This paper addressed the output regulation problem for a one-dimensional (1-D) wave equation subject to a nonlocal term and multi-channel unknown disturbances. Motivated by the combined challenge of structural instability from nonlocal coupling and the realistic presence of multi-channel harmonic disturbances with unknown frequencies, this work aimed to integrate and simultaneously address both issues to meet more complex application scenarios. The nonlocal term caused energy growth and open-loop instability, requiring sequential stabilization and output regulation. The disturbances consisted of sinusoidal signals with unknown amplitudes and frequencies, where only an upper bound on the frequencies was known. Our approach constructed an auxiliary system to eliminate the nonlocal effect and employed a coordinate transformation that concentrated disturbances into the tracking error channel. An adaptive observer was then developed for online frequency identification, enabling output-feedback control using the tracking error and its derivative. Theoretical analysis established the well-posedness and state boundedness of the closed-loop system, while numerical simulations confirmed the effectiveness of the proposed approach and demonstrated exponential convergence of the tracking error to zero.
Citation: Xinting Xiao, Feng-Fei Jin, Xiyu Liu. Adaptive error feedback tracking for a wave equation with a nonlocal term and multi-channel unknown harmonic disturbances[J]. AIMS Mathematics, 2026, 11(1): 291-321. doi: 10.3934/math.2026012
This paper addressed the output regulation problem for a one-dimensional (1-D) wave equation subject to a nonlocal term and multi-channel unknown disturbances. Motivated by the combined challenge of structural instability from nonlocal coupling and the realistic presence of multi-channel harmonic disturbances with unknown frequencies, this work aimed to integrate and simultaneously address both issues to meet more complex application scenarios. The nonlocal term caused energy growth and open-loop instability, requiring sequential stabilization and output regulation. The disturbances consisted of sinusoidal signals with unknown amplitudes and frequencies, where only an upper bound on the frequencies was known. Our approach constructed an auxiliary system to eliminate the nonlocal effect and employed a coordinate transformation that concentrated disturbances into the tracking error channel. An adaptive observer was then developed for online frequency identification, enabling output-feedback control using the tracking error and its derivative. Theoretical analysis established the well-posedness and state boundedness of the closed-loop system, while numerical simulations confirmed the effectiveness of the proposed approach and demonstrated exponential convergence of the tracking error to zero.
| [1] |
B. Z. Guo, R. X. Zhao, Output regulation for a heat equation with unknown exosystem, Automatica, 138 (2022), 110159. https://doi.org/10.1016/j.automatica.2022.110159 doi: 10.1016/j.automatica.2022.110159
|
| [2] | S. Wang, Z. J. Han, Z. X. Zhao, Output regulation for a one-dimensional heat equation with input delay and unknown exosystem, 2023 42nd Chinese Control Conference (CCC), 2023,977–982. https://doi.org/10.23919/CCC58697.2023.10239825 |
| [3] | J. Wang, M. Krstic, Adaptive control of coupled hyperbolic PDEs with piecewise-constant inputs and identification, 2021 60th IEEE Conference on Decision and Control (CDC), 2021,442–447. https://doi.org/10.1109/CDC45484.2021.9683208 |
| [4] |
C. T. Yilmaz, H. I. Basturk, Adaptive output regulator for wave PDEs with unknown harmonic disturbance, Automatica, 113 (2020), 108808. https://doi.org/10.1016/j.automatica.2020.108808 doi: 10.1016/j.automatica.2020.108808
|
| [5] |
D. Bresch-Pietri, M. Krstic, Output-feedback adaptive control of a wave PDE with boundary anti-damping, Automatica, 50 (2014), 1407–1415. https://doi.org/10.1016/j.automatica.2014.02.040 doi: 10.1016/j.automatica.2014.02.040
|
| [6] |
W. Guo, H. C. Zhou, Adaptive error feedback regulation problem for an Euler-Bernoulli beam equation with general unmatched boundary harmonic disturbance, SIAM J. Control Optim., 57 (2019), 1890–1928. https://doi.org/10.1137/18M1172727 doi: 10.1137/18M1172727
|
| [7] |
J. J. Liu, B. Z. Guo, Robust tracking error feedback control for a one-dimensional Schrödinger equation, IEEE Trans. Autom. Control, 67 (2021), 1120–1134. https://doi.org/10.1109/TAC.2021.3056599 doi: 10.1109/TAC.2021.3056599
|
| [8] |
D. Steeves, M. Krstic, R. Vazquez, Prescribed-time estimation and output regulation of the linearized Schrödinger equation by backstepping, Eur. J. Control, 55 (2020), 3–13. https://doi.org/10.1016/j.ejcon.2020.02.009 doi: 10.1016/j.ejcon.2020.02.009
|
| [9] |
E. Davison, The robust control of a servomechanism problem for linear time-invariant multivariable systems, IEEE Trans. Autom. Control, 21 (1976), 25–34. https://doi.org/10.1109/TAC.1976.1101137 doi: 10.1109/TAC.1976.1101137
|
| [10] |
B. A. Francis, W. M. Wonham, The internal model principle of control theory, Automatica, 12 (1976), 457–465. https://doi.org/10.1016/0005-1098(76)90006-6 doi: 10.1016/0005-1098(76)90006-6
|
| [11] |
R. Rebarber, G. Weiss, Internal model based tracking and disturbance rejection for stable well-posed systems, Automatica, 39 (2003), 1555–1569. https://doi.org/10.1016/S0005-1098(03)00192-4 doi: 10.1016/S0005-1098(03)00192-4
|
| [12] |
B. Z. Guo, R. X. Zhao, Output regulation for Euler-Bernoulli beam with unknown exosystem using adaptive internal model, SIAM J. Control Optim., 61 (2023), 2088–2113. https://doi.org/10.1137/22M1501805 doi: 10.1137/22M1501805
|
| [13] | J. Q. Han, Extended state observer for a class of uncertain systems, Control Decis., 10 (1995), 85–88. |
| [14] | J. Q. Han, Active disturbance rejection controller and its applications, Control Decis., 13 (1998), 19–23. |
| [15] |
H. C. Zhou, B. Z. Guo, S. H. Xiang, Performance output tracking for multidimensional heat equation subject to unmatched disturbance and noncollocated control, IEEE Trans. Autom. Control, 65 (2019), 1940–1955. https://doi.org/10.1109/TAC.2019.2926132 doi: 10.1109/TAC.2019.2926132
|
| [16] |
X. Zhang, H. Feng, S. Chai, Performance output exponential tracking for a wave equation with a general boundary disturbance, Syst. Control Lett., 98 (2016), 79–85. https://doi.org/10.1016/j.sysconle.2016.10.007 doi: 10.1016/j.sysconle.2016.10.007
|
| [17] |
Z. D. Mei, Disturbance estimator and servomechanism based performance output tracking for a 1-D Euler-Bernoulli beam equation, Automatica, 116 (2020), 108925. https://doi.org/10.1016/j.automatica.2020.108925 doi: 10.1016/j.automatica.2020.108925
|
| [18] |
W. Guo, H. C. Zhou, M. Krstic, Adaptive error feedback regulation problem for 1-D wave equation, Int. J. Robust Nonlinear Control, 28 (2018), 4309–4329. https://doi.org/10.1002/rnc.4234 doi: 10.1002/rnc.4234
|
| [19] |
H. Feng, B. Z. Guo, X. H. Wu, Trajectory planning approach to output tracking for a 1-D wave equation, IEEE Trans. Autom. Control, 65 (2019), 1841–1854. https://doi.org/10.1109/TAC.2019.2937727 doi: 10.1109/TAC.2019.2937727
|
| [20] |
J. Wang, S. X. Tang, Y. Pi, M. Krstic, Exponential regulation of the anti-collocatedly disturbed cage in a wave PDE-modeled ascending cable elevator, Automatica, 95 (2018), 122–136. https://doi.org/10.1016/j.automatica.2018.05.022 doi: 10.1016/j.automatica.2018.05.022
|
| [21] |
B. Z. Guo, T. Meng, Robust output regulation of 1-d wave equation, IFAC J. Syst. Control, 16 (2021), 100140. https://doi.org/10.1016/j.ifacsc.2021.100140 doi: 10.1016/j.ifacsc.2021.100140
|
| [22] |
R. X. Zhao, B. Z. Guo, Output regulation for a wave equation with unknown exosystem, IEEE Trans. Autom. Control, 69 (2023), 3066–3079. https://doi.org/10.1109/TAC.2023.3303340 doi: 10.1109/TAC.2023.3303340
|
| [23] |
X. H. Wu, J. M. Wang, Adaptive output tracking for 1-D wave equations subject to unknown harmonic disturbances, IEEE Trans. Autom. Control, 69 (2023), 2689–2696. https://doi.org/10.1109/TAC.2023.3333797 doi: 10.1109/TAC.2023.3333797
|
| [24] |
J. J. Liu, N. Peng, J. M. Wang, Adaptive output regulation for wave PDEs with a nonlocal term and unknown harmonic disturbances, Syst. Control Lett., 197 (2025), 106043. https://doi.org/10.1016/j.sysconle.2025.106043 doi: 10.1016/j.sysconle.2025.106043
|
| [25] |
H. C. Zhou, W. Guo, Output feedback exponential stabilization of one-dimensional wave equation with velocity recirculation, IEEE Trans. Autom. Control, 64 (2019), 4599–4606. https://doi.org/10.1109/TAC.2019.2899077 doi: 10.1109/TAC.2019.2899077
|
| [26] |
R. Marino, G. L. Santosuosso, Regulation of linear systems with unknown exosystems of uncertain order, IEEE Trans. Autom. Control, 52 (2007), 352–359. https://doi.org/10.1109/TAC.2006.890376 doi: 10.1109/TAC.2006.890376
|
| [27] |
R. Marino, P. Tomei, Disturbance cancellation for linear systems by adaptive internal models, Automatica, 49 (2013), 1494–1500. https://doi.org/10.1016/j.automatica.2013.02.011 doi: 10.1016/j.automatica.2013.02.011
|
| [28] | P. A. Ioannou, J. Sun, Robust adaptive control, PTR Prentice-Hall, 1996. |
| [29] |
E. A. Az-Zo'bi, K. Al-Khaled, A new convergence proof of the Adomian decomposition method for a mixed hyperbolic elliptic system of conservation laws, Appl. Math. Comput., 217 (2010), 4248–4256. https://doi.org/10.1016/j.amc.2010.10.040 doi: 10.1016/j.amc.2010.10.040
|
| [30] |
E. A. Az-Zo'bi, K. Al-Dawoud, M. Marashdeh, Numeric-analytic solutions of mixed-type systems of balance laws, Appl. Math. Comput., 265 (2015), 133–143. https://doi.org/10.1016/j.amc.2015.04.119 doi: 10.1016/j.amc.2015.04.119
|
| [31] |
E. A. Az-Zo'bi, E. Hussain, M. Iqbal, Q. M. M. Alomari, S. A. A. Shah, D. Yaro, et al., Chaotic, bifurcation, sensitivity, modulation stability analysis, and optical soliton structure to the nonlinear coupled Konno-Oono system in magnetic field, AIP Adv., 15 (2025), 095103. https://doi.org/10.1063/5.0291009 doi: 10.1063/5.0291009
|