Probabilistic hesitant Pythagorean fuzzy sets (PrHPyFSs) provide a robust framework for modeling decision-makers' preferences by simultaneously capturing probabilistic uncertainty, hesitation degrees, and the independent support/non-support relationships, thereby enabling a more accurate representation of real-world decision-making compared to traditional fuzzy sets. This study explores the aggregation of probabilistic hesitant Pythagorean fuzzy information in complex environments and its application to multi-criteria decision-making (MCDM). The research includes four main components: (1) developing an arithmetic operation system for probabilistic hesitant Pythagorean fuzzy elements (PrHPyFEs); (2) proposing four types of generalized aggregation operators for PrHPyFEs; (3) constructing a PrHPyFS-based MCDM framework using these operators, with effectiveness validated through a teaching equipment procurement case study; and (4) demonstrating the method's advantages via comparative analysis. The results confirm that the proposed solution effectively bridges the gap between theoretical foundations and practical decision-making applications.
Citation: Mingxin Wang, Luping Liu. Generalized probabilistic hesitant Pythagorean fuzzy aggregation operators and their application in teaching equipment procurement[J]. AIMS Mathematics, 2026, 11(1): 322-344. doi: 10.3934/math.2026013
Probabilistic hesitant Pythagorean fuzzy sets (PrHPyFSs) provide a robust framework for modeling decision-makers' preferences by simultaneously capturing probabilistic uncertainty, hesitation degrees, and the independent support/non-support relationships, thereby enabling a more accurate representation of real-world decision-making compared to traditional fuzzy sets. This study explores the aggregation of probabilistic hesitant Pythagorean fuzzy information in complex environments and its application to multi-criteria decision-making (MCDM). The research includes four main components: (1) developing an arithmetic operation system for probabilistic hesitant Pythagorean fuzzy elements (PrHPyFEs); (2) proposing four types of generalized aggregation operators for PrHPyFEs; (3) constructing a PrHPyFS-based MCDM framework using these operators, with effectiveness validated through a teaching equipment procurement case study; and (4) demonstrating the method's advantages via comparative analysis. The results confirm that the proposed solution effectively bridges the gap between theoretical foundations and practical decision-making applications.
| [1] |
L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
|
| [2] |
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
|
| [3] |
R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE T. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
|
| [4] |
V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst., 25 (2010), 529–539. https://doi.org/10.1002/int.20418 doi: 10.1002/int.20418
|
| [5] |
B. Zhu, Z. Xu, M. Xia, Dual hesitant fuzzy sets, J. Appl. Math., 2012 (2012), Article 879629. https://doi.org/10.1155/2012/879629 doi: 10.1155/2012/879629
|
| [6] |
M. S. A. Khan, S. Abdullah, A. Ali, N. Siddiqui, F. Amin, Pythagorean hesitant fuzzy sets and their application to group decision making with incomplete weight information, J. Intell. Fuzzy Syst., 33 (2017), 3971–3985. https://doi.org/10.3233/JIFS-17811 doi: 10.3233/JIFS-17811
|
| [7] |
D. Liang, Z. Xu, The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets, Appl. Soft Comput., 60 (2017), 167–179. http://dx.doi.org/10.1016/j.asoc.2017.06.034 doi: 10.1016/j.asoc.2017.06.034
|
| [8] |
Z. Xu, W. Zhou, Consensus building with a group of decision makers under the hesitant probabilistic fuzzy environment, Fuzzy Optim. Decis. Ma., 16 (2017), 481–503. http://dx.doi.org/10.1007/s10700-016-9257-5 doi: 10.1007/s10700-016-9257-5
|
| [9] |
S. Luo, J. Liu, The probabilistic interval-valued hesitant Pythagorean fuzzy set and its application in selecting processes of project private partner, IEEE Access, 7 (2019), 170304–170321. http://dx.doi.org/10.1109/ACCESS.2019.2954995 doi: 10.1109/ACCESS.2019.2954995
|
| [10] |
B. Batool, M. Ahmad, S. Abdullah, S. Ashraf, R. Chinram, Entropy based Pythagorean probabilistic hesitant fuzzy decision making technique and its application for fog-haze factor assessment problem, Entropy, 22 (2020), Article 318. http://dx.doi.org/10.3390/e22030318 doi: 10.3390/e22030318
|
| [11] |
C. Ji, R. Zhang, J. Wang, Probabilistic dual-hesitant Pythagorean fuzzy sets and their application in multi-attribute group decision-making, Cogn. Comput., 13 (2021), 919–935. https://doi.org/10.1007/s12559-021-09858-1 doi: 10.1007/s12559-021-09858-1
|
| [12] |
G. Sun, W. Hua, G. Wang, Interactive group decision making method based on probabilistic hesitant Pythagorean fuzzy information representation, Appl. Intell., 52 (2022), 18226–18247. https://doi.org/10.1007/s10489-022-03749-0 doi: 10.1007/s10489-022-03749-0
|
| [13] |
S. Ashraf, B. Batool, M. Naeem, Novel decision making methodology under Pythagorean probabilistic hesitant fuzzy Einstein aggregation information, Comput. Model. Eng. Sci., 136 (2023), 1785–1811. https://doi.org/10.32604/cmes.2023.024851 doi: 10.32604/cmes.2023.024851
|
| [14] |
F. Liao, W. Li, G. Liu, X. Zhou, Pythagorean probabilistic hesitant triangular fuzzy aggregation operators with applications in multiple attribute decision making, J. Syst. Eng. Electron., 34 (2023), 422–438. https://doi.org/10.23919/JSEE.2023.000015 doi: 10.23919/JSEE.2023.000015
|
| [15] |
M. Rasheed, E. Tag-Eldin, N. A. Ghamry, M. A. Hashmi, M. Kamran, U. Rana, Decision-making algorithm based on Pythagorean fuzzy environment with probabilistic hesitant fuzzy set and Choquet integral, AIMS Math., 8 (2023), 12422–12455. https://doi.org/10.3934/math.2023624 doi: 10.3934/math.2023624
|
| [16] |
R. Sarkar, V. Bakka, R. S. Rao, Multi-attribute decision making based on probabilistic dual hesitant Pythagorean fuzzy information, Operat. Resear. Eng. Sci.: Theory Appl., 6 (2023), 176–202. https://doi.org/10.31181/oresta/060309 doi: 10.31181/oresta/060309
|
| [17] |
G. Sun, M. Wang, New ranking methods of probabilistic hesitant Pythagorean fuzzy information and their application in multi-criteria decision-making, Comput. Appl. Math., 44 (2025), Article 406. https://doi.org/10.1007/s40314-025-03343-3 doi: 10.1007/s40314-025-03343-3
|
| [18] |
B. Batool, S. S. Abosuliman, S. Abdullah, S. Ashraf, EDAS method for decision support modeling under the Pythagorean probabilistic hesitant fuzzy aggregation information, J. Amb. Intell. Hum. Comput., 13 (2022), 5491–5504. https://doi.org/10.1007/s12652-021-03181-1 doi: 10.1007/s12652-021-03181-1
|
| [19] |
B. Batool, S. Abdullah, S. Ashraf, M. Ahmad, Pythagorean probabilistic hesitant fuzzy aggregation operators and their application in decision-making, Kybernetes, 51 (2022), 1626–1652. https://doi.org/10.1108/K-11-2020-0747 doi: 10.1108/K-11-2020-0747
|
| [20] |
F. Tang, Y. Zhang, J. Wang, How do enterprises determine which breakthrough invention should be commercialized? Amultiple attribute group decision-making-basedmethod, Comput. Appl. Math., 41 (2022), Article 385. https://doi.org/10.1007/s40314-022-02068-x doi: 10.1007/s40314-022-02068-x
|
| [21] |
S. Qahtan, H. A. Alsattar, A. A. Zaidan, M. Deveci, D. Pamucar, W. Ding, A novel fuel supply system modelling approach for electric vehicles under Pythagorean probabilistic hesitant fuzzy sets, Inform. Sciences, 622 (2023), 1014–1032. https://doi.org/10.1016/j.ins.2022.11.166 doi: 10.1016/j.ins.2022.11.166
|
| [22] |
Z. Xu, An overview of methods for determining OWA weights, Int. J. Intell. Syst., 20 (2005), 843–865. https://doi.org/10.1002/int.20097 doi: 10.1002/int.20097
|