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1. Introduction

The Cahn-Hilliard flow, one of the most well-known gradient flows, can be used to describe
spinodal decomposition and phase separation in binary fluids [1,2]. To date, numerous classical works
have been conducted on the mathematical analysis and numerical approximation of the Cahn-Hilliard
equation (see, e.g., Temam [3] and Elliott and Zheng [4] considered the existence of global weak
solution, Sell and You [5] and Dlotko [6] studied the global dynamics, Gilardi et al. [7] and Liu and
Wau [8] invistigated the properties of the equation with dynamic boundary conditions, Schimperna and
Pawlow [9] and Yin [10] considered the equation with nonconstant mobility, Cherfils et al. [11]
studied the equation with logarithmic potentials). However, most of these studies focus on two-phase
models. When three or more phase components are involved in a phase-field system, the interactions
between these components must be taken into account; relevant works can be found in [12-14].

In this paper, we consider a three-component Cahn-Hilliard phase-field system whose free energy
is defined as follows:

12 3L
E(¢1, ¢, ¢3) = f(?F@Pl, b2, P3) + 3 Z TVl | dx, (1.1)
P


https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2026027

619

where the i-th phase-field variable, denoted by ¢; (i = 1,2, 3), represents the volume fraction of the i-th
component in the fluid mixture and satisfies

(1.2)

P =

1 inside the ith component,
0 outside the ith component.

From (1.2), we easily deduce that the variables ¢; (i = 1,2, 3) are nonnegative functions. Moreover,
in the phase-field approach, a diffuse interface of thickness € is modeled by smooth transitions of the
phase-field variables from O to 1. The variables ¢,, ¢,, and ¢3 are governed by the constraint

3
Digi=1.
i=1

The parameter € > 0 denotes the interface width, and the coefficient £; (i = 1,2, 3) represents the
“spreading” coefficient of the i-th component at the interface between the j-th and k-th phases. We
note that, in the physical literature, the coefficients Z; are not necessarily assumed to be positive. If one
of the coeflicients X, is negative, the spreading is referred to as total; otherwise, it is partial. For the
total spreading case, to ensure the well-posedness of the system, the following conditions are assumed:

212y + 225 + X3 > 0, 2 +2j >0, Vi# _]
Furthermore, the nonlinear potential F is given by

F = 0nld3 + T1ids + 0udads + ¢12d3(Zidy + Tada + Zas) + 3AG P07, (1.3)

where A is a nonnegative constant and oy, 013, 03 are the three-surface tension parameters, which
satisfy the following relations:

Zizo-ij‘i'o-ik_o-jk, i=1,2,3.

We assume that the time evolution of ¢; is governed by the gradient of the energy E with respect to
the H™! gradient flow, i.e., the Cahn-Hilliard dynamics. Based on the free energy (1.1), we can readily
derive the following three-component Cahn-Hilliard phase-field equations:

M :
¢it = EAIJZ" 1= 1’29 39

! (1.4)
3 12
i = ——EZiA¢i + —ﬁ +ﬁL, I= 1,2, 3,
4 €
where
ﬁ' = (9l~F, M>0
is the constant mobility, and 3 is the Lagrange multiplier imposed to enforce the hyperplane constraint
¢+ ¢+ 3 =1

It can be derived as A . . |
X7
=——|=fit=—fr+ =
B c \3; Nl szz Z3f3)
with
3 1 1 1
+—+
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Remark 1.1. It is worth noting that the expressions for the chemical potentials u; and the Lagrange
multiplier B; involve specific coefficients (e.g., 43'1’ % and % ). These parameters can be derived from
the free energy functional under the constraint

¢+ ¢+ =1,
as detailed in [15].

Remark 1.2. It should be emphasized that the system (1.4) is completely equivalent to the following
Sformulation involving only two order parameters:

M )
¢il‘ = EAMI., 1= 1’ 25
3 12
Mi = ——€XiAg;+ —fi+ B, i=1,2,
4 €
¢3=1—¢ — ¢,
s _ (A, K2}
23 X X

The proof is omitted here, as it closely follows that presented in [16, Theorem 3.1].

In [17], within the framework of non-equilibrium thermodynamics, Elliott and Luckhaus
conducted a mathematical analysis of an N-component Cahn-Hilliard phase-field model, which can
be used to model the isothermal phase separation of an ideal mixture of N (N > 2) components
occupying an isolated region. The authors proved the existence of a (suitably defined) global weak
solution for the case of a singular potential. Boyer and Lapuerta [15] considered the existence and
uniqueness of global weak solutions for a three-component Cahn-Hilliard phase-field model. Conti et
al.  Miranville [18] investigated the well-posedness and asymptotic behavior (in terms of
finite-dimensional attractors) of an N-component Cahn-Hilliard phase-field model equipped with
dynamic boundary conditions. Additionally, Garcke [19] introduced a global version of L”-estimates
for gradients of nonlinear elliptic systems to overcome the difficulties arising from logarithmic
singularity and a quadratic term, thereby establishing the existence of solutions for an N-component
Cahn-Hilliard phase-field model. The authors in [20] improved the theoretical results in [17],
establishing several well-posedness and regularity results for an N-component Cahn-Hilliard
phase-field model with a singular potential. Furthermore, Abels et al. [21] studied the existence of
strong solutions for a diffuse interface model for multi-phase flows of N incompressible, viscous
Newtonian fluids with different densities; this model can be regarded as the multicomponent
Cahn-Hilliard equations coupled with hydrodynamic flows. We also note that there have been
successful attempts to develop numerical algorithms, such as the nonlinear method [15, 22], the
invariant energy quadratization method [23, 24], the scalar auxiliary variable method [16, 25], and
convex-concave decomposition [26], among others.

A Cauchy problem in mathematics seeks the solution to a partial differential equation (PDE) or
system of PDEs that satisfies specific conditions prescribed on a hypersurface within the domain. We
remark that the study of the Cauchy problem for Cahn-Hilliard models is also of significant interest.
There exist several classical results related to this topic (see, e.g., Bricmont et al. [27] considered the
stability of Cahn-Hilliard fronts in the whole space, Caffarelli and Muller [28] showed an L* bound of
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the solutions, Liu et al. [29] studied the global existence and asymptotics of strong solutions, Cholewa
and Rodriguez-Bernal [30] exhibited the dissipative mechanism of the in H'(R"), Dlotko et al. [31]
studied the properties of Cauchy problem of viscous Cahn-Hilliard equation, Duan and Zhao [32]
and Li and Liu [33] considered the properties of fractional Cahn-Hilliard equation and coupled Cahn-
Hilliard equations, respectively). To the best of our knowledge, no references have addressed the
Cauchy problem for the three-component Cahn-Hilliard model. Therefore, in this paper, we consider
the Cauchy problem of equations (1.4) and supplement the initial conditions as follows:

dilu=0) = bip, i=1,2,3. (1.5)

In what follows, we discuss the global existence of solutions to problems (1.4) and (1.5). Notably, the
three-phase nature of the nonlinear energy functional poses substantial challenges to proving global
existence when applying Hoff and Smoller’s method [34-36]. To overcome these difficulties, we
employ the method of successive approximations and establish enhanced regularity estimates for ¢;
i=1,2,3).

We now present the main theorem of this paper:

Theorem 1.3. Let R > 0 be an arbitrary given constant. If

(¢10, D20, 1 — @3p) € (LOO N LI(RZ))3

with
lp10llze + lpollze + 11 = d3pll < R, (1.6)

and ||@1ollpr + ol is sufficiently small, then the Cauchy problems (1.4) and (1.5) admits a unique
global classical solution

(61,62, 1 — ¢3) € (CM (0, 00) x B?))
that satisfies
Iillze + ligallze + 1L = dallo < 2R. (1.7)

Remark 1.4. The main purpose of this paper is to study the global classical solution to the Cauchy
problem of three-component Cahn-Hilliard phase-field system in R%. It is worth pointing out that in
the three-dimensional case, the following free energy expression can be used:

F =012$185 + 01361635 + 0536583 + $10203(Z1¢1 + oy + T3hs)

1.8
+ 3AGTHIB3(Wa(B1) + Wal2) + WalP3)), (1.8)

where

wa(-x) =

and a € (0, %], instead of the more fundamental expression (1.3) (the case a = 0). This is primarily
due to a mathematical technical consideration: when a = 0, a closure difficulty arises in deriving
key a priori estimates, particularly when handling the coupling between nonlinear terms and diffusive
terms. Introducing a > 0 serves a “regularizing” purpose, enabling us to establish uniform energy
estimates and subsequently prove the existence of solutions. This strategy is common in the analysis of
Cahn-Hilliard-type systems with similar structures (see, e.g., Boyer and Lapuerta [15] and references
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therein). We note that expression (1.8) formally coincides with free energy densities derived in certain
physical contexts when considering corrections related to interface thickness; however, its introduction
in the present study is primarily motivated by the needs of the mathematical proof. Ultimately, by
analyzing the uniform boundedness of the solution with respect to the parameter a and considering the
limit @« — 0 in a suitable sense, a connection to the original physical model (corresponding to a = 0)
can be established. In the two-dimensional case, based on stronger Sobolev embedding properties, we
can directly handle expression (1.3) with a = 0, thus adopting a different technical approach.

Remark 1.5. A standard approach exists for proving the global-in-time continuation of local solutions
for the initial-boundary value problem of the classical Cahn-Hilliard equation. Specifically, we can use
a Lyapunov-type functional to obtain an H'-type a priori estimate, followed by deriving an estimate for
a stronger norm (see [3] for the 2D case, [37] for the 3D case, and [38] for Cahn-Hilliard equations).
In this paper, we investigate the global solutions for the Cauchy problem of the 3D three-component
Cahn-Hilliard equation in R®>. Compared with the initial-boundary value problem, the main challenge
for the Cauchy problem lies in the absence of physical boundaries, as the global existence, regularity,
and long-time behavior of solutions heavily depend on the decay properties and oscillatory nature of
the initial data, as well as the structure of nonlinear terms. In this paper, we establish several a priori
estimates and, by using Hoff and Smoller’s method [34-36], obtain the main result.

The remainder of this paper is organized as follows. In the next section, we introduce some
preliminary lemmas. Section 3 is dedicated to establishing the local existence of solutions to
problems (1.4) and (1.5). Finally, the proof of Theorem 1.3 is presented in Section 4.

Throughout this paper, we use C to denote a generic constant that may take different values in
different contexts. Additionally, L”(R?) (1 < p < o) denotes the 2D Lebesgue space with norm

lullr = (fz |ua(x, l)l”dX) o lulle = ess sup fu(x, 7)].
R

xeR2

Furthermore, for each k € Z*, D*u denotes the set of all k-th order derivatives of u(z, x) with respect to

x, and
D uf = > L
) oxy' -+ 0%
where
a = (a1, @)

is a multi-index.
2. Preliminaries

In the proof of lemmas and theorems, we frequently employ the Gagliardo-Nirenberg inequality:

Lemma 2.1. [39] Let u € LYI(R"), V"u € L'(R"), 1 < gq,r < oo. Then, there exists a positive constant
C =Cn,m, j,a,q,r), such that

IV7ullr < CIV™ullf, lull,
where )
J

| 1
=Liac-D -, 1<p<oo,0<j<m L<a<l.
n ron q

SR

1
P
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We give the LP(R?, R)-estimate on the fundamental solution to the three-component Cahn-Hilliard
equations.

Lemma 2.2. [40] Suppose that
k) =F'(e BH, i=1,23,

where &, x € RN and t > 0. Then, for
I<p<g<oo,

we have
Cp -Nl_1y
ki (Dl Lr @y < c_t SO Loy (2.1)
q
i Cp,j _ﬁ(l_i)_l .
1D’ ki(D)llLr vy < c_t S kOl ayy, J= 12,00, (2.2)
q
where c,, ¢, and c,; are positive constants with ¢, = 1 and F~' denoting the inverse Fourier

transformation with respect to &.

The following inequality, which is so important in the proof of our main result, was first given by
Strauss [36].

Lemma 2.3. [36] Suppose that M(t) is a nonnegative continuous function of t. Let M(t) satisfy
M) <d; +d,M(t)
in some interval containing 0, where d, and d, are positive constants and r > 1. If M(0) < d, and
didy < (1 =y =07,

then in the same interval J
1

1-r1
The following lemma will play a crucial part in proving the uniqueness.

M) <

Lemma 2.4. [41] Assume that a,, a,, @, and [ are nonnegative constants with

0<apB<l1
and
0<T < oo.
There exists a constant
M(a27 a, T) < o,

so that for any integrable function u: [0, T] — R satisfying that
t
O<ul®) <ait“+a, f(t — ) Pu(s)ds, fora.e.tel0,T],
0

we have M
osmnsfl

% ae onO<t<T.
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Next, we show the singular Gronwall type inequality.

Lemma 2.5. [41, 42] Suppose that g(t) is a nonnegative continuous function defined on [t1,T] and
satisfies

gt) S Ni(t=b)(t—a)™™ + N(t—Db) f(t —5) %g(s)ds.

Here 1, a,a and b are constants satisfying
0<a<1,r>max{a, b}

and
Ni(t-b)i=1,2)

are continuous increasing functions of t. Then we have
gy<(t-a)y*N(t-a,t—b)<co, 7<t<T,
where N(t — a,t — b) is a continuous increasing function of t.

3. Local existence

In order to prove the global existence and uniqueness of smooth solutions for the Cauchy problem
of three-component Cahn-Hilliard equations, we first state the local existence result.
We have the following lemma.

Theorem 3.1. Assume that the conditions listed in Theorem 1.3 are satisfied. Then the Cauchy
problems (1.4) and (1.5) admit a unique smooth solution (¢, ¢, 1 — ¢3) on the strip

n:{(t,x):0<tsT,xeR2}

T
and (¢, 92, 1 — ¢3) satisfying
g1 (2, Ml + 122, Iz + 1L — 38, Nl < 2R, 0<t<T. 3.1
Moreover, fix nonnegative integer L > 5 and h > 0, then for each
O<si<sH<- - <8y <t<T,

which satisfies
Sop—Su-1=8;j—Si.1=8—-s1=h, j=2,3,---,2L-1,

we have

1D (2, Iz +1ID o e, e +ID* A= 43)(t, Mo < MR, 1= )R, st = 5341 524-1) ™+, (3.2)

where k = 1,2,3,--- , L. Besides, Mi(R, h,t — s5;_1) is a continuous increasing function of t.
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Proof. 1t is well-known that if (¢, ¢,, 1 — ¢3) 1s a smooth solution of Cauchy problems (1.4) and (1.5),
it satisfies the following integro-differential equations:

1= kit x = y)grody + [ ds [, Aki(x = y,1— 5) (L2 Mfi + 2B, ) dy,
2= [o kot x = Y)poody + [ ds [, Aka(x =yt = 5) (L2 Mf, + £, ) dy, (3.3)
1= ¢ = [ kst x = y)(1 = gs)dy — [ ds [, Mks(x =y, 1= 5) (L2 M fs + £B1) dy.
To prove Theorem 3.1, we first show that there exists a sufficiently small #; > 0 such that the integro-
differential equation (3.3) admits a unique continuous solution (¢;, ¢,, 1 — ¢3) on the strip [[;, then

if we can show that the solution obtained above is indeed a smooth solution, such a (¢, ¢,, 1 — ¢3) is
indeed a local smooth solution to the original Cauchy problems (1.4) and (1.5).

Let
Ti(t)¢i = ki(t7 x) * ¢i(ta X), (l = 192)
and

T5(1 = ¢3) = ks (2, x) * (1 — ¢3(2, x)),

then (3.3) can be rewritten as

1= Ti(Dro + i AT\t — ) (L2 Mf + L5, ) ds,
62 = To(Dao + Jy ATo(t - ) (L2 Mf, + 2L, ) ds, (34)
1= ¢3 = T5(O)(1 - ¢s) — [y AT5(t - ) (L2 Mfs + 28, ) ds.
Note that
T.H1=1, i=1,273.

We employ the method of successive approximations to establish the existence of (3.4). Set the initial
functions ¢ o, 20, and @3, for n > 1, and we define

P11 = T1(OP10 + fOtATl(l - ) (Zl—lzerl,n + ZMIﬁL,n) ds,
rnt = Taoo + [3 ATo(t = 5) (S Mfon + 2Bra) ds, (3.5)
1= @31 = T5(t) (1 = p30) = [y AT5(t = 5) (L2 Mfs + 2B10) ds.

It is easy to show that (@1 11, @241, 1 — @3,.41) is well defined on [0, o0) x R? for each n > 0. Let

2

Sy sup Y liiallce + 11 = Gl (3.6)

0<i<T =
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Applying Lemma 2.2, we obtain

ds

L®

12 M
ATs(t = $)| ==MF,, + — B
3( S)(236 San t+ z:3,3L, )

!
1 = $3neille < I3 = d30)llz- + f
0

<11 = gsoll + C fo (t = )2 [1a83 e + b (1 = b3, +2(1 = s) + 1) [

1163, [(1 = ¢3.) = Wllzs + lign (1 = @3.0)” + 201 = ¢3,) + 1) I

+ 110¢2[(1 = B3.,0) = llzs + I B1.463,, ((1 —$3.) +2(1 — ¢3,) + 1) llz=1ds

+C fo (t = )2 (162, anlli= + 163, [(1 = 3,) = =

(3.7)

1 (1= @307 + 201 = ¢3,) + 1)l + 2 (1 = @307 + 201 = p3,) + 1) [l

+1610824[(1 = @3.0) = Ulllis + 167,820 (1 = B30 + 201 = $3,) + 1) [l1)ds

+C f (t = )72 (162 L1 = B3,) = Wl + 162 banllis + 11 2,1
0

+1165,,[(1 = ¢3,) = Ll + 11,02.4[(1 = ¢3,) — Ul
+ll¢7,,05,[(1 — ¢3,,) — 1llz=)d's
<11 = sl + CT7 (S, +S3).

Similarly, we have
1
IB1netllze < llprollzs + CT (S, + S})

and
1
p2nsilice < llpalls + CT (S, + S3).

Suppose that 0 < T < 1, then summing up (3.7)—(3.9) gives

2 2
D Nbimaillis + 111 = @3pillis < D ldiollis + 111 = gaolle + CT2 (S, + S5),

i=1 i=1

which implies
1
Su1 <So+CT2(S, +S)).

Noticing that Sy < R, hence,
1
Su1 SR+ CTI(S +8,).

Moreover, since S, < 2R, hence, we can choose 7 small enough to obtain
R+ CT2(2R + 32R%) < 2R.

This simplifies to
CT:(2+32RY < 1,

R
0<T <min]l, /o
) ‘mm{’ C(2R+32R5)}

which directly gives

AIMS Mathematics Volume 11, Issue 1,
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or
1 1
R< (\|—|—-2].
T \32 (CT2 )
Then, based on the inductive method, we have
S,i1<2R, n=0,1,2,---. (3.12)

Moreover, by using the induction again, we can easily obtain that (¢ 41, ®2.,4+1, | — @3.,41) satisfies the
following estimate

2 n Cl’l
wp > Wwrs — bl + 101 = B30~ (1~ gl < EVD g, <

My, n>0, (3.13)

S e ’ ’ ’ lﬂ("“) I
where
M() =2C \/7_1'}"
and
Cy = C+/r.

Since the proof is similar to [29,43], we omit it here. Noticing that

My
; r( n+1)
is convergent, it follows from (3.13) that (@1 y+1, ®2.4+1, | — P3.+1) converges uniformly on the strip [,
whose limit is denoted by (¢, ¢», 1 — ¢3). It is clear that the unique limit (¢, ¢», 1 — ¢3) is a continuous
solution of integro-differential Eq (3.4) on the strip [[.

Next, we show the uniqueness by using Lemma 2.4. We remark that we do not need the time
T to be sufficiently small. In other words, the uniqueness still holds even if 7 = co. Assume that
(P11, 021, 1 — ¢31) and (P12, P22, 1 — ¢32) are two solutions of (3.4). Let

O0<y<T' <T

be fixed. Then for every i = 1,2 and t € [#;, T’], we derive that

! 12
¢1,i(t, x) = T1(t — t1)p1,(f1) + f AT\(t - s) (Z_IEMfl,i ﬁLz ds,

1

! 12 M
¢2,i(t, x) = To(t — t1)poi(11) + f ATH(t - ) (—Mfz,i Li|ds, (3.14)

n

12 M
1 =31, x) = T5(t — 1))(1 = ¢3,)(11) —f AT5(r - s)(—Mf3, ﬁLz)

14|

Hence for ¢ € [#,, T’], applying Lemma 2.2, it yields that

p1,1() = G12Dllre < N(P1,1(21) = P12z~ + f (t— S)_%”fl,l = fiplle=ds

t n 3.15
+f(t—S) 2By — Bralli~ds ( .
15

= (@1,1(t1) = P12l + I + Do,
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Note that )
1
I =Cf(l — )72 (1,163, — 12855l + 161163 — G12835ll1=
0

2 2 2 2
+ {13163 — Pro¢32lle + 21031 — h2203 5l
2 2 2 2
+ 111021031 — 12022032l + [|P1,105 183 — P1205,835|l2=)ds.

Simple calculations show that

p1.163,1 — d12030lle < ll2ill=lldrs — ¢rallis + li2ll=ldar + ¢aollislldar — ¢aoll
< C(lg1.1 — Prolle + a1 — P2lli=),
¢1163, — $1263 Ml < B34l 111 — Prallzs + i all=lidss + B3ollollor — Ponllrs
< CA+11 = ¢a1llz)lprn — diallzs
+ [[@12ll2=(C + [I(1 = ¢3.1) + (1 = p32)llzlldpa1 — P22llz)
< C(lg1.1 — P12l + a1 — P22lli=),
63,1851 — B3285 5l < lloall7lI(L = ¢31) — (1 = 32l
+ C(1 + 1T = @a2llz=)llgar + paollrlldar — daallre
S C(I(T = ¢31) = (1 = $32)llz= + P21 — P22llz),
$2,1¢3, — $2283, Ml < C(L+ 11 = 311721 — d2ollre
+ Cllgoallr=lI(1 = ¢3.1) + (1 = @3 )lle=lI(1 = ¢3.1) = (1 = P32l
< CUIA = ¢31) = (1 = @3l + llda1 — P22llz)s
lp1,102,1031 — Pr12022P30ll> < Cllgoillz=(1 + |11 = @3 1ll=)llP1.1 — P12l
+ Cligrall=(1 + [T = @3 allz=)ll¢p2.1 — a2l
+ Cligrallr=lld22ll=lI(1 = ¢5.1) = (1 = @3 2)ll1
< Clgr1 = dralles + (T = ¢31) = (1 = @32l + ld21 — Pa2llr),

and

61,185 1031 — b1285,035ll < Clloill7 (X + 11 = $31ll7)lB11 — P12l + Cligrallllda
+ @l (1 + 11 = @3 all7)lIpa1 = Gaollzs + Cllgrallz=lldaallio (1 + I(1 = ¢31)
+ (1 = @3 )llz=[I(1 = p31) — (1 = P32)l[ 1.

Summing up, we obtain

’ 2
L <C f(t —5)? [Z lgi1 — Pinlle + (1 — ¢3,1) — (1 - ¢3,z)ll4 ds. (3.16)
n i=1
Similarly, for I,, we have

L=C f (1 )4 lfi — frallie + o — oallie + 1fss — foalleo)ds
’ ! 2 (3.17)
<C f(l — )7 [Z lpi1 — Pinllre + (1 = 31) — (1 = ¢3,2)||L4 ds.
gl i=1

AIMS Mathematics Volume 11, Issue 1, 618-643.
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Adding (3.15)—(3.17) together gives

lp1,1(8) = P12l < [(P1,1(11) — P12z

! & (3.18)
+C f (t—s)2 lZ lgi1 — Pinlle + (1 — ¢3,1) — (1 - ¢3,2)||L°°} ds.
h i=1
Similarly, we can also obtain
1p2,1(8) — P22(Dllr> < ([(P2,1(21) — P2 2(tD)| L
2
! | 3.19)
+ Cf (t—s5)2 [Z pi1 — dinllze + 11 = ¢31) — (1 — ¢3,2)||L°°} ds
h i=1
and
(1 = ¢3.1) = (1 = 32l < |[(¢3,1(21) — P32 ()|
4 = (3.20)
+C f (t—s)2 [Z pi1 — dinllze + I(1 = p31) — (1 — ¢3,2)||L°0] ds.
h i=1
Summing up (3.18)—(3.20) together, letting #; — 0, we deduce
2
Z (i1 (1) = GipDllz= + [I(L = ¢3,1) — (1 = P32l
= , ) (3.21)
<C f (t— syt [Z Ipis = dialls + 111 = ) — (1 - ¢3,2)||Lm] ds.
iz i=1
Applying Lemma 2.4, we get
1,1 — dr2llie + 21 — d2ollre + (1 = ¢31) — (1 = @32)|lz~ < 0. (3.22)
Therefore,
@1.1-021, 1 = d31) = (h12, 022, 1 — h32)
holds for all

0<r<T.

Since T’ < T 1is arbitrarily chosen, then

@1,1,021, 1 = 31) = (D12, 022, 1 — h32)

forall0<t<T.

To prove that such a (¢, ¢,, 1 — ¢3) obtained above is indeed a smooth solution of the Cauchy
problems (1.4) and (1.5) on the strip [, we only need to get the regularity of (¢, ¢, 1 — ¢3). To this
end, we first prove (3.2) by induction. If £ = 1, we have

! 12 M
D¢1(t, )C) = DTI(I — S1)¢1’0(S1) + f DATl(t — S) (ferl + Z—lﬁL) ds. (323)

S1
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Then, similar as the proof of the first step, by using Lemma 2.2 and (3.1), one obtains

ID@: (2, Ol < DT (2 = s1)¢10(sDllz~ + fst DAT (1 - s) (EMfl + M,3L) . ds
<Ct—s1) 4||¢10(Sl)||L°° +Cf(f—sl)_ = +—,3L mdS
<C(t- )R+ Cf“(f — s (Ifillz + 1BL)ds (3.24)
< C(t—s) 'R+ ft(t —s1) (R + RO)ds
51
< C(t-5)) R+ C(R* +R) f(z —5)7ids
s
< Mi(R,1 = s1)(t = 51)*
Moreover, simple calculations show that
ID@alli= < Mi(R,1 = s1)(t = 51)"* (3.25)
and
ID(1 = @)l < My(Ry 1 = 5101 = 1)+ (3.26)

We remark that (3.24)—(3.26) implies that (3.2) holds for £ = 1. Next, assume that (3.2) is true for
k<n-1,(1<n<l),ie.,

ID @12, I + 1D Ba(t, )l + 1D (1 = p3)(, )l

K (3.27)
< Mk(R7 h’t_ S2k_1)(t - S2k_1)_1, k = 1’2’ 3a Y { 1'

We prove that (3.2) also holds for k = n. Note that

d 12 M
D"¢i(t,x) = D"T(t = S2p—1)$1,0(S20-1) + f DAT(t — s)D" (Z_USMfl + Z—I,BL) ds. (3.28)
S2n—-1

Applying (3.27), we arrive at

ID"@1(t, )l < ID"T1(t = S20-1)@1,0(S2n-1)llL

d 12
+ f DAT,(t — s)D"! (—M fi + —,BL) ds (3.29)
$2n-1 21 L>
< My(R, Byt — Spu_1 )t — S2p_1) 3.
Similarly, we can also obtain
ID"$o(t, )l < My(R, Byt = $31)(t = S25m1) 7 (3.30)
and
ID*(1 = ¢3)(t, )l < Mu(R, byt — S2p 1)t — S20-1) % (3.3
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Combining (3.29)—(3.31) together, we easily conclude that (3.2) holds for k = n. Therefore, we get by
induction that (3.2) holds for

1<k<L.

Having obtained (3.1)-(3.2), since L > 5, it is a routine matter to verify that for each 6 > 0,
(D*¢1 i1, D@y i1, DX(1 = 3,,41)) converges uniformly to (D*¢;, D¢y, D¥(1 — ¢3)) on [6, T] X R? for
k=1,2,---,L—1. Therefore, we have

(61,02, 1 - d3) € (CH([6, T x B

for every 6 > 0. Moreover, since 6 > 0 can be chosen sufficiently small, we have

2

(1,92, 1 = ¢3) € (C"((0, TI X R?))

Having obtained the above regularity result, we can conclude that (¢, $,, 1 — ¢3) obtained above is
indeed a smooth solution to the Cauchy problems (1.4) and (1.5) on the strip [[; and complete the
proof. m|

4. Global existence

Having established the local existence in Theorem 3.1, we now proceed to the proof of Theorem 1.3
on global existence and uniqueness by a continuation argument. This relies on the following key
lemma:

Lemma 4.1. If (¢, ¢2, 1 — ¢3) obtained in Theorem 3.1 has been extended up to time T* (T* > T > 0)
while the a priori estimate (3.1) is kept unchanged for {s,,} defined in Theorem 3.1, then for

1<p<oo,
the following inequality holds:

D" 1 (2, ey + ID"$2(2, Illee + ID™(1 = $3)(@, I

2 2 “4.1)
< (1= S2me1) T Na(R, 1= $30n1)) | SUp > gt i + sup [11 = ()l |,
0<1<T “={ 0<1<T
where N,y(R, h,t — $y4n+1)) (m = 0,1,2,- -+, L) are continuous increasing functions of t.
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Proof. We first consider the case k = 0. Applying Lemma 2.2 and (3.1), we deduce that

12M
216

ds

Lp

Si+ EKI,BL)

lillzr <IT1(2 = 52)1(s2)lr + f AT, (t - Sz)(

<C(t - ) " Pllg(slly + € f -yt (Ilpr3lle + lig1 6311 + 1330
2@l + 11 pabsllLr + ||¢1¢2%¢§||U)ds
+C f t(r — ) 262 allr + 10303llir + 11616210 + 826311 (4.2)
+ ||¢1¢22¢3||Lp + 118192030 )ds
+C f - )72 (6l + 32l + 616311 + 1030310

+ |p1203llr + 193303110 )ds
<C(t — ) 2 P|gi(s2)ll + 01 + Qs + 05

Simple calculation shows that

Q1 =: f (t= )72 (Ilg3galler + 1711 = 83) + 1lle + lIpa[(1 = §3)* + 2(1 = ¢3) + 1ll»

Hgal (1 = 837 +2(1 = ¢3) + Llls + 1621 = ¢3) + 1l
HB3gal(1 = ¢3 +2(1 = ¢3) + 1lly) ds
< f (t = ) (Dillolldr e + il llgnl(l = ¢3) + 1l

52

+ I @illolll(1 = ¢3)” + 2(1 = ¢3) + Ll + pallerli(1 = ¢3)* + 2(1 = ¢3) + 1]l
+ |1 llzolld2[(1 = ¢3) + 1l + lldillzoll@1¢2[(1 = ¢3) + 1]lI)

<C f(l— )72 (g1l + lgallr).

Similarly, we also have

Q, =: f(t — 57 (Illl¢f¢zllm + 116711 = ¢3) + 1ller + 1 [(1 = ¢3)* + 2(1 = ¢3) + Il

+HIga[(1 = ¢3)* + 2(1 — ¢3) + Ul + 12 l(1 — ¢3) + 1l
+lpTpal(1 = $3)* + 2(1 = ¢3) + 1llpds) ds

<G, f (t= )2 (inllr + llpallr + 11T = slr)
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and

= f (= )2 (1311 = ¢3) + Lllzo + 63 allir + i81631er + 8311 = b3) + Ll
+lig1gal(1 = ¢3) + 1llr + lIgT¢31(1 = ¢3) + 1llrds) ds
< G f (t= )72 (g 1ller + galle + ligsller)-

Summing up the above inequalities, we derive that
1 1 ! 1 2
61l < C(t = )2 liga (sl + C f (t=972 (Z Igller + 111~ ¢3||Lp]ds. (4.3)
52 i=1
Similarly, we can also obtain
1 1 ! 1 2
g2ller < C(t = )2 liga(s)llr + C f (t=9)72 (Z Igllr + 111~ ¢3||Lp)ds (44)
52 i=1
and
; 2
_laq-1 _1
I = @sller < Ct = 52) 2711 = ()l + C f (1=9) (Z Iiller + 111~ ¢3||m]ds' (4.5)
. i=1

Combining (4.3)—(4.5) together gives
Z gl + 111 = gsllee < C(e = )20 [Z (sl + 11T~ ¢3(S2)||L1)

+ Cf(t —5)? [Z il + T = ¢3|Iu)ds

< C(t=5) (1 = )2 (Z (sl + 111 = ¢3(s2>||g]

t 2
+C(R) f (t—s)2 (Z||¢,-||Lp +1 —¢3||Lp]ds.
52 i=1

Then by using Lemma 2.5, we easily obtain

(4.6)

2
sup Z lpi(s)llpr + 11 — ¢3(Sz)||y). 4.7)

0<t<T 4

2
DUl + 11 = alls < (1 = 52 No(R, 7 - s2>(

i=1
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Next, for the case k = 1, we have

12M
216

ds

Lr

AT(t - sz)D(

! M
D@1l <IIDT(t = 52)p1 (52l + f fi + E—lﬁL)

<C(t - s (sl
+C f - ) 2D D + 1D 1D + 1D
+ ||D(Zz¢§)||u + ID(@1¢293)lIr + ID($1363) 10 )ds
+C f - ) 2D@ G + 1Dl + 1D 1D
+ ||D<Zz¢§>||m +[ID(¢162¢3) 10 + ID(B1263)lI10)ds
+C f - ) 2D P31 + 1Dl + 1D @11

+ ID(G2d)Nr + ID(D1920)|r + IID(B2B33) Iy )ds

1_1

<C(t = s NGy (s)llr + Wi + Wa + W,
Simple calculation shows that
Wi < ft(t — )7 DGl (Il + 1L = ¢3) + 112w + Idallz=lI(L = p3) + LIz
s
+ 112711 = ¢3) + 1[7<)ds
+ fst(t — s Dl (Il lIgallzs + Iallz=l(1 = ¢3) + Iz
+ 11 p1ll=I(1 = ¢3) + Ul + (1 = ¢3) + L7 + lillzsllallz= (1 = ¢3) + LlI7)dss
+ ft(t — s DL = @)l (i llz<I(L = ¢3) + Ll + llgallz=lI(1 = ¢3) + 1|z
st
+ (g1 ll=lIpalle + dall7e + lallzolialZlI(1 = b3) + Lllz)d's

: 2
<C, f (r—s)‘i(2||D¢,~||u+||D<1—¢3>||Lp)ds.
54 i=1

!
W, < ézf(t—s)-i[
sS4 :

1

Similarly, we also have

2
IDgillr + ID(1 — ¢3)I|LI’]ds

-1

and

‘ 2
W < C; f (r—s>—3[2||D¢,~||u+||D<1—¢3>||Lp]ds.

i=1

Plugging (4.9)—(4.11) into (4.8), we have

; 2
ID@illzr < Ct = 57 Pl + € f (t— sy [Z 1Dl + I1D(1 = ¢3>||u’]ds'
54 i=1

(4.8)

4.9)

(4.10)

(4.11)

(4.12)
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Simple calculations show that

! 2
1Dl < C(t = 532Dl + G f (t—9)% [Z 1Dl +ID(1 - ¢3)||Lp]ds (4.13)
54 i=1
and
1_1 1 ! 3 2
ID(1 =gl < Clt=50)7 2PN = gl + C f (=5 [ZHDMU +1Ip(1 —@)Hm]d& (4.14)
54 i=1

Adding (4.12)—(4.14) together, we derive that

2 2
ID@illLr + ID(L = )l < C(2 = s4)7572077 [Z Igillr + 111 = ¢3||L‘]
= = (4.15)
; 2
+ C(R)f(t— 5)7d Z||D¢i||Ll’ +(ID(1 —¢3)||Lp]ds.
54 i=1
Note that
LU PP N
4 2% p 4
then we obtain from (4.15) that
2 1 1 1 3 3 Z
D IDg Iy + DA = ¢l < Ct = 542071 = 54)73 {Z I6i(sllr + 111 = ¢3<s4)||L‘)
=l =l (4.16)

" 2
+C(R) f (t—s)7 (Z 1Dl +ID(L —¢3>||Ll)ds.
54 i=1

By using Lemma 2.5, we have

2 2
D IDglly + 1D = ¢y < Ct = 53 I Ny (R, By £ = 52) [ sup > ligi(s)llp + sup [I1 - ¢3(s4>||u],
i=1 0<t<T -1 0<t<T

“4.17)

which implies that (4.1) holds for k = 1, and the case for general k can be proved similarly.
Hence, the proof is complete. O

Lemma 4.2. Assume that the assumptions listed in Lemma 4.1 are satisfied, then (¢, ¢, 1 —¢3) satisfies
the following time-independent L'-a priori estimate

2 2
(Igilles + £1gilli2) + 111 = psllr + 25111 = pslliz < CLUR)| D ol + 111 = pallur |, (4.18)
=1 i=1

1

where C(R) is a positive constant depending only on R.
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Proof. Since
¢i € L'R) N L R?), (i=1,2,3),

we can also obtain it belongs to L*(R?). In fact, this conclusion can be obtained by using Holder’s
inequality
1 1
lIgillz2 < Cligill 11l -
Based on (3.4), we have

12M
821

d M
$1(t) = T(D)1o + f AT(t - S)( fi+ Z—IﬁL) ds. (4.19)
0

Employing Lemma 2.2 and (3.1), we obtain
t
I610)llzr <l ollzr + C f (= )2 (11183l + lpad3llr + lg3bslin
0

g2l + 161 daslls + 61636311, ) ds
+C [t= 57t (1830l + 103l + hondl
0

4.20
Higa 2l + 11616205l + 1676202101 ) ds (420
!
+C [ =57t (183010 + 103l
0
g3l + 136sll + lig1626sllo + lIgig3gallr ) ds
<ll¢roller +J1 + Jo + Js.
Note that
!
Ji < f (t = 5)7 (Igill=lg3lles + gl T = @allZ, + lgilles + g3llon (1 + 11T = allze)
0
+igallolT = @3llF, + ligallr + llgrall (1 + N1 = Gsllze) wa
Hipll (1 + 111 = all7)lg3l ) disds '
t
<C f (t = )72 (ol + 111 = @312 + llpallZs + llpllzr + Il ) ds.
0
Similarly, we also have
t
L<C f (t= )72 (IgallZy + 111 = @allZs + a2y + giller + il ) ds (4.22)
0
and
!
L<C f (t = )72 (gl + 111 = @312 + llpallZs + llpller + Il ) ds. (4.23)
0

Adding (4.20)—(4.23) together gives
t
g1l < llrollr + Cf(t —5)? (||¢z||i2 + 111 = @all7, + lall7, + lldalls + ||¢z||L1)dS- (4.24)
0
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Simple calculations show that

¢ 2
g2l < llp2ollr + C(R) f (t—s) [Z Iill7> + 111 = @sllZ, + gl + ||¢2||L1]ds (4.25)
0 i=1
and
¢ 2
1
T = @3l < (11 = 30l + C(R)f(t— 5) "2 (Z lill7, + 111 = @all7, + gl + ||¢z||u]ds. (4.26)
0 i=1
Applying Lemma 2.2 and (3.1) again, we see that

ds

L2

! 2M M
161Dll2 < IT @1 0ll22 +f AT(t - S)( fi+ _BL)

%

< Cr ¥l ol + Cf(t‘ 7D (I fill + 1Bl ds

| N 2 (4.27)
< Cr ol + Cf (t—s)* (C1(R)Z gill?, + 111 = ¢sll7, + Il + ||¢2||L1)
0 i=1

‘ 2
< Cr il ollr + C(R) f (t=9)7% [Z il + 1T = ally. + liglls + ||¢2||L1)ds.
0 i=1

Similarly, we also have

" 2
Igallz> < Cr#ligaollr + C(R) f (t—s)27 [ansiniz+||1—¢3||§2+||¢1||L1 +||¢2||Ll)ds (4.28)
0 i=1

and
1 ! 3 2
11 = g3llzz < CriI1 = gapllr + CR) f (r—s>-4[2||¢iniz+n1—¢3||iz+||¢1||L1 +||¢2||L.]ds. (4.29)
0 i=1

Combining (4.24)—(4.29), we see

2 2
Z gl + 111 = gsllus + 5 (Z il + 11— ¢3||Lz)

2

Z ol + 111 = psollr + C(R)f(t— 5 [Z Iill7, + 111 = @all7, + Il + ||¢z||u)ds

I/\

2 2 t
Z Biolles + 111 = psollr + CR)E sup [Z Igll7> + 111 = @sll2. + il + |I¢zllu]f(t— 5) 25 2ds
0

F 0<t<T

Mm

0<t<T

NMM -

prollzs + 11 = @3gll + CR)? sup [ Iill7 + 11T = sl + Il + ||¢z||u],

Il
—_

(4.30)
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which means

sup {Z gl + 111 = sl + o (Z gl + 111 - ¢3||Lz)}

0<t<T
<Gy (Z igioll + 111 - ¢3o||L1] + CR) sup (Il + ligall.) (4.31)
-1 0<t<T
2
C(R illzt 1- 1 4 2 1- 2 .
+ C( )oi?PT{Z"¢"L 111 = sl +1 (ZHML 111 = ¢sll, )}

If we assume that||¢; o[z + ||¢@20ll.1 1s sufficiently small, then on the basis of Lemma 2.3, we can obtain
Eq (4.18) immediately and complete the proof. O

With the above preparations in hand, we give the proof of Theorem 1.3 in the following.

Proof of Theorem 1.3. Fix p. Then, (4.1) together with (4.18) gives

2 2
Z gl + 111 = sl < €1 (R) (Z il + 111 - ¢30||L1)’ 0<t<T,
(4.32)

Z 165 (Dl +111 = 63 (Dl < C2 (R T) sup (Z gl + 111 = ¢3||L1).
<t<T
Now, assuming that C is the constant in the Sobolev inequality,
el < Cllually.
Hence, if ||¢; ollz1 + ll¢p20llz1 1S so small (on the basis of Zle ¢; = 1, we have 1 — ¢35 = ¢ + ¢, hence
lld10llzt + ll20ll so small is equivalent to [|@ ollz1 + l|d20llzt + 111 — @30llzr so small) such that
2 2
CCI(R)C>(R, b, T) [Z Igiollr + 111 - ¢3,o||Ll) < Y e (Dl + ligs (D lls, — (433)
i=1 i=1

then we obtain

2
D N6 (Tl + s (D)l < C(Z (T llweo + 111 — ¢3(T>||Wu)

i=1

< CO(Ri,T) sup [Z gl + 111 - ¢3||L.]

0<t<T

(4.34)

0<t<T

< CC1(R)Cy(R1h, T) sup (Z llpiollr + 111 _¢30||L1)
2

< > i (1) Ml + 1l (T) Il < R.
i=1
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Therefore, by Theorem 3.1 and Lemma 4.2, (¢, ¢», 1 —¢3) can be extended up to time 27 and (¢, >, 1—
¢3) satisfies

D gl + 11 = sl < 2R, 0<1<2T,
" , (4.35)

DUl + 111 = gslls < Cu(R) [Z olls + 111 - ¢3,o||L1), 0<r<2T.
i=1 i=1

Now taking t = 2T , and replacing s; with s; + T (j = 1,2,--- , L) in (4.1), we can conclude that

Z 16: 2D)llwer + 1 = p32D)llwer < C2(R,h, T) sup (Z ligiller + 111 = ¢3”L1) (4.36)

0<t<2T

Assume that (41, d2, 1 — ¢3)has been defined up to time k7T for some k € Z, such that

2
DUl + 11 = gslls S 2R, 0 <1 < KT,
i:21 2 4.37)

D N6l + 111 = gsll < €y (R) [Z 60|, +111 ~ ¢3,o||y], 0<t<AkT.
i=1 i=1

Taking ¢t = kT, and replacing s; with s; + kT (j = 1,2,---,L) in (4.1), it yields that

Z @i (KD)llwer + 11 = @3(kT)llwer < Co(R,h, T) sup (Z ligillr + 111 = ¢3|Iu] (4.38)

0<t<kT

By (4.33), (4.35), and (4.38), we have

2 2
D lgi KT Il + ligs (KT Il < C(Z il + 111 = ¢3<kT>||WL,p]
i=1 j

< CC(R1h,T) sup [Z il + (11 — ¢3||Ln]

0<t<T

(4.39)
< CCi(R)C(R1h,T) sup (Z lI¢iollr + 111 _¢30||L1}

0<t<T

= Z 16 (T) lle= + i3 (T) [|~ < R.
i=1

Then, applying Theorem 3.1 and Lemma 4.2 again, (¢, ¢, ¢3) can be extended up to time (k + 1)T
and (¢, ¢,, ¢3) satisfies

2
Dl +111 = gsllie < 2R, 0 <1< (k+ DT,
by ) (4.40)
D gl + 11 = gslle < CUR)| > ligiollr + 111 = pollur |, 0 <t < (k+ DT
i=1 i=1

Thus, we establish the existence of the solution (¢i, ¢, ¢3) in all ¢ > 0 by induction. The proof is
complete. O
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5. Conclusions

This paper investigates the Cauchy problem for the three-component Cahn-Hilliard system in 2D
whole space R?, with physically relevant parameters. By constructing a successive approximation
scheme and combining it with a series of refined energy estimates and regularity-enhancing techniques,
we have proven the existence of a unique global smooth solution that remains bounded for all time
t > 0. This result establishes, for the first time, a systematic global well-posedness theory for the
Cauchy problem of the three-phase Cahn-Hilliard model, addressing a gap in the existing literature.

The core difficulty of this work lies in handling the complex coupling terms introduced by the multi-
phase nonlinear potential /. We have overcome the challenges encountered when applying classical
methods (such as the Hoff-Smoller approach) directly to this three-phase system. By establishing a
priori estimates for the higher-order derivatives of the solution in L? and L™ spaces, we successfully
controlled the long-term growth of the nonlinear terms, thereby ensuring the global existence and
regularity of the solution.

Our theoretical findings carry the following implications and insights:

(1) Theoretical Guarantee: It provides a solid mathematical foundation for the use of the three-phase
Cahn-Hilliard model in numerical simulations. It ensures that the solution approximated by discrete
schemes remains physically reasonable (smooth and bounded) over long timescales.

(2) Potential for Generalization: Although the analysis was primarily conducted on the 2D whole
domain, the energy estimation methods employed are robust. We believe that, through similar
arguments combined with the regularity theory for elliptic operators under appropriate boundary
conditions, the main conclusions of this paper can extended the initial-boundary problem in the
bounded domains with homogeneous Neumann boundary conditions.

Naturally, this study also has limitations and points to potential future research directions:

(1) Coupling with hydrodynamics: In practical applications, phase fields are often coupled with
fluid flow (e.g., the Cahn-Hilliard-Navier-Stokes system). Extending the stability analysis presented
here to include the advection term u - V¢ is a crucial step toward more comprehensive physical models.

(2) Implications for high-order numerical schemes: Our theoretical analysis shows that the
solution’s regularity is governed by the Sobolev norm of the initial data. This implies that in
numerical computations, if high-order schemes with spatial and temporal discretization errors of
O(h*) and O(Ar™), respectively, are used, our theoretical results can guarantee the long-term behavior
of the numerical solution, provided the discretized “numerical initial data” is sufficiently accurate to
satisfy the corresponding smallness condition in the high-order Sobolev norm. Quantifying the
precise relationship between the discrete parameters s, At, and the theoretical constant presents an
interesting problem that bridges theory and computation.

In summary, this work contributes to the mathematical analysis of the three-phase Cahn-Hilliard
system, paving the way for its further application and development in the simulation of complex
multiphase flows.
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