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1. Introduction

Projection operators in Banach spaces are of significant interest, owing to their applications in
variational inequalities, optimization, and fixed-point theory. For related developments in Hilbert
spaces, we refer the reader to [5, 11] and the references provided there.

In the setting of Banach spaces, a key advancement occurred with Alber [1], who introduced the
generalized projection operator πS : X∗ → S for uniformly smooth and uniformly convex spaces.
This operator became instrumental for addressing variational inequalities and optimization problems
in this broader context. Extending Alber’s work, Li [14] further refined the generalized projection for
nonempty closed convex subsets of reflexive Banach spaces, investigating its implications for Banach
space theory.
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Further developments were achieved by Bounkhel [3, 6, 8], who generalized the operator πS to
nonconvex closed subsets in smooth Banach spaces. He derived essential properties of this operator
and applied them to nonconvex variational problems.

Building on this, Wu and Huang [15] introduced the f -projection operator π f
S : X∗ → S , defined by

a proper, convex, lower semi-continuous function f . They established its fundamental properties and
investigated its use for solving certain variational inequalities, primarily in reflexive Banach spaces.

Based on these advances, Bounkhel [9] introduced a further extension: the generalized
( f , λ)-projection operator π

f ,λ
S and its corresponding V-Moreau envelope. He then studied the

differentiability and regularity of this envelope, as well as the Hölder continuity of the projection
itself.

The current paper extends this line of research on generalized projections for nonconvex sets,
initiated by Bounkhel in [6, 8, 9]. We focus on the operators πS and π f

S . In Section 2, we investigate
the relationship between the generalized f -projection and the standard generalized projection,
providing illustrative examples and establishing key theoretical links.

In Section 3, we generalize the notion of the V-proximal normal cone, first introduced by
Bounkhel and Al-Yusof in [2], employing the generalized f -projection within reflexive Banach
spaces. We establish a range of properties for this extended normal cone, covering both convex and
nonconvex settings.

Section 4 presents a new notion of prox-regularity for a set S relative to a given function f . This
definition is expressed in terms of the generalized f -projection, and we prove several characteristic
properties of this class of sets. Furthermore, we demonstrate the Lipschitz continuity of a specific
subclass of the π f

S operator.

2. Preliminaries

Throughout this work, let X be a uniformly smooth and uniformly convex Banach space (unless
stated otherwise), and let X∗ denote its topological dual. The closed unit balls in X∗ and X are
represented by B∗ and B, respectively. For definitions and foundational results on uniformly smooth
and uniformly convex Banach spaces, we refer to the monographs [12, 13]. We recall that the
normalized duality mapping J : X → X∗ is defined by

J(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x∗‖.‖x‖ = ‖x∗‖2 = ‖x‖2}.

Now, we recall several definitions and notations essential to our work. Let S be a closed nonempty
subset of a Banach space X. The V-proximal normal cone of S at x ∈ S (see [2]) is defined as

Nπ(S , x) = {x∗ ∈ X∗ : ∃α > 0 such that x ∈ πS (J(x) + αx∗)},

where πS denotes the generalized projection given by

πS (x∗) =
{
x ∈ S : V(x∗; x) = inf

s∈S
V(x∗; s)

}
,

and
V(x∗; x) = ‖x∗‖2 − 2〈x∗, x〉 + ‖x‖2.
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If S is convex, the V-proximal normal cone Nπ(S ; x) coincides with the classical normal cone from
convex analysis (see [10]):

Ncon(S , x) = {x∗ ∈ X∗ : 〈x∗, s − x〉 ≤ 0, ∀s ∈ S }.

We also recall the well-known notions of the Fréchet subdifferential ∂F f (x) (see, for instance, [5]),
the convex subdifferential ∂con f (see [5]), and the V-proximal subdifferential ∂π f (see [2]).

• For a lower semi-continuous function f : X → R ∪ {+∞} and a point x ∈ dom f , we say that
x∗ ∈ ∂F f (x) if and only if, for every ε > 0, there exists δ > 0 such that

〈x∗, x′ − x〉 ≤ f (x′) − f (x) + ε‖x′ − x‖, ∀x′ ∈ x + δB.

By taking f to be the indicator function of a nonempty closed set, we get the definition of the
Fréchet normal cone as follows:

NF(S , x) = {x∗ ∈ X∗ : ∀ε > 0, ∃δ > 0 such that 〈x∗, x′ − x〉 ≤ ε‖x′ − x‖, ∀x′ ∈ [x + δB] ∩ S }.

• If we assume that f is a convex lower semi-continuous function, the convex subdifferential of f
at the point x is given by the set:

∂con f (x) = {x∗ ∈ X∗ : 〈x∗, x′ − x〉 ≤ f (x′) − f (x), ∀x′ ∈ X}.

The convex normal cone of a nonempty closed convex set S is obtained by taking f to be the
indicator function of S as follows:

Ncon(S , x) = {x∗ ∈ X∗ : 〈x∗, x′ − x〉 ≤ 0, ∀x′ ∈ S }.

• For a lower semi-continuous function f : X → R ∪ {+∞} and a point x ∈ dom f , we say that
x∗ ∈ ∂π f (x), if and only if, there exist δ > 0 and σ > 0 such that

〈x∗, x′ − x〉 ≤ f (x′) − f (x) + σV(J(x); x′), ∀x′ ∈ x + δB.

We present the following definitions from [15, 16].

Definition 2.1. For a given proper function f : X → R ∪ {+∞}, define the functional V f : X∗ × X →
R ∪ {+∞} by

V f (x∗; x) = ‖x∗‖2 − 2〈x∗, x〉 + ‖x‖2 + f (x), x∗ ∈ X∗, x ∈ X.

Definition 2.2. Let S be a nonempty closed subset of X. Denote

dV
S , f (x∗) := inf

v∈S
V f (x∗; v),

and define the generalized f -projection operator π f
S : X∗ −→−→ X as

π
f
S (x∗) =

{
x ∈ S : V f (x∗; x) = dV

S , f (x∗)
}
, ∀x∗ ∈ X∗.
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It is important to note that when f (x) = 0 for every x ∈ X, the generalized f -projection π
f
S (x∗)

coincides with the generalized projection πS (x∗), which was introduced and analyzed by Alber [1] and
Li [14], for closed convex sets and by Bounkhel [6] for nonempty closed (not necessarily convex)
sets. Additionally, Bounkhel [6] provided an example involving nonconvex closed sets S in uniformly
convex and uniformly smooth Banach spaces, demonstrating that πS (x∗) = φ. By employing a similar
approach, we can show that for nonconvex closed sets S in a uniformly smooth and convex Banach
space, the projection π f

S (x∗) may indeed be empty.

Example 2.3. Let X = lp with (p ≥ 1), 0 = (0, 0, 0, . . .) ∈ (lp)∗ = lp′ ( with 1
p + 1

p′ = 1), and let

S = {x1, x2, . . . , xn, . . .} ; xn = (0, 0, . . . ,
n + 1

n
, . . .).

Let f : X → R be f (x) = ‖x‖lp . Then S is closed, not convex, with ‖x‖lp = 1 + 1
n > 1, ∀x ∈ S .

Hence,

V f (0; x) = V(0; x) + f (x) = ‖x‖lp(‖x‖lp + 1) > 2, ∀x ∈ S . (2.1)

Moreover, since V f (·; ·) is continuous with respect to the second variable, we obtain

2 ≤ inf
x∈S

V f (0; x) ≤ lim
n→∞

V f (0; xn)

= lim
n→∞

(‖xn‖
2
lp

+ ‖xn‖lp)

= lim
n→∞

[(1 +
1
n

)(2 +
1
n

)] = 2.

So,

inf
x∈S

V f (0; x) = 2. (2.2)

From (2.1) and (2.2), we obtain

π
f
S (0) = {x ∈ S : V f (0; x) = inf

u∈S
V f (0; u) = 2} = φ.

From this example, we see that even when f is a convex continuous function and X is a smooth
reflexive Banach space, the generalized f -projection onto a nonconvex set may be empty. It is worth
noting that the third author recently proved in [8] that the set of points x∗ ∈ X∗ that admit a generalized
f -projection is dense in X∗ (see Theorem 2.1 in [8]), provided X is a reflexive Banach space whose
dual norm is smooth.

Now, we move on to study the relationship between π f
S and πS . We start with the following result

in which we need the definition of level sets [ f = α] := {x ∈ X : f (x) = α}.

Proposition 2.4. Let α ∈ R and x∗ ∈ X∗.

(1) If f is bounded below by α on S , then [ f = α] ∩ πS (x∗) ⊆ π f
S (x∗).

(2) If f is bounded above by α on S , then [ f = α] ∩ π f
S (x∗) ⊆ πS (x∗).
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Proof. (1) For any x∗ ∈ X∗, we have

V f (x∗; v) = V(x∗; v) + f (v)
≥ V(x∗; v) + α, ∀v ∈ S ,

and so inf
v∈S

V f (x∗; v) ≥ inf
v∈S

V(x∗; v) + α. Let x ∈ [ f = α] ∩ πS (x∗). Then f (x) = α and

V(x∗; x) = inf
v∈S

V(x∗; v).

Thus,
V f (x∗; x) = V(x∗; x) + f (x) = inf

v∈S
V(x∗; v) + α ≤ inf

v∈S
V f (x∗; v).

This ensures that x ∈ π f
S (x∗), and so we get the inclusion

[ f = α] ∩ πS (x∗) ⊆ π f
S (x∗), ∀x∗ ∈ X∗.

(2) For any x∗ ∈ X∗, we have

V f (x∗; v) = V(x∗; v) + f (v)
≤ V(x∗; v) + α; ∀v ∈ S ,

and so inf
v∈S

V f (x∗; v) ≤ inf
v∈S

V(x∗; v) + α. Let x ∈ [ f = α] ∩ π f
S (x∗). Then, f (x) = α and

V f (x∗; x) = inf
v∈S

V f (x∗; v).

Thus,

V(x∗; x) = V f (x∗; x) − f (x) = V f (x∗; x) − α = inf
v∈S

V f (x∗; v) − α ≤ inf
v∈S

V(x∗; v).

Hence, V(x∗; x) = inf
v∈S

V(x∗; v), and so x ∈ πS (x∗). This proves the inclusion

[ f = α] ∩ π f
S (x∗) ⊆ πS (x∗),

and the proof of the proposition is complete. �

The first natural question that arises is whether the conclusions of the proposition remain valid if
we remove the intersection with level sets. To address this question, either affirmatively or negatively,
we present the following examples.

Example 2.5. Let X = l1, and let x1 = (1, 1, 0, 0, · · · ), x2 = (1, 0, 1, 0, · · · ), and x3 = (2, 0, 0, 1, 0, · · · ) be
elements in l1. Consider S = co{x1, x2, x3} and f (x) = ‖x‖l1 − 2. Then for x∗ = (1, 1, 1, . . . ) ∈ X∗ = l∞,
we have π f

S (x∗) = πS (x∗).

Proof. It has been proved in [14] that πS (x∗) = co{x1, x2}. So, we have to show that π f
S (x∗) = co{x1, x2}.

For any λ ∈ [0, 1], we set vλ := λx1 + (1 − λ)x2. First, we note that

vλ = (1, λ, 1 − λ, 0, 0, 0, · · · ), ‖vλ‖l1 = ‖x1‖l1 = ‖x2‖l1 = ‖x3‖l1 = 2 and ‖x∗‖l∞ = 1.
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Also, we have
〈x∗; vλ〉l∞,l1 = 2.

Then we have, for any λ ∈ [0, 1],

V f (x∗, vλ) = V(x∗, vλ) + f (vλ) = ‖x∗‖2l∞ − 2〈x∗; vλ〉 + ‖vλ‖2l1 + ‖vλ‖l1 − 2 = 1.

This ensures that V f (x∗; v) = 1,∀v ∈ co{x1, x2}. Now fix any λ1, λ2, λ3 ∈ [0, 1] with λ1 +λ2 +λ3 = 1,
and set z := λ1x1 + λ2x2 + λ3x3. First, we notice that

z = (1 + λ3, λ1, λ2, λ3, 0, 0, 0, · · · ), ‖z‖l1 = 2 + λ3, and 〈x∗; z〉l∞,l1 = 2 + λ3.

Then we have

V f (x∗, z) = V(x∗, z) + f (z) = ‖x∗‖2l∞ − 2〈x∗; z〉 + ‖z‖2l1 + ‖z‖l1 − 2
= 1 − 2(2 + λ3) + (2 + λ3)2 + (2 + λ3) − 2
= 1 + 3λ3 + λ2

3 ≥ 1, ∀z ∈ S .

Thus, we obtain
1 ≤ inf

z∈S
V f (x∗, z) ≤ inf

z∈co{x1,x2}
V f (x∗, z) = 1,

that is,
inf
z∈S

V f (x∗, z) = V f (x∗; v) = 1, ∀v ∈ co{x1, x2}.

This ensures that co{x1, x2} ⊂ π
f
S (x∗). Now fix any element w ∈ S \ co{x1, x2}. Then there exist

λ1, λ2, λ3 ∈ [0, 1] with λ1 +λ2 +λ3 = 1 and λ3 , 0 such that w = λ1x1 +λ2x2 +λ3x3. Finally V f (x∗,w) =

1 + 3λ3 + λ2
3 > 1 = infz∈S V f (x∗, z). This guarantees that w < π f

S (x∗), and so the unique elements of S
belonging to π f

S (x∗) are co{x1, x2}, and so π f
S (x∗) = co{x1, x2}. Therefore, πS (x∗) = π

f
S (x∗) = co{x1, x2}.

The proof of the example is finished. �

In this example, we have f (x) ≥ 0 on S and [ f = 0] = co{x1, x2} = πS (x∗) = π
f
S (x∗). Therefore, the

equality case of the inclusion in Part (1) of Proposition 2.4 holds. The intersection with the level set
[ f = 0] is implicitly satisfied, since [ f = 0] = co{x1, x2}. This example also shows that the generalized
projection πS (x∗) and the generalized f -projection π f

S (x∗) can coincide. To illustrate the importance of
the intersection with the level set, we consider a different function f defined by f (x) = ‖x − x1‖`1 , for
all x ∈ X. Clearly, f (x) ≥ 0 on S and [ f = 0] = {x1}. Moreover, we have π f

S (x∗) = {x1}. Indeed,
for any element z ∈ S = co{x1, x2, x3}, there exist λ1, λ2, λ3 ∈ [0, 1] with λ1 + λ2 + λ3 = 1 such that
z = λ1x1 + λ2x2 + λ3x3. Then

z − x1 = (λ3, λ1 − 1, λ2, λ3, 0, 0, 0, · · · ) and ‖z − x1‖l1 = 3λ3 + 2λ2.

Hence,

V f (x∗, x1) = V(x∗, x1) + f (x1) = ‖x∗‖2l∞ − 2〈x∗; x1〉 + ‖x1‖
2
l1 = 1,

and

V f (x∗, z) = V(x∗, z) + f (z) = ‖x∗‖2l∞ − 2〈x∗; z〉 + ‖z‖2l1 + ‖z − x1‖l1
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= 1 + 5λ3 + λ2
3 + 2λ2 > 1 = V f (x∗, x1).

This ensures that z satisfies

V f (x∗, z) = inf
s∈S

V f (x∗, s) = 1

if and only if λ2 = λ3 = 0, which implies λ1 = 1 and hence z = x1. Consequently, π f
S (x∗) = {x1}.

Thus, in general, the inclusion πS (x∗) ⊂ π f
S (x∗) does not hold. However, intersecting with the level

set [ f = 0] yields

[ f = 0] ∩ πS (x∗) ⊂ π f
S (x∗).

This second example underscores the critical role of intersecting with the level set and demonstrates
that attempting to prove the inclusion πS (x∗) ⊂ π

f
S (x∗) in general is not viable. A similar line of

reasoning can be used to construct analogous examples for the second inclusion in Proposition 2.4.

Example 2.6. For this example, we take the same space X = `1 and the same set S = co{x1, x2, x3} with
x1, x2, x3 as defined earlier. However, we now take x∗ = (0, 0, 0, . . . ) ∈ `∞ and consider the function
f (x) = ‖x‖2`1

. In this case, we obtain πS (x∗) = π
f
S (x∗).

Proof. Since we have already established in the previous examples that πS (x∗) = co{x1, x2}, it remains
to show that π f

S (x∗) = co{x1, x2}. First, observe that V f (0, x1) = V f (0, x2) = 8, V f (0, x3) = 18. Fix any
µ ∈ [0, 1] and set vµ := µx1 + (1 − µ)x2. Then we have vλ = (1, µ, 1 − µ, 0, 0, 0, · · · ), and so

V f (0, vλ) = V(0, vλ) + f (vλ) = 2‖vλ‖2l1 = 2[1 + µ + (1 − µ)]2 = 8.

Now fix any µ1, µ2, µ3 ∈ [0, 1] with µ1 + µ2 + µ3 = 1 and set v := µ1x1 + µ2x2 + µ3x3. Hence,
v = (1 + µ3, µ1, µ2, µ3, 0, 0, 0, · · · ) and ‖v‖l1 = 2 + µ3. Then, we have

V f (0; v) = ‖v‖2l1 + f (v) = 2‖v‖2l1 = 2(2 + µ3)2 ≥ 8.

The equality in the last inequality holds if and only if µ3 = 0, which is equivalent to v ∈ co{x1, x2}.
Consequently, we obtain the desired equality

π
f
S (x∗) = co{x1, x2} = πS (x∗),

which completes the proof for this example. �

From this example, we conclude that while the inclusion πS (x∗) ⊂ π
f
S (x∗) generally cannot be

guaranteed without intersecting with level sets, it remains possible to construct specific cases where
the generalized projection πS (x∗) and the generalized f -projection π

f
S (x∗) coincide, even without

intersecting with any level set.
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3. Generalized f -proximal normal cone

In this section, we extend the definition of the V-proximal cone introduced and studied in [2]. We
define a new object, called the generalized f -proximal normal cone and denoted by Nπ

f (S , x̄), in terms
of the generalized f -projection π f

S as follows

Definition 3.1. Given a nonempty closed subset S of a reflexive smooth Banach space X and a point
x̄ ∈ S , the generalized f -proximal normal cone to S at x̄ is defined as

Nπ
f (S , x̄) =

{
x∗ ∈ X∗ : ∃α > 0 such that x̄ ∈ π f

S
(
J(x̄) + αx∗

)}
.

Clearly, when f ≡ 0 on S , the set Nπ
f (S , x̄) reduces to the well-known V-proximal normal cone

Nπ(S , x̄) introduced and studied in [2]. In the following proposition, we establish several important
properties of this new set. For example, we will use it to:

• analyze special cases depending on the location of the point x̄, as shown in Propositions 3.6
and 3.7.
• derive a relationship between the Fréchet normal cone and the generalized f -proximal normal

cone, as demonstrated in Theorem 3.9.

Proposition 3.2. Let S be a closed nonempty subset of a reflexive Banach space X, and let x̄ ∈ S . Then
the following statements hold:

(1) An element x∗ ∈ X∗ belongs to Nπ
f (S , x̄) if and only if there exists a constant σ > 0 such that

〈x∗, x − x̄〉 ≤ σ
[
V f (J(x̄), x

)
− f (x̄)

]
, ∀x ∈ S .

(2) The set Nπ
f (S , x̄) is a convex cone in X∗, though not necessarily closed.

Proof. (1) Let x∗ ∈ Nπ
f (S , x̄). Then there exists α > 0 such that x̄ ∈ π f

S (J(x̄) +αx∗). By definition of the
generalized f -projection, we have, for any x ∈ S ,

V f (J(x̄) + αx∗, x̄
)
≤ V f (J(x̄) + αx∗, x

)
.

We expand V f using its definition

‖J(x̄) + αx∗‖2 − 2〈J(x̄) + αx∗, x̄〉 + ‖x̄‖2 + f (x̄) ≤ ‖J(x̄) + αx∗‖2 − 2〈J(x̄) + αx∗, x〉 + ‖x‖2 + f (x).

We cancel the common term ‖J(x̄) + αx∗‖2

−2〈J(x̄) + αx∗, x̄〉 + ‖x̄‖2 + f (x̄) ≤ −2〈J(x̄) + αx∗, x〉 + ‖x‖2 + f (x).

We rearrange to bring terms involving x̄ and x together, and grouping the pairing product terms
gives

2〈J(x̄) + αx∗, x − x̄〉 ≤ ‖x‖2 − ‖x̄‖2 + f (x) − f (x̄).

Equivalently, we obtain

2α〈x∗, x − x̄〉 ≤ ‖x‖2 − ‖x̄‖2 + f (x) − f (x̄) − 2〈J(x̄), x − x̄〉.
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We recognize and regroup terms to form V(J(x̄), x)

2α〈x∗, x − x̄〉 ≤ V(J(x̄), x) + f (x) − f (x̄).

But V(J(x̄), x) + f (x) = V f (J(x̄), x). Hence

2α〈x∗, x − x̄〉 ≤ V f (J(x̄), x) − f (x̄).

Since α > 0, dividing this inequality by 2α yields

〈x∗, x − x̄〉 ≤
1

2α
[
V f (J(x̄), x) − f (x̄)

]
, ∀x ∈ S . (8)

Thus, we obtain for σ = (2α)−1,

〈x∗; x − x̄〉 ≤ σ[V f (J(x̄), x) − f (x̄)], ∀x ∈ S .

Conversely, let σ > 0 so that

〈x∗; x − x̄〉 ≤ σ[V f (J(x̄), x) − f (x̄)], ∀x ∈ S .

Using the same reasoning as above, we can rewrite this inequality as

V f (J(x̄) +
1

2σ
x∗, x̄) ≤ V f (J(x̄) +

1
2σ

x∗, x), ∀x ∈ S ,

which means that x̄ ∈ π f
S (J(x̄) + 1

2σ x∗), and so by Definition 3.1, we obtain x∗ ∈ Nπ
f (S , x̄).

(2) First, observe that when f ≡ 0, the set Nπ
f (S , x̄) reduces to the V-proximal normal cone Nπ(S , x̄).

It is known (see, e.g., [2]) that this cone is not necessarily closed, even in finite-dimensional spaces.
Consequently, the newly defined set Nπ

f (S , x̄) is also not guaranteed to be closed in general.
Now, we prove that Nπ

f (S , x̄) is a cone. Let β > 0 and x∗ ∈ Nπ
f (S , x̄). By Definition 3.1, there exists

α > 0 such that
x̄ ∈ π f

S
(
J(x̄) + αx∗

)
= π

f
S

(
J(x̄) +

α

β
(βx∗)

)
.

Hence, βx∗ ∈ Nπ
f (S , x̄), establishing the positive homogeneity. To prove convexity, it suffices to

show that Nπ
f (S , x̄) is closed under addition. Let x∗1, x

∗
2 ∈ Nπ

f (S , x̄). By Part (1), there exist constants
σ1, σ2 > 0 such that for all x ∈ S ,

〈x∗1, x − x̄〉 ≤ σ1
[
V f (J(x̄), x

)
− f (x̄)

]
,

and
〈x∗2, x − x̄〉 ≤ σ2

[
V f (J(x̄), x

)
− f (x̄)

]
.

Adding these inequalities, we obtain for x∗ := x∗1 + x∗2,

〈x∗, x − x̄〉 = 〈x∗1, x − x̄〉 + 〈x∗2, x − x̄〉

≤ (σ1 + σ2)
[
V f (J(x̄), x

)
− f (x̄)

]
.

Taking σ := σ1 + σ2 > 0, this inequality can be written as

〈x∗, x − x̄〉 ≤ σ
[
V f (J(x̄), x

)
− f (x̄)

]
.

Therefore, by Part (1), x∗ = x∗1 + x∗2 ∈ Nπ
f (S , x̄). This completes the proof. �
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The lemma below characterizes the generalized f -projection in terms of an associated inequality.

Lemma 3.3. Let S be a nonempty closed subset of X, and let x∗ ∈ X∗. Then x̄ ∈ π f
S (x∗) if and only if

〈x∗ − J(x̄); x − x̄〉 ≤
1
2

[
f (x) − f (x̄) + V(J(x̄), x)

]
, ∀x ∈ S . (3.1)

Proof. Let x ∈ S be arbitrary. We develop the difference V f (x∗; x̄) − V f (x∗; x) by expanding each term
using the definition of V f . First, substituting the expression V f (x∗; y) = ‖x∗‖2 − 2〈x∗, y〉 + ‖y‖2 + f (y)
yields [

‖x∗‖2 − 2〈x∗, x̄〉 + ‖x̄‖2 + f (x̄)
]
−

[
‖x∗‖2 − 2〈x∗, x〉 + ‖x‖2 + f (x)

]
.

Canceling the common term ‖x∗‖2 and regrouping gives

‖x̄‖2 − ‖x‖2 + 2〈x∗, x − x̄〉 + f (x̄) − f (x).

Inserting J(x̄)− J(x̄) into the pairing product leaves the value unchanged, and splitting the resulting
sum leads to

‖x̄‖2 − ‖x‖2 + 2〈J(x̄), x − x̄〉 − 2〈J(x̄) − x∗, x − x̄〉 + f (x̄) − f (x).

Expanding 2〈J(x̄), x − x̄〉 as 2〈J(x̄), x〉 − 2〈J(x̄), x̄〉 and using the property 〈J(x̄), x̄〉 = ‖x̄‖2 produces

‖x̄‖2 − ‖x‖2 + 2〈J(x̄), x〉 − 2‖x̄‖2 − 2〈J(x̄) − x∗, x − x̄〉 + f (x̄) − f (x).

Simplifying the ‖x̄‖2 terms yields

−‖x̄‖2 − ‖x‖2 + 2〈J(x̄), x〉 − 2〈J(x̄) − x∗, x − x̄〉 + f (x̄) − f (x).

Recognizing the combination −‖x̄‖2 + 2〈J(x̄), x〉 − ‖x‖2 as the negative of V(J(x̄), x) (since ‖J(x̄)‖ =

‖x̄‖), we obtain
−V(J(x̄), x) − 2〈J(x̄) − x∗, x − x̄〉 + f (x̄) − f (x).

Finally, rewriting the last two terms as a single bracket gives the compact form

V f (x∗; x̄) − V f (x∗; x) = −V(J(x̄), x) −
[
2〈J(x̄) − x∗, x − x̄〉 + f (x) − f (x̄)

]
.

Thus, if x̄ ∈ π f
S (x∗), we have V f (x∗, x̄) = inf

s∈S
V f (x∗, s) ≤ V f (x∗; x), and so

−V(J(x̄), x) −
[
2〈J(x̄) − x∗, x − x̄〉 + f (x) − f (x̄)

]
= V f (x∗, x̄) − V f (x∗; x) ≤ 0,

which leads to

2〈J(x̄) − x∗, x − x̄〉 + f (x) − f (x̄) + V(J(x̄), x) ≥ 0,

so the direct implication holds.
Conversely, assume that the inequality (3.1) holds. Then, using the identity previously derived, we

obtain, for any x ∈ S ,

V f (x∗; x̄) − V f (x∗; x) = −V
(
J(x̄), x

)
−

[
2〈J(x̄) − x∗, x − x̄〉 + f (x) − f (x̄)

]
≤ 0,

where the inequality follows directly from (3.1). Consequently,

V f (x∗; x̄) ≤ V f (x∗; x) for all x ∈ S ,

which implies that V f (x∗; x̄) = inf
s∈S

V f (x∗; s). Hence, x̄ ∈ π f
S (x∗). �
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Note that in the convex case, that is, when both S and f are convex, the inequality (3.1) is equivalent
to the simpler inequality

2〈x∗ − J(x̄), x − x̄〉 ≤ f (x) − f (x̄), ∀x ∈ S . (3.2)

Indeed, the direct implication is immediate since V(J(x̄), x) ≥ 0. To prove the reverse implication,
assume (3.1) holds. Fix x ∈ S , and let t ∈ (0, 1). Define xt := x̄ + t(x − x̄), which belongs to S by
convexity. Applying (3.1) to xt gives

2〈x∗ − J(x̄), xt − x̄〉 ≤ f (xt) − f (x̄) + V(J(x̄), xt). (3.3)

Since f is convex,
f (xt) ≤ t f (x) + (1 − t) f (x̄),

so that f (xt) − f (x̄) ≤ t
[
f (x) − f (x̄)

]
. Substituting this and the definition xt − x̄ = t(x − x̄) into (3.3)

yields
2t〈x∗ − J(x̄), x − x̄〉 ≤ t

[
f (x) − f (x̄)

]
+ V

(
J(x̄), x̄ + t(x − x̄)

)
.

Dividing by t > 0, we obtain

2〈x∗ − J(x̄), x − x̄〉 ≤ f (x) − f (x̄) +
V
(
J(x̄), x̄ + t(x − x̄)

)
t

. (3.4)

Now, we examine the limit of the last term as t → 0+. Observe that

V
(
J(x̄), x̄ + t(x − x̄)

)
t

=
V
(
J(x̄), x̄ + t(x − x̄)

)
− V

(
J(x̄), x̄

)
t

,

which tends to the directional derivative of V(J(x̄), ·) at x̄ in the direction x− x̄. By direct computation,
this derivative equals

∇xV
(
J(x̄), ·

)
(x̄) = 2

[
J(x̄) − J(x̄)

]
= 0.

Hence, taking the limit t → 0+ in (3.4) gives

2〈x∗ − J(x̄), x − x̄〉 ≤ f (x) − f (x̄),

which is precisely (3.2). We summarize these observations in the following proposition.

Proposition 3.4. Let S be a nonempty closed convex subset of a reflexive Banach space X, and let
x∗ ∈ X∗. Then the following statements are equivalent:

(1) x̄ ∈ π f
S (x∗);

(2) 〈x∗ − J(x̄); x − x̄〉 ≤ 1
2

[
f (x) − f (x̄) + V(J(x̄), x)

]
, ∀x ∈ S ;

(3) 〈x∗ − J(x̄); x − x̄〉 ≤ 1
2

[
f (x) − f (x̄)

]
, ∀x ∈ S .

We continue our study of the f -proximal normal cone by examining its properties in the convex
setting in the following theorem.

Theorem 3.5. Let S be a nonempty closed convex subset of X, and let f : X → R ∪ {+∞} be a proper
convex continuous function. For any x ∈ S , we have

Nπ
f (S , x) = R+∂

con f (x) + Ncon(S , x).
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Proof. Let x∗ ∈ Nπ
f (S , x). Then by Definition 3.1, there exists a positive constant α > 0 such that

x ∈ π f
S (J(x) + αx∗). By applying Proposition 3.4, we obtain

〈2αx∗, x′ − x〉 ≤ f (x′) − f (x), ∀x′ ∈ S ,

and so

〈2αx∗, x′ − x〉 ≤ ( f + ψS )(x′) − ( f + ψS )(x), ∀x′ ∈ X,

where ψS is the indicator function associated with the set S . This inequality means, by the definition
of the subdifferential of convex functions, that 2αx∗ ∈ ∂con( f + ψS )(x). We use the exact sum rule for
the subdifferential of convex continuous functions to write

2αx∗ ∈ ∂con( f + ψS )(x) ⊂ ∂con f (x) + ∂conψS (x) = ∂con f (x) + Ncon(S , x).

This implies that

x∗ ∈
1

2α
∂con f (x) + Ncon(S , x) ⊂ R+∂

con f (x) + Ncon(S , x),

and hence the direct inclusion Nπ
f (S , x) ⊂ R+∂

con f (x)+ Ncon(S , x) holds. Conversely, we will prove that
R+∂

con f (x) + Ncon(S , x) ⊂ Nπ
f (S , x). Let v∗ ∈ R+∂

con f (x), i.e, there is α > 0 so that 2αv∗ ∈ ∂con f (x), and
let z∗ ∈ Ncon(S , x). We shall show that v∗+z∗ ∈ Nπ

f (S , x). By the definition of the convex subdifferential
and the convex normal cone, we have

〈2αv∗, v − x〉 ≤ f (v) − f (x) ,∀v ∈ X,

and

〈z∗, v − x〉 ≤ 0, ∀v ∈ S .

Hence,

2〈[J(x) + α(v∗ + z∗)] − J(x), v − x〉 = 2α〈v∗ + z∗, v − x〉 ≤ f (v) − f (x), ∀v ∈ S .

This ensures by Proposition 3.4 that x ∈ π f
S (J(x) + α(v∗ + z∗)), and hence by Definition 3.1, we get

v∗ + z∗ ∈ Nπ
f (S ; x). The demonstration is complete. �

We now consider a specific class of sets defined via a convex function f . Let f : X → R ∪ {+∞} be
a convex function that is locally Lipschitz on X, and define

K := {x ∈ X : 0 < ∂con f (x)},

where ∂con denotes the convex subdifferential. Fix a point x̄ ∈ K, and define

S := {x ∈ X : f (x) ≤ f (x̄)}.

For this set S and the point x̄ ∈ S , a consequence of Corollary 2.4.7 in [10] gives

R+ ∂
con f (x̄) = Ncon(S , x̄),
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where Ncon(S , x̄) is the normal cone in the sense of convex analysis. Combining this equality with our
Theorem 3.5 yields

Nπ
f (S , x̄) = Ncon(S , x̄). (3.5)

In the next two propositions, we examine special cases depending on the location of x̄. The first
deals with the situation in which x̄ lies in the topological interior of S . It is well known that in this
case, all classical normal cones (e.g., Ncon(S ; x̄)) reduce to the singleton {0}. It is therefore natural to
investigate the behavior of our new function-dependent normal cone in this interior-point setting.

Proposition 3.6. Let S be a nonempty closed subset of a reflexive Banach space X, and assume x̄ ∈
int(S ). Let f : X → R ∪ {+∞} be any lower semicontinuous function. Then we have

Nπ
f (S ; x̄) ⊂ R+∂

π f (x̄). (3.6)

Proof. Assume x̄ ∈ int(S ), and let x∗ ∈ Nπ
f (S ; x̄). By Proposition 3.2, there exists α > 0 such that

〈x∗, x − x̄〉 ≤ α
[
V f (J(x̄), x) − f (x̄)

]
= α

[
V(J(x̄), x) + f (x) − f (x̄)

]
, ∀x ∈ S .

Since x̄ ∈ int(S ), there exists δ > 0 with x̄ + δB ⊂ S . Restricting the inequality above to points
x ∈ x̄ + δB yields

〈α−1x∗, x − x̄〉 ≤ V(J(x̄), x) + f (x) − f (x̄), ∀x ∈ x̄ + δB.

By definition of the V-proximal subdifferential ∂π f , this implies α−1x∗ ∈ ∂π f (x̄). Hence, x∗ ∈
R+ ∂

π f (x̄), completing the proof. �

From this proposition, we can deduce several important special cases depending on the choice of f .

(1) Case f ≡ 0: Here, Nπ
f (S , x̄) = Nπ(S , x̄) = {0}, which recovers the classical result for the V-

proximal normal cone at an interior point.
(2) Constant case: If f is constant on a neighborhood of x̄, then ∂π f (x̄) = {0}, and hence Nπ

f (S , x̄) =

{0}.
(3) Smooth local minimum case: If f is of class C2 around x̄ and x̄ is a local minimum of f , then

again ∂π f (x̄) = {0} (see [2]), and so Nπ
f (S , x̄) = {0}.

Thus, in each of these situations, the generalized f -proximal normal cone reduces to the trivial cone
{0} at interior points of S .

The second important case of the point x̄ is:

x̄ ∈ argmaxS ( f ) := {x ∈ S : f (x) = sup
s∈S

f (s)}.

Proposition 3.7. Let x̄ ∈ argmaxS ( f ). Then we have

Nπ
f (S ; x̄) ⊂ Nπ(S ; x̄). (3.7)

Proof. Let x̄ ∈ argmaxS ( f ), and let x∗ ∈ Nπ
f (S ; x̄). Then by Proposition 3.2, there exists α > 0 such

that

〈x∗, x − x̄〉 ≤ α
[
V f (Jx̄), x) − f (x̄)

]
= α

[
V(Jx̄), x) + f (x) − f (x̄)

]
, ∀x ∈ S . (3.8)
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Since x̄ ∈ argmaxS ( f ), we have
f (x) ≤ f (x̄), ∀x ∈ S .

Hence, the inequality (3.8) becomes

〈x∗, x − x̄〉 ≤ α
[
V(Jx̄), x) + f (x) − f (x̄)

]
≤ αV(Jx̄), x), ∀x ∈ S .

This implies by the definition of Nπ(S ; x̄) that x∗ ∈ Nπ(S ; x̄), and so we finish the proof. �

Before concluding this section, we establish a connection between the Fréchet normal cone and the
generalized f -proximal normal cone, as stated in the theorem below. The proof relies on the following
auxiliary lemma.

Lemma 3.8. If the space X is a q-uniformly smooth Banach space, then for any M > 0, there exists a
constant βM > 0 such that

V(J(x), y) ≤ βM‖x − y‖q, ∀x, y ∈ MB.

Theorem 3.9. Let X be q-uniformly smooth, and let x̄ ∈ X. Assume that x̄ is a local maximum of f .
Then Nπ

f (S , x̄) ⊂ NF(S , x̄).

Proof. Let x∗ ∈ Nπ
f (S , x̄). Then by Proposition 3.2, there exists σ > 0 such that

〈x∗; x − x̄〉 ≤ σ[V f (J(x̄), x) − f (x̄)], ∀x ∈ S . (3.9)

First, we assume that x̄ is a local maximum of f , and so there exists δ > 0 such that

f (x) ≤ f (x̄), ∀x ∈ x̄ + δB. (3.10)

Also, we use the fact that X is q-uniformly smooth to apply Lemma 3.8 with M := ‖x̄‖ + δ > 0 to
find some constant βM > 0 such that

V(J(x̄), x) ≤ βM‖x − x̄‖q, ∀x ∈ x̄ + δB. (3.11)

Let any ε > 0. Put µ := min{δ, 1
2 ( ε

σβM
)

1
q−1 }. Then for x ∈ S ∩ (x̄ + µB), we get, by combining the

above three inequalities, (3.9), (3.10), and (3.11),

〈x∗; x − x̄〉 ≤ σ[V f (J(x̄), x) − f (x̄)]
≤ σV(J(x̄), x) + σ[ f (x) − f (x̄)]
≤ σβM‖x − x̄‖q

= σβM‖x − x̄‖q−1‖x − x̄‖

≤ σβM

[
1
2

(
ε

σβM
)

1
q−1

]q−1

‖x − x̄‖

≤ ε‖x − x̄‖.

This ensures by the definition of Fréchet normal cone that x∗ ∈ NF(S ; x̄), and so the proof is
complete. �
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4. Uniformly f -prox-regular sets

In this section, we introduce and study the concept of uniform f -prox-regularity in reflexive Banach
spaces with a smooth dual norm, which involves the use of π f

S , the V-proximal subdifferential ∂π f (·),
and the V-proximal normal cone Nπ(S ; ·).

Definition 4.1. Let X be a reflexive smooth Banach space, and let S be a closed subset of X. The set
S will be called uniformly f -prox-regular if and only if there is a couple of positive numbers (r1, r2),
so that for every x ∈ S and for all x∗1 ∈ Nπ(S ; x) with ‖x∗1‖ < 1 and for all x∗2 ∈ ∂

π f (x), we have
x ∈ π f

S (J(x) + r1x∗1 + r2x∗2)). We will say that S is (r1, r2)-uniformly f -prox-regular.

Before starting the study of this new class of sets, we start by noting the following:

• We notice that when f ≡ 0 on S , the uniform f -prox-regularity coincides with the uniform
generalized prox-regularity defined and studied in [3].
• All closed convex sets are uniformly f -prox-regular with respect to any convex continuous

function f on S , as we will prove in Proposition 4.2.
• We will also prove later in Proposition 4.5, that the new class of sets contains nonconvex sets with

respect to nonconvex functions.
• We will extend Theorem 3.5 to this new class of nonconvex sets.

We start with the following proposition.

Proposition 4.2. Assume that S is a closed convex set and f is a convex continuous function on S .
Then S is an (r1, r2)-uniformly f -prox-regular set with r2 = 1

2 and for any r1 > 0.

Proof. Let x ∈ S , x∗1 ∈ Nπ(S ; x) = Ncon(S ; x) with ‖x∗1‖ < 1, and let x∗2 ∈ ∂
π f (x) = ∂con f (x). Then,

〈x∗1, x
′ − x〉 ≤ 0, ∀x′ ∈ S , (4.1)

and

〈x∗2, x
′ − x〉 ≤ f (x′) − f (x), ∀x′ ∈ X. (4.2)

Fix any r1 > 0. By multiplying (4.1) by 2r1 and adding with (4.2), we obtain

〈2r1x∗1 + x∗2, x
′ − x〉 ≤ f (x′) − f (x), ∀x′ ∈ S . (4.3)

This inequality can be rewritten as follows:

2〈
[
r1x∗1 +

1
2

x∗2 + J(x)
]
− J(x), x′ − x〉 ≤ f (x′) − f (x), ∀x′ ∈ S . (4.4)

Using Proposition 3.4, we obtain x ∈ π f
S (J(x) + r1x∗1 + 1

2 x∗2), and so by Definition 4.1, the set S is an
(r1,

1
2 )-uniformly f -prox-regular set. Hence, the proof is complete. �

Before proving the next result, we recall two definitions of regularity - one for sets and one for
functions - which were introduced and studied in [3, 4], respectively.
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Definition 4.3. A closed set S in a reflexive smooth Banach space X is said to be uniformly prox-
regular if there exists a constant r > 0 such that, for every x ∈ S and every x∗ ∈ Nπ(S ; x) with ‖x∗‖ < 1,
one has

x ∈ πS
(
J(x) + rx∗

)
.

In this case, we say that S is r-uniformly prox-regular.

Note that every closed convex set is r-uniformly prox-regular, for any r > 0. A nonconvex example
of an r-uniformly prox-regular set is given in Example 4.10 of [3].

Definition 4.4. Given a closed set S in a reflexive smooth Banach space X and a continuous function
f defined on S , we say that f is uniformly prox-regular over S if there exists a constant r > 0 such
that, for every x ∈ S and every x∗ ∈ ∂π f (x), we have

〈x∗, x′ − x〉 ≤ f (x′) − f (x) +
1
2r

V(J(x), x′), ∀x′ ∈ S .

In this case, we say that f is r-uniformly prox-regular over S .

We observe that every convex continuous function is r-uniformly prox-regular over any closed
convex subset S of its domain, for any r > 0. Furthermore, it has been established in [4] that the
usual distance function dS associated with an r-uniformly prox-regular set S is itself r-uniformly prox-
regular over S with the same constant r > 0.

Proposition 4.5. Assume that S is r1-uniformly prox-regular and the continuous function f is r2-
uniformly prox-regular over S , with r2 > 1. Then S is (r1,

1
2 )-uniformly f -prox-regular.

Proof. Let x ∈ S , x∗1 ∈ Nπ(S ; x) with ‖x∗1‖ < 1, and x∗2 ∈ ∂
π f (x). Then the following inequalities hold:

〈x∗1, x
′ − x〉 ≤

1
2r1

V
(
J(x), x′

)
, ∀x′ ∈ S , (4.5)

and

〈x∗2, x
′ − x〉 ≤ f (x′) − f (x) +

1
2r2

V
(
J(x), x′

)
≤ f (x′) − f (x) +

1
2

V
(
J(x), x′

)
, ∀x′ ∈ S . (4.6)

Combining the inequalities (4.5) and (4.6) and using the assumption r2 > 1 gives

2
〈
r1x∗1 +

1
2

x∗2, x
′ − x

〉
≤ f (x′) − f (x) +

(1
2

+
1

2r2

)
V
(
J(x), x′

)
≤ f (x′) − f (x) + V

(
J(x), x′

)
, ∀x′ ∈ S .

By Lemma 3.3, this implies

x ∈ π f
S

(
J(x) + r1x∗1 +

1
2

x∗2
)
,

which completes the proof. �

We now prove the analogue of Theorem 3.5 for a subclass of uniformly f -prox-regular sets.

Theorem 4.6. Let S be r1-uniformly prox-regular, and let f be Lipschitz continuous and r2-uniformly
prox-regular over S . Then, for any x ∈ S ,

Nπ
f (S , x) ⊂ R+ ∂

π f (x) + Nπ(S , x).

If, in addition, we assume that both, r1, r2 > 1, then the inclusion becomes an equality.
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Proof. Let x∗ ∈ Nπ
f (S , x). By Proposition 3.2, there exists σ > 0 such that

〈x∗, x′ − x〉 ≤ σ
[
V(J(x), x′) + f (x′) − f (x)

]
, ∀x′ ∈ S .

Since ψS is the indicator function of S , we have ψS (x′) = 0 for x′ ∈ S and +∞ otherwise. Hence,
for any x′ ∈ X,

〈x∗, x′ − x〉 ≤ σ
[
V(J(x), x′) +

(
f + ψS

)
(x′) −

(
f + ψS

)
(x)

]
.

By the definition of the V-proximal subdifferential ∂π, this implies

σ−1x∗ ∈ ∂π( f + ψS )(x) ⊂ ∂Lπ( f + ψS )(x),

where ∂Lπ f denotes the limiting V-proximal subdifferential introduced in [7] and defined by

∂Lπ f (x) = lim sup
x′

f
→x

∂π f (x′) :=
{
w-lim x∗n : x∗n ∈ ∂

π f (xn), xn
f
−→ x

}
.

Applying the exact sum rule for the limiting V-proximal subdifferential (Theorem 13 in [7]), we
obtain

σ−1x∗ ∈ ∂Lπ( f + ψS )(x) ⊂ ∂Lπ f (x) + ∂LπψS (x) = ∂π f (x) + Nπ(S , x).

This implies that

x∗ ∈
1
σ
∂π f (x) + Nπ(S , x) ⊂ R+∂

π f (x) + Nπ(S , x),

and hence, the direct inclusion Nπ
f (S , x) ⊂ R+∂

π f (x) + Nπ(S , x) is proved.
Conversely, since Nπ

f (S , x) is a cone, it suffices to prove the inclusion

∂π f (x) + Nπ(S , x) ⊂ Nπ
f (S , x).

Fix v∗ ∈ ∂π f (x) and z∗ ∈ Nπ(S , x). By the uniform prox-regularity of f over S and of the set S itself,
we have

〈v∗, v − x〉 ≤ f (v) − f (x) +
1

2r1
V
(
J(x), v

)
, ∀v ∈ X,

and
〈z∗, v − x〉 ≤

1
2r2

V
(
J(x), v

)
, ∀v ∈ S .

Adding these two inequalities yields, for all x′ ∈ S ,

〈v∗ + z∗, x′ − x〉 ≤ f (x′) − f (x) +

[
1

2r1
+

1
2r2

]
V
(
J(x), x′

)
.

Because r1, r2 > 1, we have 1
2r1

+ 1
2r2

< 1, and therefore

〈v∗ + z∗, x′ − x〉 ≤ f (x′) − f (x) + V
(
J(x), x′

)
, ∀x′ ∈ S .

By Proposition 3.2, this implies v∗ + z∗ ∈ Nπ
f (S , x), which completes the proof. �
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Following the same reasoning as in Proposition 4.2 of [3], we now prove a key property of uniformly
f -prox-regular sets.

Proposition 4.7. Let S be a nonempty closed subset of a reflexive Banach space X, and let f be a lower
semi-continuous function defined on X. Assume that S is generalized (r1, r2)-uniformly f -prox-regular.
Then, for any x ∈ S , any nonzero x∗1 ∈ Nπ(S ; x), and any x∗2 ∈ ∂

π f (x), we have

x ∈ π f
S

(
J(x) + r1

x∗1
‖x∗1‖

+ r2x∗2
)
.

Proof. Assume that S is (r1, r2)-uniformly f -prox-regular. Let x ∈ S , x∗1 ∈ Nπ(S ; x) with x∗1 , 0, and
x∗2 ∈ ∂

π f (x). Define

x∗1,n :=
x∗1

‖x∗1‖ + 1
n

, n ≥ 1.

Then x∗1,n ∈ Nπ(S , x) and ‖x∗1,n‖ < 1, for all n. By the definition of generalized (r1, r2)-uniform
f -prox-regularity, we have

x ∈ π f
S
(
J(x) + r1x∗1,n + r2x∗2

)
, ∀n ≥ 1,

which means

V f (J(x) + r1x∗1,n + r2x∗2; x
)
≤ V f (J(x) + r1x∗1,n + r2x∗2; v

)
, ∀v ∈ S , ∀n ≥ 1.

Since V f is continuous in its first argument and x∗1,n →
x∗1
‖x∗1‖

as n→ ∞, passing to the limit yields

V f
(
J(x) + r1

x∗1
‖x∗1‖

+ r2x∗2; x
)
≤ V f

(
J(x) + r1

x∗1
‖x∗1‖

+ r2x∗2; v
)
, ∀v ∈ S .

Hence, by the definition of π f
S ,

x ∈ π f
S

(
J(x) + r1

x∗1
‖x∗1‖

+ r2x∗2
)
,

which completes the proof. �

Before concluding this section, we introduce the following operator:

Pπ
f ,S : X∗ → S , (4.7)

Pπ
f ,S (x∗) := {x ∈ S : 2[x∗ − J(x)] ∈ Nπ(S ; x) ∩ int(B) + ∂π f (x)}. (4.8)

We now establish the Lipschitz continuity of this operator for uniformly prox-regular sets S and
for convex differentiable functions f . First, observe that the new operator Pπ

f ,S is contained in the
generalized f -projection over S whenever the set S is uniformly generalized r1-prox-regular and the
function f is uniformly generalized r2-prox-regular, provided r1, r2 > 1. More precisely, we have the
following inclusion:

Pπ
f ,S (x∗) ⊂ π f

S (x∗), ∀x∗ ∈ X∗. (4.9)
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Indeed, let x∗ ∈ X∗, and let x ∈ Pπ
f ,S (x∗). By definition of Pπ

f ,S , we have

2
[
x∗ − J(x)

]
∈ Nπ(S ; x) ∩ int(B) + ∂π f (x).

Choose v∗ ∈ ∂π f (x) and z∗ ∈ Nπ(S , x) ∩ int(B) such that

2
[
x∗ − J(x)

]
= v∗ + z∗.

By the uniform prox-regularity of f over S and of S itself, we obtain

〈v∗, v − x〉 ≤ f (v) − f (x) +
1

2r1
V
(
J(x), v

)
, ∀v ∈ X,

and
〈z∗, v − x〉 ≤

1
2r2

V
(
J(x), v

)
, ∀v ∈ S .

Adding these inequalities yields, for every x′ ∈ S ,

〈v∗ + z∗, x′ − x〉 ≤ f (x′) − f (x) +

[
1

2r1
+

1
2r2

]
V
(
J(x), x′

)
.

Since r1, r2 > 1, we have 1
2r1

+ 1
2r2

< 1, and therefore

〈v∗ + z∗, x′ − x〉 ≤ f (x′) − f (x) + V
(
J(x), x′

)
.

Recalling that v∗ + z∗ = 2
[
x∗ − J(x)

]
, we obtain〈

2[x∗ − J(x)], x′ − x
〉
≤ f (x′) − f (x) + V

(
J(x), x′

)
, ∀x′ ∈ S .

By Lemma 3.3, this implies x ∈ π f
S (x∗), completing the argument.

We recall (see for instance [3]) the following technical lemmas needed in our proof of the next
theorem.

Lemma 4.8. If the space X is q-uniformly convex, then for any M > 0, there exists some constant
RM > 0 such that

〈J(x) − J(v); x − v〉 ≥ RM‖x − v‖q, ∀x, v ∈ MB.

Consider now the following subset of X∗:

A∗r,α = {x∗ ∈ X∗; ‖x∗‖ ≤ α and dV
S , f (x∗) < r}. (4.10)

Now, we are ready to prove the Lipschitz continuity of Pπ
f ,S over A∗r,α.

Theorem 4.9. Let X be a 2-uniformly convex Banach space with a smooth norm. Assume that S is
a generalized uniformly prox-regular set in X with constant r > 0, and let α > 0. Suppose that f is
convex and bounded below by some β ∈ R on S and f is of class C1,1 on S , that is, f is continuously
differentiable with an L-Lipschitz continuous gradient ∇ f on S . Assume further that the parameters
L, r, β, α satisfy

r > 2 and L < 2(r − 2)RT , (4.11)

where T = α +
√

r − β and RT is the constant given in Lemma 4.8. Then there exists λ > 0 such that

‖Pπ
f ,S (x∗2) − Pπ

f ,S (x∗1)‖ ≤ λ‖x∗1 − x∗2‖, ∀x∗1, x
∗
2 ∈ A

∗
r,α ∩ dom Pπ

f ,S .
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Proof. Let x∗1, x
∗
2 ∈ A

∗
r,α ∩ dom Pπ

f ,S , and choose xi ∈ Pπ
f ,S (x∗i ) for i = 1, 2. By definition,

2
[
x∗i − J(xi)

]
∈

[
Nπ(S , xi) ∩ int(B)

]
+ ∂π f (xi).

Thus, we can select v∗i ∈ ∂
π f (xi) and z∗i ∈ Nπ(S , xi) ∩ int(B) such that

2
[
x∗i − J(xi)

]
= v∗i + z∗i .

Using the uniform prox-regularity of S (with constant r > 0) and the convexity of f on S , we obtain

xi ∈ π
f
S (J(xi) + rv∗i + rz∗i ) = π

f
S (J(xi) + r[x∗i − J(xi)]), ∀i = 1, 2.

Then
V f (J(xi) + r[x∗i − J(xi)]; xi

)
≤ V f (J(xi) + r[x∗i − J(xi)]; s), ∀s ∈ S .

Define
u∗i := J(xi) + r

[
x∗i − J(xi)

]
, i = 1, 2.

The functional V f (u∗i ; ·) is convex and differentiable on S , with its Fréchet gradient given by

∇FV f (u∗i ; ·)(w) = 2
[
J(w) − u∗i

]
+ ∇ f (w) ∈ ∂conV f (u∗i ; ·)(w), ∀w ∈ S .

From the definition of the convex subdifferential, we have, for all z,w ∈ S ,

2
〈
J(w) − u∗1 +

1
2
∇ f (w), z − w

〉
≤ V f (u∗1; z) − V f (u∗1; w), (4.12)

and

2
〈
J(w) − u∗2 +

1
2
∇ f (w), z − w

〉
≤ V f (u∗2; z) − V f (u∗2; w). (4.13)

Choosing z = x1, w = x2 in (4.12) and z = x2, w = x1 in (4.13) yields

2
〈
J(x2) − u∗1 +

1
2
∇ f (x2), x1 − x2

〉
≤ V f (u∗1; x1) − V f (u∗1; x2) ≤ 0, (4.14)

and

2
〈
J(x1) − u∗2 +

1
2
∇ f (x1), x2 − x1

〉
≤ V f (u∗2; x2) − V f (u∗2; x1) ≤ 0. (4.15)

Adding (4.14) and (4.15) gives

2
〈
J(x2) − J(x1) + u∗2 − u∗1 +

1
2
(
∇ f (x2) − ∇ f (x1)

)
, x1 − x2

〉
≤ 0. (4.16)

Rearranging (4.16) and recalling the definition of u∗i leads to〈
(2 − r)

[
J(x2) − J(x1)

]
+ r

[
x∗2 − x∗1

]
+

1
2
(
∇ f (x2) − ∇ f (x1)

)
, x2 − x1

〉
≥ 0. (4.17)
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Equivalently,

〈
(r − 2)

[
J(x2) − J(x1)

]
, x2 − x1

〉
≤ r

〈
x∗2 − x∗1, x2 − x1

〉
+

1
2
〈
∇ f (x2) − ∇ f (x1), x2 − x1

〉
. (4.18)

Applying the Cauchy–Schwarz inequality to the right-hand side of (4.18) gives

〈
(r − 2)

[
J(x2) − J(x1)

]
, x2 − x1

〉
≤ r‖x∗2 − x∗1‖‖x2 − x1‖ +

1
2
‖∇ f (x2) − ∇ f (x1)‖‖x2 − x1‖. (4.19)

We now derive a bound for the points x1 and x2. Since f is bounded below on S , there exists a
constant β such that f (x) ≥ β, for all x ∈ S . Given that x∗i ∈ A

∗
r,α, we have dV

S , f (x∗i ) < r for i = 1, 2.
Hence,

‖xi‖ ≤ ‖x∗i ‖ +
(
V f (x∗i , xi) − f (xi)

) 1
2 = ‖x∗i ‖ +

(
dV

S , f (x∗i ) − f (xi)
) 1

2 ≤ α + (r − β)
1
2 =: T.

Thus, by Lemma 4.8, there exists a constant RT > 0 such that

RT ‖x2 − x1‖
2 ≤ 〈J(x2) − J(x1), x2 − x1〉. (4.20)

Combining (4.20) with inequality (4.19) yields

(r − 2)RT ‖x2 − x1‖
2 ≤

〈
(r − 2)[J(x2) − J(x1)], x2 − x1

〉
≤ r‖x∗2 − x∗1‖‖x2 − x1‖ +

1
2
‖∇ f (x2) − ∇ f (x1)‖‖x2 − x1‖.

Dividing by ‖x2 − x1‖ (assuming x1 , x2) and using the Lipschitz continuity of ∇ f gives

‖x2 − x1‖ ≤
r

(r − 2)RT
‖x∗2 − x∗1‖ +

1
2(r − 2)RT

‖∇ f (x2) − ∇ f (x1)‖

≤
r

(r − 2)RT
‖x∗2 − x∗1‖ +

L
2(r − 2)RT

‖x2 − x1‖.

Rearranging terms, we obtain[
1 −

L
2(r − 2)RT

]
‖x2 − x1‖ ≤

r
(r − 2)RT

‖x∗2 − x∗1‖.

By the assumption in (4.11), we have L
2(r−2)RT

< 1. Therefore,

‖x2 − x1‖ ≤
r

(r − 2)RT −
L
2

‖x∗2 − x∗1‖.

Consequently,
‖Pπ

f ,S (x∗2) − Pπ
f ,S (x∗1)‖ ≤ λ‖x∗2 − x∗1‖,

with Lipschitz constant

λ :=
2r

2(r − 2)RT − L
.

This completes the proof. �
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5. Conclusions

This work has advanced the theory of generalized projection operators in Banach spaces by
establishing a systematic bridge between the classical generalized projection πS and the more flexible
generalized f -projection π f

S . By introducing the f -proximal normal cone Nπ
f (S , x̄) - defined through

the generalized f -projection - we have unified and extended fundamental results previously known for
the classical V-proximal normal cone to the broader setting of reflexive Banach spaces. Key structural
properties of this cone, including its characterization via variational inequalities and its behavior in
both convex and nonconvex settings, are rigorously established.

A central contribution of this paper is the introduction and analysis of the uniform f -prox-regularity
of sets. This new regularity concept meaningfully incorporates the geometry of the set S together
with the functional perturbation f , thereby extending the well-studied notion of prox-regularity. We
demonstrate that this class of sets enjoys several desirable properties, particularly when S is uniformly
prox-regular and f is sufficiently smooth. Under such conditions, we prove a precise decomposition
formula for the f -proximal normal cone and establish the Lipschitz continuity of a natural subclass of
the projection operator π f

S . This stability result is significant for applications in variational analysis and
optimization, where the continuity of solution mappings is essential.

Our investigation underscores the versatility of the f -projection framework. By choosing the
function f appropriately, one can tailor the projection operator and the associated normal cone to
specific problem structures, enabling finer analysis in nonconvex variational problems, sensitivity
analysis, and the study of regularity properties in Banach spaces. The theoretical framework
developed here thus provides a robust foundation for future research in areas such as nonsmooth
optimization, equilibrium problems, and the analysis of geometric approximations in uniformly
convex and uniformly smooth Banach spaces.

In summary, this paper deepens the understanding of projection-based constructions in variational
analysis and opens several avenues for further exploration, including applications to more general
classes of functions and connections with other normal cone constructions, as well as the use of these
tools in the study of differential inclusions and evolution equations in Banach spaces.
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