] |
T. Dlotko, Global attractor for the Cahn-Hilliard equation in $H^2$ and $H^3$, J. Differ. Equations, 113 (1994), 381–393. https://doi.org/10.1006/jdeq.1994.1129 doi: 10.1006/jdeq.1994.1129
|
| [7] |
G. Gilardi, A. Miranville, G. Schimperna, On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Commun. Pure Appl. Anal., 8 (2009), 881–912. https://doi.org/10.3934/cpaa.2009.8.881 doi: 10.3934/cpaa.2009.8.881
|
| [8] |
C. Liu, H. Wu, An energetic variational approach for the Cahn-Hilliard equation with dynamic boundary condition: model derivation and mathematical analysis, Arch. Ration. Mech. Anal., 233 (2019), 167–247. https://doi.org/10.1007/s00205-019-01356-x doi: 10.1007/s00205-019-01356-x
|
| [9] |
G. Schimperna, I. Pawlow, A Cahn-Hilliard equation with singular diffusion, J. Differ. Equations, 254 (2013), 779–803. https://doi.org/10.1016/j.jde.2012.09.018 doi: 10.1016/j.jde.2012.09.018
|
| [10] |
J. Yin, On the existence of nonnegative continuous solutions of the Cahn-Hilliard equation, J. Differ. Equations, 97 (1992), 310–327. https://doi.org/10.1016/0022-0396(92)90075-X doi: 10.1016/0022-0396(92)90075-X
|
| [11] |
L. Cherfils, A. Miranville, S. Zelik, The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561–596. https://doi.org/10.1007/s00032-011-0165-4 doi: 10.1007/s00032-011-0165-4
|
| [12] |
J. Barrett, J. Blowey, An improved error bound for a finite element approximation of a model for phase separation of a multi-component alloy with a concentration dependent mobility matrix, Numer. Math., 88 (2001), 255–297. https://doi.org/10.1007/PL00005445 doi: 10.1007/PL00005445
|
| [13] |
J. Barrett, J. Blowey, H. Garcke, On fully practical finite element approximations of degenerate Cahn-Hilliard systems, Math. Model. Numer. Anal., 35 (2001), 713–748. https://doi.org/10.1051/m2an:2001133 doi: 10.1051/m2an:2001133
|
| [14] |
J. F. Blowey, M. I. M. Copetti, C. M. Elliott, Numerical analysis of a model for phase separation of a multi-component alloy, IMA J. Numer. Anal., 16 (1996), 111–139. https://doi.org/10.1093/imanum/16.1.111 doi: 10.1093/imanum/16.1.111
|
| [15] |
F. Boyer, C. Lapuerta, Study of a three component Cahn-Hilliard flow model, Math. Model. Numer. Anal., 40 (2006), 653–687. https://doi.org/10.1051/M2AN:2006028 doi: 10.1051/M2AN:2006028
|
| [16] |
X. Yang, J. Zhao, Q. Wang, J. Shen, Numerical approximations for a three components Cahn-Hilliard phase-field model based on the invariant energy quadratization method, Math. Models Methods Appl. Sci., 27 (2017), 1993–2030. https://doi.org/10.1142/S0218202517500373 doi: 10.1142/S0218202517500373
|
| [17] | C. M. Elliott, S. Luckhaus, A generalized diffusion equation for phase separation of a multi component mixture with interfacial free energy, IMA Preprint Ser., 1991. |
| [18] |
M. Conti, S. Gatti, A. Miranville, Multi-component Cahn-Hilliard systems with dynamic boundary conditions, Nonlinear Anal. Real World Appl., 25 (2015), 137–166. https://doi.org/10.1016/j.nonrwa.2015.03.009 doi: 10.1016/j.nonrwa.2015.03.009
|
| [19] |
H. Garck, On a Cahn-Hilliard model for phase separation with elastic misfit, Ann. Inst. H. Poincar'e Anal. Non Linéaire, 22 (2005), 165–185. https://doi.org/10.1016/j.anihpc.2004.07.001 doi: 10.1016/j.anihpc.2004.07.001
|
| [20] |
C. G. Gal, M. Grasselli, A. Poiatti, J. L. Shomberg, Multi-component Cahn-Hilliard systems with singular potentials: theoretial results, Appl. Math. Optim., 88 (2023), 73. https://doi.org/10.1007/s00245-023-10048-8 doi: 10.1007/s00245-023-10048-8
|
| [21] |
H. Abels, H. Garcke, A. Poiatti, Mathematical analysis of a diffuse interface model for multi-phase flows of incompressible viscous fluids with different densities, J. Math. Fluid Mech., 26 (2024), 29. https://doi.org/10.1007/s00021-024-00864-5 doi: 10.1007/s00021-024-00864-5
|
| [22] |
F. Boyer, C. Lapuerta, S. Minjeaud, B. Piar, M. Quintard, Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows, Trans. Porous Media, 82 (2010), 463–483. https://doi.org/10.1007/s11242-009-9408-z doi: 10.1007/s11242-009-9408-z
|
| [23] |
X. Yang, A new efficient fully-decoupled and second-order time-accurate scheme for Cahn-Hilliard phase-field model of three-phase incompressible flow, Comput. Methods Appl. Mech. Eng., 376 (2021), 113589. http://doi.org/10.1016/j.cma.2020.113589 doi: 10.1016/j.cma.2020.113589
|
| [24] |
J. Zhang, X. Yang, Decoupled, non-iterative, and unconditionally energy stable large time stepping method for the three-phase Cahn-Hilliard phase-field model, J. Comput. Phys., 404 (2020), 109115. https://doi.org/10.1016/j.jcp.2019.109115 doi: 10.1016/j.jcp.2019.109115
|
| [25] |
J. Zhang, X. Yang, Unconditionally energy stable large time stepping method for the $L^2$-gradient flow based ternary phase-field model with precise nonlocal volume conservation, Comput. Methods Appl. Mech. Eng., 361 (2020), 112743. https://doi.org/10.1016/j.cma.2019.112743 doi: 10.1016/j.cma.2019.112743
|
| [26] |
W. Chen, C. Wang, S. Wang, X. Wang, S. M. Wise, Energy stable numerical schemes for ternary Cahn-Hilliard system, J. Sci. Comput., 82 (2020), 27. https://doi.org/10.1007/s10915-020-01276-z doi: 10.1007/s10915-020-01276-z
|
| [27] | J. Bricmont, A. Kupiainen, J. Taskinen, Stability of Cahn-Hilliard fronts, Commun. Pure Appl. Math., 52 (1999), 839–871. |
| [28] |
L. A. Caffarelli, N. E. Muler, An $L^{\infty}$ bound for solutions of the Cahn-Hilliard equation, Arch. Ration. Mech. Anal., 133 (1995), 129–144. https://doi.org/10.1007/BF00376814 doi: 10.1007/BF00376814
|
| [29] |
S. Liu, F. Wang, H. Zhao, Global existence and asymptotics of solutions of the Cahn-Hilliard equation, J. Differ. Equations, 238 (2007), 426–469. https://doi.org/10.1016/j.jde.2007.02.014 doi: 10.1016/j.jde.2007.02.014
|
| [30] |
J. W. Cholewa, A. Rodriguez-Bernal, On the Cahn-Hilliard equation in $H^1(\mathbb{R}^N)$, J. Differ. Equations, 253 (2012), 3678–3726. https://doi.org/10.1016/j.jde.2012.08.033 doi: 10.1016/j.jde.2012.08.033
|
| [31] |
T. Dlotko, M. B. Kania, C. Sun, Analysis of the viscous Cahn-Hilliard equation in $\mathbb{R}^N$, J. Differ. Equations, 252 (2012), 2771–2791. https://doi.org/10.1016/j.jde.2011.08.052 doi: 10.1016/j.jde.2011.08.052
|
| [32] |
N. Duan, X. Zhao, Global well-posedness and large time behavior to fractional Cahn-Hilliard equation in $\mathbb{R}^N$, Forum Math., 31 (2019), 803–814. https://doi.org/10.1515/forum-2018-0288 doi: 10.1515/forum-2018-0288
|
| [33] |
S. Li, C. Liu, Global existence and decay estimates to a coupled Cahn-Hilliard system on $\mathbb{R}^N$, J. Differ. Equations, 360 (2023), 151–181. https://doi.org/10.1016/j.jde.2023.02.054 doi: 10.1016/j.jde.2023.02.054
|
| [34] | D. Hoff, J. A. Smooler, Global existence for systems of parabolic conservation laws in several space variables, J. Differ. Equations, 68 (1987), 210–220. https://doi.org/0022039687901926 |
| [35] |
D. Hoff, J. A. Smooler, Solutions in the large for certain nonlinear parabolic systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 213–235. https://doi.org/10.1016/s0294-1449(16)30403-6 doi: 10.1016/s0294-1449(16)30403-6
|
| [36] |
W. A. Strauss, Decay and asymptotic for $u_tt-\Delta u = F(u)$, J. Funct. Anal., 2 (1968), 409–457. https://doi.org/10.1016/0022-1236(68)90004-9 doi: 10.1016/0022-1236(68)90004-9
|
| [37] |
J. W. Cholewa, T. Dlotko, Global attractor for the Cahn-Hilliard system, Bull. Austral. Math. Soc., 49 (1994), 277–292. https://doi.org/10.1017/S0004972700016348 doi: 10.1017/S0004972700016348
|
| [38] |
D. J. Eyre, Systems of Cahn-Hilliard equations, SIAM J. Math. Anal., 53 (1993), 1686–1712. https://doi.org/10.1137/0153078 doi: 10.1137/0153078
|
| [39] | A. Friedman, Partial differential equations, Reinhart and Winston, 1969. |
| [40] |
X. Zhao, Global well-posedness of solutions to the Cauchy problem of convective Cahn-Hilliard equation, Ann. Mat. Pura Appl., 197 (2018), 1333–1348. https://doi.org/10.1007/s10231-018-0727-y doi: 10.1007/s10231-018-0727-y
|
| [41] |
R. B. Salako, W. Shen, Global existence and asymptotic behavior of classical solutions to a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$, J. Differ. Equations, 262 (2017), 5635–5690. https://doi.org/10.1016/j.jde.2017.02.011 doi: 10.1016/j.jde.2017.02.011
|
| [42] | D. Henry, Geometric theory of semilinear parabolic equations, Springer-Verlag, 1981. |
| [43] |
X. Ding, J. Wang, Global solutions for a semilinear parabolic system, Acta Math. Sci., 3 (1983), 397–414. https://doi.org/10.1016/S0252-9602(18)30621-0 doi: 10.1016/S0252-9602(18)30621-0
|