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Abstract: This paper addressed the output regulation problem for a one-dimensional (1-D) wave
equation subject to a nonlocal term and multi-channel unknown disturbances. Motivated by the
combined challenge of structural instability from nonlocal coupling and the realistic presence of
multi-channel harmonic disturbances with unknown frequencies, this work aimed to integrate and
simultaneously address both issues to meet more complex application scenarios. The nonlocal
term caused energy growth and open-loop instability, requiring sequential stabilization and output
regulation. The disturbances consisted of sinusoidal signals with unknown amplitudes and frequencies,
where only an upper bound on the frequencies was known. Our approach constructed an auxiliary
system to eliminate the nonlocal effect and employed a coordinate transformation that concentrated
disturbances into the tracking error channel. An adaptive observer was then developed for online
frequency identification, enabling output-feedback control using the tracking error and its derivative.
Theoretical analysis established the well-posedness and state boundedness of the closed-loop system,
while numerical simulations confirmed the effectiveness of the proposed approach and demonstrated
exponential convergence of the tracking error to zero.
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1. Introduction

The output regulation of distributed parameter systems under external disturbances has attracted
considerable research attention in recent years for various types of partial differential equations
(PDEs), including the heat equations [1, 2], wave equations [3–5], beam equations [6], and
Schrödinger equations [7, 8], among others. Driven by rapid developments in mechanical
manufacturing, marine engineering, robotics, and related fields, the control of disturbances in PDEs
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systems has been addressed through a variety of developed methods. For systems where reference
signals and disturbances originate from a linear autonomous exosystem, foundational work on
finite-dimensional systems dates back to the internal model principle of the 1970s [9, 10], with
applications shown in [11, 12]. Moreover, active disturbance rejection control [13, 14], introduced in
the 1980s, has found broad application in output regulation, including scenarios involving the heat
equations [15], wave equations [16], and Euler-Bernoulli beam equations [17]. A common limitation
in these studies, however, is that the exosystem-generated disturbance only acts through a single
channel, and the reference signals are fully known. In [18], an adaptive method was employed to
achieve output regulation for a one-dimensional (1-D) wave equation. Both the disturbance and the
reference signal were sinusoidal with known frequencies. More recently, in the case of a 1-D wave
equation under mismatched disturbances, a controller was designed in [19] using a trajectory planning
approach, where the sinusoidal disturbance generated by the exosystem was also known. In contrast,
the problem of output tracking under unknown frequencies remains less explored. Recent studies
have begun to address this challenge. In [20], a riser-cable elevator was abstracted as a wave equation
subject to an unknown-frequency disturbance, with the excitation confined to a sole system channel.
In [21], a 1-D non-collocated wave equation was examined under the condition of a known exosystem
while the disturbance frequency was unknown. The work in [22] leverages the adaptive internal
model principle to devise a controller. Authors in [23] investigated a 1-D anti-stable wave equation
along with unknown harmonic disturbances and reference trajectories. Notably, the disturbance was
applied exclusively through one channel of the system.

In practical engineering systems such as offshore platform structures, large-scale flexible
manipulators, vibration control of oil pipelines, and wind-induced vibration suppression in high-rise
buildings, distributed parameter systems described by PDEs (e.g., wave equations) are often subject to
multi-source external harmonic disturbances. The frequencies and amplitudes of these disturbances
are typically unknown and time-varying. Moreover, nonlocal coupling terms in the system (such as
boundary velocity recirculation) can lead to open-loop instability, further complicating the control
design. The wave equation model studied in this paper can be regarded as an abstract representation
of the above engineering systems. The control objective is to achieve accurate output tracking under
multi-channel disturbances with unknown frequencies and structural instability induced by the
nonlocal term. This problem has clear engineering relevance, including wave compensation for
offshore structures, trajectory tracking of robotic arm endpoints, and pipeline vibration suppression.
Therefore, the study of adaptive control strategies for such systems holds significant theoretical and
practical value.

The main contributions of this paper are summarized as follows: (i) Unlike the conservative plant
studied in [22], the system in this work contains a nonlocal term γyt(0, t) that induces open-loop
instability. This structural difference is critical: the coordinate transformation employed in [22],
designed to decouple the system into an exponentially stable PDE subsystem, is not directly
applicable to our unstable plant. Therefore, our control design necessarily follows a sequential
procedure: We first stabilize the inherent instability induced by the nonlocal term, and then
incorporate adaptive regulation to reject unknown multi-channel disturbances. This approach
successfully extends the adaptive internal model framework to a class of non-conservative, unstable
wave equations. (ii) A key difference concerns what is assumed about the exosystem’s dimension.
Authors in [24] require the exact number of distinct frequencies (four) to be known a priori, enabling
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a fixed-order internal model design. Our work only requires an upper bound N on this number,
treating the exosystem’s true order (and internal structure) as unknown. This less restrictive
assumption, which is crucial when dealing with disturbances whose harmonic composition may
change with operating conditions or system modifications, demands an adaptive scheme capable of
online order identification, not merely parameter estimation, thereby addressing the practical
limitation of fixed-order designs in evolving environments.

The following provides an overview of the paper’s organization. Section 2 presents the problem
statement of a 1-D wave equation with a nonlocal term and introduces the preliminary mathematical
framework, establishing the groundwork for further analysis. Section 3 simplifies the studied system
and designs a feedforward plus state-feedback controller for it. Section 4 recovers the system states and
develops an error-based feedback regulator. Section 5 establishes the well-posedness and stability of
the closed-loop system as well as the exponential convergence of the tracking error. Section 6 provides
numerical simulations to validate the proposed methodology. The main findings are summarized in
Section 7.

2. Problem statement

This paper focuses on a 1-D wave equation with a nonlocal term modeled by

ytt(s, t) = yss(s, t) + γyt(0, t) + F (s)ρ1(t), s ∈ (0, 1), t > 0,

ys(0, t) = ρ2(t), t ≥ 0,

ys(1, t) = U(t) + ρ3(t), t ≥ 0,

y(s, 0) = y0(s), yt(s, 0) = y1(s), s ∈ (0, 1),

Yout(t) = y(0, t), t ≥ 0,

(2.1)

in this formulation, γ > 0, U(t) denotes the control input, Yout(t) serves as the target output for
regulation, and F (s) corresponds to an uncertain function, which is assumed to belong to L2(0, 1).
The signals ρk(t), k = 1, 2, 3 denote disturbances from the following exosystem: α̇(t) = Gα(t), α(0) = α0 ∈ R

n,

ρk(t) = Dkα(t), k = 1, 2, 3,
(2.2)

where G ∈ Rn×n, Dk ∈ R
1×n (k = 1, 2, 3), and α0 are all unknown. Let

r(t) = D4α(t)

as reference signal, in which D4 is likewise unknown. The tracking error is

E(t) = Yout(t) − r(t).

This work develops a feedback control scheme derived from the tracking error to ensure

lim
t→∞
|E(t)| = lim

t→∞
|Yout(t) − r(t)| = 0. (2.3)
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First, the Laplace transformation is applied to the disturbance-free version of (2.1). Defining
ŷ(s, ϵ), Û(ϵ), and Ŷ(ϵ) as the Laplace transforms of y(s, t),U(t), and Yout(t), it leads to

ϵ2ŷ(s, ϵ) = ŷss(s, ϵ) + γϵŷ(0, ϵ),

ŷs(0, ϵ) = 0,

ŷs(1, ϵ) = û(ϵ),

Ŷ(ϵ) = ŷ(0, ϵ).

(2.4)

Consequently, the input-output dynamic is characterized by

H(ϵ) =
1

(ϵ − γ) sinh(ϵ)
, (2.5)

which has no zeros. The following assumption is now postulated.

Assumption 2.1. The spectrum of G is

σ(G) = {0,±lρk, 1 ≤ k ≤ p}, n = 2p + 1,

where {ρk}
p
k=1 are unknown positive parameters that are different from each other. Furthermore, we

assume that G is diagonalizable over C, i.e., there exists a basis of Cn consisting of eigenvectors of G.
The unknown integer p is assumed to have a known upper bound N.

Hence, the exosystem (2.2) has sinusoidal signals with less than N unknown frequencies, which are
specified by the eigenvalues of G. The exogenous disturbances and reference trajectory are explicitly
characterized as 

ρl(t) =
N∑

k=1

[ckl cos ρkt + okl sin ρkt] + hl, l = 1, 2, 3,

r(t) =
N∑

k=1

[ck4 cos ρkt + ok4 sin ρkt] + h4,

with the parameters {ρk} , {ckl} ,{okl}, and hl being unknown.
This assumption is motivated by several practical considerations. First, the purely imaginary

spectrum of G corresponds to harmonic and constant signals, which accurately model many
real-world disturbances such as mechanical vibrations, electrical harmonics, and periodic reference
trajectories. Second, the shared exosystem state α(t) captures the common scenario where
disturbances at different locations contain correlated frequency components, as often observed in
multi-sensor systems or structurally coupled environments. Third, requiring only an upper bound N
on the number of frequencies reflects realistic situations where the exact harmonic composition may
be unknown or time-varying due to operating condition changes. The diagonalizability condition
ensures analytical tractability while covering most practical harmonic systems. The main limitation of
this assumption is its restriction to harmonic-type signals; it does not encompass non-periodic
disturbances or rapidly time-varying frequency content. This limitation also points to potential
research directions for extending the framework to broader signal classes in future work.
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Define the Hilbert space
H = H1(0, 1) × L2(0, 1),

with the inner product defined for all (ζ1, η1), (ζ2, η2) ∈ H by

⟨(ζ1, η1), (ζ2, η2)⟩H =
∫ 1

0
[ζ′1(s)ζ′2(s) + η1(s)η2(s)]ds + ℏ2ζ1(0)ζ2(0),

where ℏ2 > 0.

3. Feedforward plus state feedback regulator design

The control design follows a sequential procedure to address the coupled challenges of open-loop
instability and unknown disturbances. First, the destabilizing nonlocal term is removed through a
transformation that constructs an auxiliary system. Second, the coupled PDE-ODE (ordinary
differential equation) dynamics are decoupled via a coordinate change, which concentrates all
exogenous effects into the tracking error. Finally, a composite controller comprising feedforward
compensation and stabilizing state feedback is synthesized.

The difficulties arising from the nonlocal term are addressed by the transformation

z(s, t) = y(s, t) − m(s, t), (3.1)

where m(s, t) is governed by  mt(s, t) = −ms(s, t) + γ

ℏ1
m(0, t),

m(0, t) = ℏ1E(t),m(s, 0) = m0(s).
(3.2)

Here, m0(s) is an arbitrary initial condition, and the parameter ℏ1 lies in the interval (0, 1) with ℏ1 ,
1
2 .

Thus, (2.1) becomes

ztt(s, t) = zss(s, t) + γṙ(t) + F (s)ρ1(t),

zs(0, t) =
ℏ1

1 − ℏ1
zt(0, t) −

γ

1 − ℏ1
z(0, t) −

ℏ1

1 − ℏ1
ṙ(t) +

γ

1 − ℏ1
r(t) + ρ2(t),

zs(1, t) = U(t) + ρ3(t) − ms(1, t),

zt(s, 0) = y1(s) + m′0(s) −
γ

ℏ1
m0(0).

(3.3)

This transformation isolates the nonlocal coupling γyt(0, t) into the auxiliary variable m(s, t).
Consequently, the z-subsystem (3.3) represents a wave equation freed from the internal velocity
feedback, though still subject to distributed and boundary disturbances. This step prepares the system
for the subsequent regulation design. Next, a feedback regulator is designed to regulate the tracking
error. This requires decoupling the coupled systems (2.1) and (2.2) via coordinate transformation

ξ(s, t) = z(s, t) + κ(s)α(t), (3.4)
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where κ: [0, 1]→ R1×(2p+1) satisfies

κ′′(s) = κ(s)G2 + D1F (s) + γD4G,

κ′(0) = κ(0)(ℏ2 + ℏ3G +
Gℏ1 − γ

1 − ℏ1
) +
ℏ1G

1 − ℏ1
D4

+ ℏ3D4G −
γ

1 − ℏ1
D4 + ℏ2D4 − D2,

κ′(1) = −D3,

(3.5)

with
ℏ2 >

γ

1 − ℏ1
> 0, ℏ3 > 0.

Lemma 3.1. The boundary value problem (3.5) admits a unique solution κ⊤ ∈ H2((0, 1);R2p+1).

Proof. Let κ1(·) satisfy the boundary value problem
κ′′1 (s) = 0,

κ′1(0) = κ1(0)(ℏ2 + ℏ3G +
Gℏ1 − γ

1 − ℏ1
) +
ℏ1G

1 − ℏ1
D4 + ℏ3D4G −

γ

1 − ℏ1
D4 + ℏ2D4 − D2,

κ′1(1) = −D3.

(3.6)

This equation admits a unique solution κ1 ∈ C∞([0, 1];R2p+1). Consider the following additional
boundary value problem: 

q′′(s) = q(s)G2 + κ1(s)G2 + D1F (s) + γD4G,

q′(0) = q(0)(ℏ2 + ℏ3G +
Gℏ1 − γ

1 − ℏ1
),

q′(1) = 0.

(3.7)

Let {ψk}
2p+1
k=1 be eigenvectors of G corresponding to the eigenvalues {λk}

2p+1
k=1 , respectively. Right-

multiplying both sides of (3.7) by ψk, we obtain
q′′k (s) = qk(s)λ2

k + Fk(s),

q′k(0) = qk(0)(ℏ2 + ℏ3λk +
ℏ1λk − γ

1 − ℏ1
),

q′k(1) = 0,

(3.8)

where
qk(s) = q(s)ψk

and
Fk(s) = (κ1(s)G2 + D1F (s) + γD4G)ψk.

Since κ1(·) is smooth, F (·) ∈ L2(0, 1), and D1,D4,G are constant matrices, it follows that the source
term Fk(·) belongs to L2(0, 1) for each k.

Now, we analyze the regularity for each mode.
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For λk , 0, the solution of (3.8) is given by

qk(s) =
C1eλk s + e−λk s

2λk(C1eλk + e−λk)

∫ 1

0
(eλk(1−ϵ) + e−λk(1−ϵ))Fk(ϵ)dϵ −

1
2λk

∫ 1

0
(eλk(s−ϵ) + e−λk(s−ϵ))Fk(ϵ)dϵ

with

C1 =
λk + ℏ2 + ℏ3λk +

ℏ1λk−γ

1−ℏ1

λk − ℏ2 − ℏ3λk −
ℏ1λk−γ

1−ℏ1

.

For the eigenvalue λk = 0, the system (3.8) reduces to
q′′k (s) = Fk(s),
q′k(0) = qk(0)(ℏ2 −

γ

1−ℏ1
),

q′k(1) = 0,

which also admits a solution in H2(0, 1).
In both cases, since the source term Fk(·) ∈ L2(0, 1) and the boundary conditions are homogeneous,

each solution qk belongs to H2(0, 1).
Therefore, the vector-valued function

q(x) = (q1(x), . . . , q2p+1(x))[ψ1, . . . , ψ2p+1]−1

is in H2((0, 1);R2p+1). Consequently,

κ(s) = κ1(s) + q(s)

is the unique solution of (3.5) and belongs to H2((0, 1);R2p+1). □

By (3.4), the extended system (ξ(·, ·), α(·)) admits the following representation:

ξtt(s, t) = ξss(s, t),

ξs(0, t) =
ℏ1

1 − ℏ1
ξt(0, t) −

γ

1 − ℏ1
ξ(0, t) + ℏ2(ξ(0, t) + m(0, t) − E(t))

+ ℏ3(ξt(0, t) + mt(0, t) − Ė(t)),

ξs(1, t) = U(t) − ms(1, t),

E(t) = ξ(0, t) + m(0, t) − (κ(0) + D4)α(t),

Ė(t) = ξt(0, t) + mt(0, t) − (κ(0) + D4)Gα(t),

α̇(t) = Gα(t).

(3.9)

As stated in the text, the transformed system (3.9) exhibits two key features that justify the preceding
coordinate transformation from z to ξ. First, it achieves a decoupled structure with an independent PDE
subsystem and an independent ODE subsystem, which significantly reduces the design complexity;
second, it ensures that all exogenous disturbances appear exclusively in the tracking error dynamics,
concentrating the challenge of output regulation into the estimation and rejection of the signal (κ(0) +
D4)α(t).
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By Assumption 2.1, we know that (κ(0)+D4)α(t) represents a sinusoidal signal containing no more
than N distinct frequency components. For generality, it may be formulated as

(κ(0) + D4)α(t) =
j∑

k=1

(Ck cos ρkt + Ok sin ρkt) + H, j ≤ p ≤ N, (3.10)

Ck,Ok,H represent unknown parameters, C2
k + O2

k > 0, k = 1, · · · , j.

Lemma 3.2. There exists ℓ0 ∈ R
2N+1, such that (κ(0) + D4)α(t) admits the realization

ℓ̇(t) = 𭟋c(ϑ)ℓ(t) = Icℓ(t) −
N∑

k=1

ϑkE2kℓ1(t), ℓ(0) = ℓ0,

(κ(0) + D4)α(t) = ℓ1(t),

(3.11)

where
ℓ(t) = (ℓ1(t), ℓ2(t), · · · , ℓ2N+1(t))⊤ ∈ R2N+1,

and E2k is the column vector extracted from the (2N + 1)-dimensional identity matrix, specifically at
the 2k-th position. Here, Ic and 𭟋c(ϑ) are defined as

Ic =


0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
0 0 · · · 0

 ,

𭟋c(ϑ) =



0 1 0 · · · 0 0
−ϑ1 0 1 · · · 0 0

0 0 0 · · · 0 0
−ϑ2 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
−ϑN 0 0 · · · 0 0


with the parameter vector

ϑ = [ϑ1, ϑ2, . . . , ϑN]⊤ = [ϑ1, . . . , ϑ j, 0, . . . , 0]⊤ ∈ RN .

The nonzero coefficients ϑ1, . . . , ϑ j are determined by the polynomial identity

κ2 j + ϑ1κ
2( j−1) + · · · + ϑ j ≜

j∏
k=1

(κ2 + ρ2
k).

Proof. Clearly, the term (κ(0) + D4)α(t) is expressible asϕ̇(t) = Gϕϕ(t), ϕ(t) ∈ R(2 j+1),

(κ(0) + D4)α(t) = νϕϕ(t),
(3.12)
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with 

Gϕ = diag
{
G(ρ1),G(ρ2), · · · ,G(ρj), 01×1

}
,

G(ρk) =
[

0 ρk

−ρk 0

]
,

νϕ = [1, 0, · · · , 1, 0, 1] ,

ϕ(0) = (C1,O1, · · · ,C j,O j,H)⊤.

(3.13)

The observability of (Gϕ, νϕ) can be directly established. Therefore, we may introduce the following
coordinate transformation

ϕE(t) = B1ϕ(t), ϕE(t) = (ϕE
1 (t), · · · , ϕE

2 j+1(t))⊤, (3.14)

with B1 being a nonsingular (2s + 1)-dimensional square matrix. This observability-preserving
transformation brings (Gϕ, νϕ) into the canonical formϕ̇E(t) = GE(ϑ)ϕE(t),

(κ(0) + D4)α(t) = ϕE
1 (t),

(3.15)

where

GE(ϑ) =



0 1 0 · · · 0 0
−ϑ1 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0
−ϑ j 0 0 · · · 0 1

0 0 0 0 0 0


.

Since matrices Gϕ and GE share identical characteristic polynomials, the parameters ϑ1, . . . , ϑ j satisfy

κ2 j+1 + ϑ1κ
2 j−1 + · · · + ϑ j−1κ

3 + ϑ jκ ≜

j∏
k=1

(κ2 + ρ2
k),

by defining

B2 =
[
I2 j+1 0(2 j+1)×(2N−2 j)

]⊤
and

ℓ(t) = B2ϕ
E(t),

so ℓ(·) satisfies (3.11), and
ℓ(0) = B2B1ϕ(0).

This completes the proof. □

It follows that system (3.9) can be reformulated as
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

ξtt(s, t) = ξss(s, t),

ξs(0, t) =
ℏ1

1 − ℏ1
ξt(0, t) −

γ

1 − ℏ1
ξ(0, t) + ℏ2(ξ(0, t) + m(0, t) − E(t))

+ℏ3(ξt(0, t) + mt(0, t) − Ė(t)),

ξs(1, t) = U(t) − ms(1, t),

ℓ̇(t) = 𭟋c(ϑ)ℓ(t),

E(t) = ξ(0, t) + m(0, t) − Acℓ(t),

Ė(t) = ξt(0, t) + mt(0, t) − Ac𭟋c(ϑ)ℓ(t),

(3.16)

in which
Ac = [1, 0, · · · , 0] ∈ R1×(2N+1).

Then, we develop a feedforward plus state feedback control scheme for (3.16).
Let

f0(s, ϑ) = f0(s) ∈ R1×(2N+1)

satisfy the initial-value problem
f ′′0 (s) = f0(s)𭟋c(ϑ),

f ′0(0) = f0(0)
(
ℏ1

1 − ℏ1
𭟋c(ϑ) −

γ

1 − ℏ1

)
+ ℏ2Ac + ℏ3Ac𭟋c(ϑ),

f0(0) = Ac.

(3.17)

Lemma 3.3. Problem (3.17) possesses a unique solution with continuous differentiability in both the
state s and the parameter ϑ.

Proof. There exists a unique solution to (3.17)

(
f0(s, ϑ), f ′0(s, ϑ)

)
=

(
f0(0), f ′0(0)

)
e

0 𭟋c(ϑ)
I 0

s

.

Hence the solution to (3.17) is continuously differentiable. □

Let
Ω(s, t) = ξ(s, t) − f0(s)ℓ(t), (3.18)

thus, 

Ωtt(s, t) = Ωss(s, t),

Ωs(0, t) =
ℏ1

1 − ℏ1
Ωt(0, t) −

γ

1 − ℏ1
Ω(0, t),

Ωs(1, t) = U(t) − ms(1, t) − f ′0(1)ℓ(t),

ℓ̇(t) = 𭟋c(ϑ)ℓ(t),

E(t) = Ω(0, t) + m(0, t).

(3.19)
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At this stage, the output regulation objective of driving ξ(·, t) → f0(·)ℓ(t) becomes the stabilization of
Ω(·, t) → 0 in H , as t → ∞. Therefore, under the assumption that f ′0(1)ℓ(t) is known, the following
feedforward observer can be designed

Ω̂tt(s, t) = Ω̂ss(s, t),

Ω̂s(0, t) =
ℏ1

1 − ℏ1
Ω̂t(0, t) −

γ

1 − ℏ1
Ω(0, t) + ℏ4(Ω̂(0, t) − Ω(0, t)),

Ω̂s(1, t) = U(t) − ms(1, t) − f ′0(1)ℓ(t),

Ω̂(s, 0) = Ω̂0(s), Ω̂t(s, 0) = Ω̂1(s),

(3.20)

where ℏ4 > 0, and (Ω̂0(s), Ω̂1(s)) ∈ H is any given initial value.
Let

Ω̃(s, t) = Ω̂(s, t) − Ω(s, t), (3.21)

therefore, 
Ω̃tt(s, t) = Ω̃ss(s, t),

Ω̃s(0, t) =
ℏ1

1 − ℏ1
Ω̃t(0, t) + ℏ4Ω̃(0, t),

Ω̃s(1, t) = 0.

(3.22)

Lemma 2.1 of [25] establishes the exponential stability of (3.22). Consequently, to stabilize (3.19), it
suffices to design a controller that stabilizes (3.20). Toward this end, by introducing the variable Ω̃,
system (3.20) becomes

Ω̂tt(s, t) = Ω̂ss(s, t),

Ω̂s(0, t) =
ℏ1

1 − ℏ1
Ω̂t(0, t) −

γ

1 − ℏ1
Ω̂(0, t) + (ℏ4 +

γ

1 − ℏ1
)Ω̃(0, t),

Ω̂s(1, t) = U(t) − ms(1, t) − f ′0(1)ℓ(t).

(3.23)

The observer system (3.23) contains the term − γ

1−ℏ1
Ω̂(0, t) at the left boundary. Since γ > 0, this term

introduces a destabilizing effect that complicates direct boundary control synthesis. To convert the
second-order wave dynamics into a form amenable to cascade stabilization, we decompose the system
into its characteristic components via the Riemann transformation. This transformation is natural for
the wave operator ∂tt −∂ss and serves three key purposes. First, it reduces the second-order PDE to two
first-order transport equations. Besides, it decouples the boundary dynamics, isolating the destabilizing
term and it yields a cascade structure suitable for backstepping design. Therefore, we introduce the
Riemann variables 

I(s, t) = Ω̂t(s, t) + Ω̂s(s, t),

K(s, t) =
1

1 − 2ℏ1

[
Ω̂t(s, t) − Ω̂s(s, t)

]
,

(3.24)

and its inverse transformation is
Ω̂t(s, t) =

1
2
[
I(s, t) + (1 − 2ℏ1)K(s, t)

]
,

Ω̂s(s, t) =
1
2
[
I(s, t) − (1 − 2ℏ1)K(s, t)

]
.

(3.25)
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Through the newly introduced transformation (3.24), system (3.23) takes the form

It(s, t) = Is(s, t), Kt(s, t) = −Ks(s, t),

K(0, t) = I(0, t) +
2γ

1 − 2ℏ1
Ω̂(0, t) −

2(ℏ4 + γ − ℏ1ℏ4)
1 − 2ℏ1

Ω̃(0, t),

I(1, t) = Ω̂t(1, t) + U(t) − ms(1, t) − f ′0(1)ℓ(t),

Ω̂t(0, t) = (1 − ℏ1)I(0, t) + γΩ̂(0, t) − (ℏ4 + γ − ℏ1ℏ4)Ω̃(0, t).

(3.26)

Define
U1(t) = Ω̂t(1, t) + U(t) − ms(1, t) − f ′0(1)ℓ(t).

Clearly, Eq (3.26) consists of two cascaded transport equations coupled with an ODE. Since the
(I, Ω̂(0, t))-subsystem is decoupled from the K-subsystem, we may first consider the
(I, Ω̂(0, t))-subsystem dynamics

Ω̂t(0, t) = γΩ̂(0, t) + (1 − ℏ1)I(0, t) − (ℏ4 + γ − ℏ1ℏ4)Ω̃(0, t),

It(s, t) = Is(s, t),

I(1, t) = U1(t).

(3.27)

The subsystem (3.27) still contains the destabilizing term γΩ̂(0, t). To achieve exponential
stabilization, we employ an integral backstepping transformation that maps (3.27) into a target system
whose stability is straightforward to establish. The transformation is designed to absorb the
destabilizing term and introduce additional damping through a tunable parameter ℏ5. Then, we
introduce an invertible backstepping transformation on R × L2(0, 1)

Ω̂(0, t) = Ω̂(0, t),

φ(s, t) = I(s, t) + 2ℏ5

∫ s

0
e2γ(s−ϵ)I(ϵ, t)dϵ +

ℏ5

1 − ℏ1
e2γsΩ̂(0, t),

(3.28)

and its inverse transformation is
Ω̂(0, t) = Ω̂(0, t),

I(s, t) = φ(s, t) − 2ℏ5

∫ s

0
e−2(ℏ5−γ)(s−ϵ)I(ϵ, t)dϵ +

ℏ5

1 − ℏ1
e−2(ℏ5−γ)sΩ̂(0, t),

(3.29)

where ℏ5 > |γ| is a tuning parameter. Under the transformations (3.28) and (3.29), (3.27) is equivalent
to 

φt(s, t) = φs(s, t),

φ(1, t) = U1(t) + 2ℏ5

∫ 1

0
e2γ(1−ϵ)I(ϵ, t)dϵ +

ℏ5

1 − ℏ1
e2γΩ̂(0, t),

Ω̂t(0, t) = (γ + ℏ5)Ω̂(0, t) + (1 − ℏ1)φ(0, t) − (ℏ4 + γ − ℏ1ℏ4)Ω̃(0, t),

(3.30)
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therefore, the controller

U1(t) = −2ℏ5

∫ 1

0
e2γ(1−ϵ)I(ϵ, t)dϵ − ℏ5

1−ℏ1
e2γΩ̂(0, t). (3.31)

Under the controller (3.31), (3.30) becomes
φt(s, t) = φs(s, t),

φ(1, t) = 0,

Ω̂t(0, t) = (γ + ℏ5)Ω̂(0, t) + (1 − ℏ1)φ(0, t) − (ℏ4 + γ − ℏ1ℏ4)Ω̃(0, t).

(3.32)

Besides, Eq (3.26) becomes

It(s, t) = Is(s, t), Kt(s, t) = −Ks(s, t),

K(0, t) = I(0, t) +
2γ

1 − 2ℏ1
Ω̂(0, t) −

2(ℏ4 + γ − ℏ1ℏ4)
1 − 2ℏ1

Ω̃(0, t),

I(1, t) = −2ℏ5

∫ 1

0
e2γ(1−ϵ)I(ϵ, t)dϵ −

ℏ5

1 − ℏ1
e2γΩ̂(0, t),

Ω̂t(0, t) = (1 − ℏ1)I(0, t) + γΩ̂(0, t) − (ℏ4 + γ − ℏ1ℏ4)Ω̃(0, t).

(3.33)

Lemma 2.2 of [25] guarantees that system (3.33) is well-posed in
[
L2(0, 1)

]2
× R, possessing a unique

solution for arbitrary initial data
(
I(·, 0),K(·, 0), Ω̂(0, 0)

)
. Furthermore, when t ≥ 0, one can find positive

constants M1 and δ satisfying∥∥∥I(·, t),K(·, t), Ω̂(0, t)
∥∥∥[L2(0,1)]2

×R
≤ M1e−δt

∥∥∥I(·, 0),K(·, 0), Ω̂(0, 0), Ω̃(·, 0), Ω̃t(·, 0)
∥∥∥[L2(0,1)]2

×R×H
.

Because
U1(t) = Ω̂t(1, t) + U(t) − ms(1, t) − f ′0(1)ℓ(t),

consequently,

U(t) = −Ω̂t(1, t) + ms(1, t) + f ′0(1)ℓ(t) −
ℏ5

1 − ℏ1
e2γΩ̂(0, t) − 2ℏ5

∫ 1

0
e2γ(1−ϵ)(Ω̂t(ϵ, t) + Ω̂s(ϵ, t))dϵ.

Thus, the closed-loop system comprising (3.20) and (3.22) is

Ω̂tt(s, t) = Ω̂ss(s, t),

Ω̂s(0, t) =
ℏ1

1 − ℏ1
Ω̂t(0, t) −

γ

1 − ℏ1
Ω(0, t) + (ℏ4 +

γ

1 − ℏ1
)Ω̃(0, t),

Ω̂s(1, t) = −Ω̂t(1, t) −
ℏ5

1 − ℏ1
e2γΩ̂(0, t) − 2ℏ5

∫ 1

0
e2γ(1−ϵ)(Ω̂t(ϵ, t) + Ω̂s(ϵ, t))dϵ,

Ω̃tt(s, t) = Ω̃ss(s, t),

Ω̃s(0, t) =
ℏ1

1 − ℏ1
Ω̃t(0, t) + ℏ4Ω̃(0, t),

Ω̃s(1, t) = 0.

(3.34)
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Lemma 3.4. Under the standard inner product of the H2 space, system (3.34) possesses a unique
solution (Ω̂, Ω̂t, Ω̃, Ω̃t) ∈ C(0,∞;H2) for arbitrary initial data (Ω̂(·, 0), Ω̂t(·, 0), Ω̃(·, 0), Ω̃t(·, 0)).
Furthermore, as t ≥ 0, this solution exhibits the property∥∥∥Ω̂(·, t), Ω̂t(·, t), Ω̃(·, t), Ω̃t(·, t)

∥∥∥
H2 ≤ M2e−δt

∥∥∥Ω̂(·, 0), Ω̂t(·, 0), Ω̃(·, 0), Ω̃t(·, 0)
∥∥∥
H2 ,

where M2, δ are positive constants.

This implies that

Ωtt(s, t) = Ωss(s, t),

Ωs(0, t) =
ℏ1

1 − ℏ1
Ωt(0, t) −

γ

1 − ℏ1
Ω(0, t),

Ωs(1, t) = −Ω̂t(1, t) −
ℏ5

1 − ℏ1
e2γΩ̂(0, t) − 2ℏ5

∫ 1

0
e2γ(1−ϵ)(Ω̂t(ϵ, t) + Ω̂s(ϵ, t))dϵ,

(3.35)

is exponentially stable in the spaceH .

4. Tracking error-based controller design

To reconstruct the state (ξ(·, t), ℓ(t)), this section designs an observer for system (3.16) and utilizes
the measurement of E(t) and Ė(t) to estimate ϑ online. Since the initial conditions of system (3.16)
may be unknown, the observer for the ξ- subsystem is designed by directly replicating its dynamics

ξ̂tt(s, t) = ξ̂ss(s, t),

ξ̂s(0, t) =
ℏ1

1 − ℏ1
ξ̂t(0, t) −

γ

1 − ℏ1
ξ̂(0, t) + ℏ2(ξ̂(0, t) + m(0, t) − E(t))

+ ℏ3(ξ̂t(0, t) + mt(0, t) − Ė(t)),

ξ̂s(1, t) = U(t) − ms(1, t),

(ξ̂(·, 0), ξ̂t(·, 0)) = (ξ̂0(·), ξ̂1(·)) ∈ H .

(4.1)

Set the observer error as
ξ̃(s, t) = ξ(s, t) − ξ̂(s, t),

then 
ξ̃tt(s, t) = ξ̃ss(s, t),

ξ̃s(0, t) = (ℏ2 −
γ

1 − ℏ1
)ξ̃(0, t) + (ℏ3 +

ℏ1

1 − ℏ1
)ξ̃t(0, t),

ξ̃s(1, t) = 0.

(4.2)

Similar to (3.22), the system (4.2) is exponentially stable on the spaceH . Additionally,

ξ̃(0, ·), ξ̃(1, ·) ∈ C([0,∞);R)
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with both |ξ̃(0, t)| and |ξ̃(1, t)| converging exponentially to zero when t → ∞. Moreover, for some ς > 0,∫ ∞

0
eςt

∣∣∣ξ̃t(1, t)
∣∣∣2 dt < ∞.

Define
yℓ(t) = −E(t) + m(0, t) + ξ̂(0, t) = Acℓ(t) − ξ̃(0, t), (4.3)

which is fully measurable. Now consider the system
ℓ̇(t) = 𭟋c(ϑ)ℓ(t) = Icℓ(t) −

N∑
k=1

ϑkE2kℓ1(t),

yℓ(t) = Acℓ(t) − ξ̃(0, t).

(4.4)

Here, ℓ(t) ∈ R2N+1, Ic, E2k, and 𭟋c(ϑ) are as defined in Lemma 3.2, and Ac is given in (3.16).
Motivated by [26], two cascaded filters are implemented for frequency detection in the exosystem

ζ̇k(t) = H(A)ζk(t) − PE2kyℓ(t), ζk(t) ∈ R2N ,

ϱk(t) = [1, 0, · · · , 0]ζk(t), 1 ≤ k ≤ N,

Θ̇(t) = −εbΘ(t) + εcϱ(t)ϱ(t)⊤, Θ(t) ∈ RN×N ,

Θk(t) = SΘ(t)S⊤,

(4.5)

in which

P = [0 I2N], S = [Ik, 0k×(N−k)], 1 ≤ k ≤ N, ϱ(t) = [ϱ1(t), ϱ2(t), · · · , ϱN(t)]⊤ ∈ RN , εb, εc > 0,

and

H(A) =


−b1 1 · · · 0
...

...
...

−b2N−1 0 · · · 1
−b2N 0 · · · 0

 ,
and the vector

b = [b1, · · · , b2N]⊤

is chosen to make sure that H(A) is Hurwitz. By the transformation

[
J1(t)
Q(t)

]
= ℓ(t) −


0

N∑
k=1

ζk(t)ϑk + bAcℓ(t)

 , (4.6)

in which
Q(t) ∈ R2N , J1(t) = Acℓ(t) ∈ R,

one obtains  J̇1(t) = Q1(t) + b1J1(t) + ϑ⊤ϱ(t),

Q̇(t) = H(A)Q(t) + µJ1(t) − ξ̃(0, t)Dϑ,
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whereD and µ are 2N × N and 2N × 1 constant matrices, respectively. Specifically,

µ = [b2 − b2
1, · · · , b2N − b2N−1b1,−b2Nb1]⊤.

Building upon the framework of [27], when 1 ≤ k ≤ N, the following adaptive observer for
system (4.4), utilizing the output measurement yℓ(t), can be proposed

˙̂
J1(t) = Q̂1(t) + b1yℓ(t) +

N∑
k=1

ϱk(t)ϑ̂k(t) + χ(yℓ(t) − Ĵ1(t)),

˙̂
Q(t) = H(A)Q̂(t) + µyℓ, Q̂(t) ∈ R2N ,

ℓ̂(t) =
[
Ĵ1(t)
Q̂(t)

]
+


0

N∑
k=1

ζk(t)ϑ̂k(t) + bĴ1(t)

 ,
(4.7)

with the parameter vector evolving according to
˙̂ϑk(t) = gϱk(t)(yℓ(t) − Ĵ1(t)), e−|det(Θk)|

1
k t ≤ 1

2 ,

˙̂ϑk(t) = gϱk(t)(yℓ(t) − Ĵ1(t)) − aϑ̂k(t), else,
(4.8)

where a, g, χ are arbitrary positive numbers. As previously mentioned,

ϑ = [ϑ1, · · · , ϑN]⊤ = [ϑ1, · · · , ϑ j, 0, · · · , 0]⊤ ∈ RN ,

where ϑ1, · · · , ϑ j represent the coefficients of the polynomial:

κ2 j+1 + ϑ1κ
2 j−1 + · · · + ϑ j−1κ

3 + ϑ jκ ≜

j∏
k=1

(κ2 + ρ2
k).

Lemma 4.1. For arbitrary initial conditions

(Ĵ1(0), Q̂(0), ϑ̂(0), Θ̂(0), {ζk(0)}Nk=1) ∈ R × R2N × RN × U × R2N×N

with
U = {T ∈ RN×N : T ≻ 0}

denoting the set of positive definite matrices, it holds that

lim
t→∞

e−|det(Θk)|
1
k t =

0, k = 1, · · · , j,

1, k = j + 1, · · · ,N,
(4.9)

with exponential rate, and

lim
t→∞
∥ϑ̂(t) − ϑ(t)∥ = 0, lim

t→∞
∥ℓ̂(t) − ℓ(t)∥ = 0, (4.10)

also exponentially.
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Proof. Let
ϱk(t) = ϱkp(t) + ϱke(t),

where ϱkp(·) satisfies  ζ̇kp(t) = H(A)ζkp(t) − [0 I2N]E2kℓ1(t),

ϱkp(t) = [1, 0, · · · , 0]ζkp(t), k = 1, 2, · · · ,N,
(4.11)

meanwhile, ϱke(·) is generated by
ζ̇ke(t) = H(A)ζke(t) − [0 I2N]E2kξ̃(0, t),

ϱke(0) = ϱk(0) − ϱkp(0),

ϱke(t) = [1, 0, · · · , 0]ζke(t), k = 1, 2, · · · ,N.

(4.12)

Since ℓ1(·) is bounded with respect to time and H(A) is Hurwitz, ϱkp(·) is also bounded. As shown
in [28, Lemma 5.3.2], given that ℓ1(·) consists of j sinusoidal frequencies, the vector
[ϱ1p(t), ϱ2p(t), · · · , ϱ jp(t)]⊤ exhibits persistent excitation; i.e., there exist constants T, α > 0 such that∫ t+T

t
[ϱ1p(s), · · · , ϱ jp(s)]⊤[ϱ1p(s), · · · , ϱ jp(s)] ds ≥ αI j, for all t ≥ 0.

In contrast, [ϱ1p(t), ϱ2p(t), · · · , ϱkp(t)]⊤ fails to be persistent excitation when k ≥ j + 1. Given the
Hurwitz property of H(A) and when approaches zero,

∣∣∣ξ̃(0, t)∣∣∣ tends to zero, which implies |ϱke(t)| → 0
accordingly. Lemma 4.8.3 in [28] states that [ϱ1(t), · · · , ϱ j(t)]⊤ is persistently exciting. That is, there
exist constants Q,T > 0 satisfying∫ t+T

t
[ϱ1(s), · · · , ϱk(s)]⊤[ϱ1(s), · · · , ϱk(s)]ds ≥ QIk, (4.13)

for every t ≥ 0, 1 ≤ k ≤ j.
From (4.5),

Θk(t) = e−εbtΘk(0) + εc

∫ t

0
e−εb(t−s)[ϱ1(s), · · · , ϱk(s)]⊤[ϱ1(s), · · · , ϱk(s)]ds. (4.14)

Since Θk(0) is positive definite, it’s inspired by [26, Lemma 3.1] that

|det(Θk)|
1
k ≥ ρ > 0

holds for all t ≥ 0, k = 1, · · · , j. Meanwhile, when k = j + 1, · · · ,N, |det(Θk)|
1
k decays exponentially

to zero, as t → ∞. This behavior is captured by the limit

lim
t→∞

e−|det(Θk)|
1
k t =

0, k = 1, · · · , j,

1, k = j + 1, · · · ,N.

Therefore, for a constant Λ > 0, and whenever t ≥ Λ, one obtains ˙̂ϑk(t) = gϱk(t)(yℓ(t) − Ĵ1(t)), 1 ≤ k ≤ j,
˙̂ϑk(t) = gϱk(t)(yℓ(t) − Ĵ1(t)) − aϑ̂k(t), j + 1 ≤ k ≤ N.
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Introduce the estimation errors:

J̃1(t) = J1(t) − Ĵ1(t), Q̃(t) = Q(t) − Q̂(t)

and

ϑ̃(t) = ϑ(t) − ϑ̂(t),

which yields 

˙̃
Q(t) = H(A)Q̃(t) + ξ̃(0, t)(µ −Dϑ),

˙̃J1(t) = −χJ̃1(t) + Q̃1(t) + ϱ(t)⊤ϑ̃(t) + ξ̃(0, t)(b1 + χ),

˙̃ϑk(t) = −gϱk(t)J̃1(t) + gϱk(t)ξ̃(0, t), 1 ≤ k ≤ j,

˙̃ϑk(t) = −gϱk(t)J̃1(t) − aϑ̃k(t) + gϱk(t)ξ̃(0, t), j + 1 ≤ k ≤ N.

(4.15)

Owing to the Hurwitz property of H(A) and the exponential decay of
∣∣∣ξ̃(0, t)∣∣∣ to zero, we drive

∥∥∥Q̃(t)
∥∥∥,

which also exhibits exponential convergence to zero. This isolates the (J̃1, ϑ̃)-subsystem. For stability
analysis, we first consider the nominal system obtained by setting Q̃1(t) ≡ 0 and ξ̃(0, t) ≡ 0 in (4.15)

˙̃J1(t) = −χJ̃1(t) + ϱ(t)⊤ϑ̃(t),

˙̃ϑk(t) = −gϱk(t)J̃1(t), 1 ≤ k ≤ j,

˙̃ϑk(t) = −gϱk(t)J̃1(t) − aϑ̃k(t), j + 1 ≤ k ≤ N.

(4.16)

Defining the Lyapunov function

Ξ(t) =
1
2

(J̃2
1 +

1
g
ϑ̃⊤ϑ̃ + τ(Vϑ̃[ j] − ϱ[ j]J̃1)⊤(Vϑ̃[ j] − ϱ[ j]J̃1)), (4.17)

with τ being a positive real number to be specified,

ϱ[ j] = [ϱ1, ϱ2, · · · , ϱ j]⊤, ϑ̃[ j] = [ϑ̃1, ϑ̃2, · · · , ϑ̃ j]⊤,

whileV(t) is given by 
V̇ = −V + ϱ[ j]ϱ⊤[ j](t), V(0) = e−T QI j,∫ t+T

t
ϱ[ j](ϵ)ϱ⊤[ j](ϵ)dϵ ≥ QI j, ∀t ≥ 0.

(4.18)

Because of the boundedness of ϱ[ j](t), ∥ϱ[ j](t)∥ ≤ ϱM, ∀t ≥ 0, combining (4.18), we have

Qe−2T I ≤ V(t) ≤ ϱ2
MI, ∀t ≥ 0. (4.19)
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From (4.16), ∀t > Λ, the time derivative of Ξ(t) is

Ξ̇(t) = −χJ̃2
1 + ϱ

⊤ϑ̃J1 − ϱ
⊤ϑ̃J1 −

N∑
k= j+1

a
g
ϑ̃2

k + τ(Vϑ̃[ j] − ϱ[ j]J̃1)⊤

(V̇ϑ̃[ j] − gVϱ[ j]J̃1) + τ(Vϑ̃[ j] − ϱ[ j]J̃1)⊤(kϱ[ j]J̃1 − ϱ[ j]ϱ⊤ϑ̃ − ϱ̇[ j]J̃1)

= −χJ̃2
1 −

N∑
k= j+1

a
g
ϑ̃2

k − τ
∥∥∥Vϑ̃[ j] − ϱ[ j]J̃1

∥∥∥2
+ τ(Vϑ̃[ j] − ϱ[ j]J̃1)⊤(k − 1)ϱ[ j]J̃1 − ϱ[ j]

N∑
k= j+1

ϱkϑ̃k − gVϱ[ j]J̃1 − ϱ̇[ j]J̃1

 .
(4.20)

Since ϱk(t), ϱ̇k(t), andV(t) are uniformly bounded, there exists a constant C > 0 such that

∥R(t)∥ ≤ C(∥J̃1∥ + ∥ϑ̃∥)

for all t ≥ Λ. Applying the Cauchy-Schwarz inequality,

(Vϑ̃[ j] − ϱ[ j]J̃1)⊤R(t) ≤ ∥Vϑ̃[ j] − ϱ[ j]J̃1∥ · ∥R(t)∥ ≤ C∥Vϑ̃[ j] − ϱ[ j]J̃1∥(∥J̃1∥ + ∥ϑ̃∥).

Thus,

Ξ̇(t) ≤ −χJ̃2
1 −

N∑
k= j+1

a
g
ϑ̃2

k − τ∥Vϑ̃[ j] − ϱ[ j]J̃1∥
2 + τC∥Vϑ̃[ j] − ϱ[ j]J̃1∥(∥J̃1∥ + ∥ϑ̃∥).

Applying Young’s inequality

ab ≤
ϵ

2
a2 +

1
2ϵ

b2

with
a = ∥Vϑ̃[ j] − ϱ[ j]J̃1∥

and
b = ∥J̃1∥ + ∥ϑ̃∥,

we obtain, for any ϵ > 0:

Ξ̇(t) ≤ −χJ̃2
1 −

N∑
k= j+1

a
g
ϑ̃2

k − τ
(
1 −

ϵC
2

)
∥Vϑ̃[ j] − ϱ[ j]J̃1∥

2 +
τC
2ϵ

(∥J̃1∥ + ∥ϑ̃∥)2.

Since
(∥J̃1∥ + ∥ϑ̃∥)2 ≤ 2(∥J̃1∥

2 + ∥ϑ̃∥2),

we have

Ξ̇(t) ≤ −
(
χ −

τC
ϵ

)
J̃2

1 −

N∑
k= j+1

(
a
g
−
τC
ϵ

)
ϑ̃2

k − τ
(
1 −

ϵC
2

)
∥Vϑ̃[ j] − ϱ[ j]J̃1∥

2. (4.21)
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Now, from the Lyapunov function definition (4.17) and the uniform positive definiteness of V(t)
in (4.19), there exist constants n1, n2 > 0 such that

n1(J̃2
1 + ∥ϑ̃∥

2) ≤ Ξ(t) ≤ n2(J̃2
1 + ∥ϑ̃∥

2 + ∥Vϑ̃[ j] − ϱ[ j]J̃1∥
2).

Choose ϵ = 1/C, then select τ > 0 sufficiently small such that

χ −
τC
ϵ
= χ − τC2 > 0

and
a
g
−
τC
ϵ
=

a
g
− τC2 > 0.

With these choices, (4.21) becomes

Ξ̇(t) ≤ −α1J̃
2
1 − α2∥ϑ̃∥

2 − α3∥Vϑ̃[ j] − ϱ[ j]J̃1∥
2,

for some α1, α2, α3 > 0. Using the upper bound on Ξ(t), we finally obtain

Ξ̇(t) ≤ −αΞ(t), t ≥ Λ, (4.22)

for some α > 0, establishing exponential stability of the nominal system (4.16).
The inequality (4.22) establishes that the origin of the nominal system (4.16) is exponentially stable.

The full error dynamics (4.15) are this exponentially stable system perturbed by the terms Q̃1(t) and
ξ̃(0, t), both of which converge to zero exponentially. By the exponential stability lemma for linear
time-varying systems (see [22, Lemma 1.2]), we conclude that

∥J̃1(t)∥ + ∥ϑ̃(t)∥ ≤ Me−µt, t ≥ 0,

for some M, µ > 0. Since ∥Q̃(t)∥ also decays exponentially, it follows from (4.6) and (4.7) that

ℓ̃(t) = ℓ(t) − ℓ̂(t) =
[
J̃1(t)
Q̃(t)

]
+


0

N∑
k=1

ζk(t)ϑ̃k + bJ̃1(t)

 , (4.23)

It is evident that the boundedness of ζk(t) ensures exponential convergence of ℓ̃(t) to zero.
This completes the proof. □

At this stage,

U(t) = −Ω̂t(1, t) + ms(1, t) + f ′0(1, ϑ̂)ℓ̂(t) −
ℏ5

1 − ℏ1
e2γΩ̂(0, t)

− 2ℏ5

∫ 1

0
e2γ(1−ϵ)(Ω̂t(ϵ, t) + Ω̂s(ϵ, t))dϵ.

(4.24)
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5. Well-posedness and stability of the closed-loop system

The feedback interconnection of system (2.1) with controller (4.24) yields the following formulation

ytt(s, t) = yss(s, t) + γyt(0, t) + F (s)D1α(t),
ys(0, t) = D2α(t),
ys(1, t) = U(t) + D3α(t),
α̇(t) = Gα(t),
E(t) = y(0, t) − D4α(t),

U(t) = −Ω̂t(1, t) + ms(1, t) + f ′0(1, ϑ̂)ℓ̂(t) −
ℏ5

1 − ℏ1
e2γΩ̂(0, t)

− 2ℏ5

∫ 1

0
e2γ(1−ϵ)(Ω̂t(ϵ, t) + Ω̂s(ϵ, t)

)
dϵ,

Ω̂tt(s, t) = Ω̂ss(s, t),

Ω̂s(0, t) =
ℏ1

1 − ℏ1
Ω̂t(0, t) + ℏ4Ω̂(0, t) − (ℏ4 +

γ

1 − ℏ1
)(E(t) − m(0, t)),

Ω̂s(1, t) = U(t) − ms(1, t) − f ′0(1, ϑ̂)ℓ̂(t),
yℓ(t) = −E(t) + m(0, t) + ξ̂(0, t),

ξ̂tt(s, t) = ξ̂ss(s, t),

ξ̂s(0, t) =
ℏ1

1 − ℏ1
ξ̂t(0, t) −

γ

1 − ℏ1
ξ̂(0, t) + ℏ2(ξ̂(0, t) + m(0, t) − E(t))

+ ℏ3(ξ̂t(0, t) + mt(0, t) − Ė(t)),
ξ̂s(1, t) = U(t) − ms(1, t),

mt(s, t) = −ms(s, t) +
γ

ℏ1
m(0, t),

m(0, t) = ℏ1E(t),m(s, 0) = m0(s),

˙̂
J1(t) = Q̂1(t) + b1yℓ(t) +

N∑
k=1

ϱk(t)ϑ̂k(t) + χ(yℓ(t) − Ĵ1(t)),

˙̂
Q(t) = H(A)Q̂(t) + µyℓ,

ℓ̂(t) =
[
Ĵ1(t)
Q̂(t)

]
+


0

N∑
k=1

ζk(t)ϑ̂k(t) + bĴ1(t)

 ,

(5.1)

with the filters (4.5) and the parameter update law
˙̂ϑk(t) = gϱk(t)(yℓ(t) − Ĵ1(t)), e−|det(Θk)|

1
k t ≤ 1

2 ,

˙̂ϑk(t) = gϱk(t)(yℓ(t) − Ĵ1(t)) − aϑ̂k(t), else,
(5.2)

where 1 ≤ k ≤ N. Then, consider (5.1) in

X = H2(0, 1) × R × R2N × RN × U × R2N×N .
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Theorem 5.1. The closed-loop system (5.1) is well-posed for all admissible uncertainties, including
unknown coefficients D1,D2,D3,D4,G, uncertain function F (·), and initial states (y(·, 0), yt(·, 0),
Ω̂(·, 0), Ω̂t(·, 0), ξ̂(·, 0), ξ̂t(·, 0), Ĵ1(0), Q̂(0), ϑ̂(0), Θ(0), ζk(0)N

k=1) ∈ X. It possesses a unique solution in
X that guarantees exponential convergence of E(t) to zero, along with the condition∫ ∞

0
eµt

∣∣∣Ė(t)
∣∣∣2 dt < ∞.

Proof. Employing the variable set Ω(s, t), Ω̃(s, t), ξ̃(s, t), J̃(t), Q̃(t), and ϑ̃(t) defined by (3.18), (3.21),
(4.2), (4.15), system (5.1) is equivalent to

Ωtt(s, t) = Ωss(s, t),

Ωs(0, t) =
ℏ1

1 − ℏ1
Ωt(0, t) −

γ

1 − ℏ1
Ω(0, t),

Ωs(1, t) = −Ω̃t(1, t) − Ωt(1, t) + R(t) −
ℏ5

1 − ℏ1
e2γ(Ω̃(0, t) + Ω(0, t))

− 2ℏ5

∫ 1

0
e2γ(1−ϵ)(Ω̃t(ϵ, t) + Ωt(ϵ, t) + Ω̃s(ϵ, t) + Ωs(ϵ, t))dϵ,

Ω̃tt(s, t) = Ω̃ss(s, t),

Ω̃s(0, t) =
ℏ1

1 − ℏ1
Ω̃t(0, t) + ℏ4Ω̃(0, t),

Ω̃s(1, t) = 0,
yℓ(t) = −E(t) + m(0, t) + Ω(0, t) + f0(0)ℓ(t) − ξ̃(0, t),

ξ̃tt(s, t) = ξ̃ss(s, t),

ξ̃s(0, t) = (ℏ2 −
γ

1 − ℏ1
)ξ̃(0, t) + (ℏ3 +

ℏ1

1 − ℏ1
)ξ̃t(0, t),

ξ̃s(1, t) = 0,

E(t) = Ω(0, t) + m(0, t) =
1

1 − ℏ1
Ω(0, t),

mt(s, t) = −ms(s, t) +
γ

ℏ1
m(0, t),

m(0, t) = ℏ1E(t),m(s, 0) = m0(s),

˙̂
J1(t) = Q̂1(t) + b1yℓ(t) +

j∑
k=1

ϱk(t)ϑ̂k(t) + χ(yℓ(t) − Ĵ1(t)),

˙̂
Q(t) = H(A)Q̂(t) + µyℓ,

˙̂ϑk(t) = gϱk(t)(yℓ(t) − Ĵ1(t)), e−|det(Θk)|
1
k t ≤

1
2
,

˙̂ϑk(t) = gϱk(t)(yℓ(t) − Ĵ1(t)) − aϑ̂k(t), else,

ζ̇k(t) = H(A)ζk(t) − [0 I2N]E2kyℓ(t), ζk(t) ∈ R2N ,

Θ̇(t) = −εbΘ(t) + εcϱ(t)ϱ(t)⊤, Θ(t) ∈ RN×N ,

(5.3)
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where
R(t) = f ′0(1, ϑ̂)ℓ̂(t) − f ′0(1, ϑ)ℓ(t). (5.4)

The well-posedness and stability of the (Ω̃, ξ̃, Ĵ , Q̂, ϑ̂, {ζk}
N
k=1 , Θ)- subsystem in system (5.3) have

been established in the preceding sections and Lemma 4.1. Consequently, the closed-loop system
exhibits a cascade-coupling structure where the stable error subsystems (Ω̃, ξ̃, Ĵ , Q̂, ϑ̂, {ζk}, Θ) serve as
external inputs to the Ω-subsystem. This structural property is crucial for the overall stability
analysis.To establish the stability of the entire closed-loop system, it remains to analyze the
Ω-subsystem in (5.3), which admits an operator formulation

d
dt

Ω(· , t)

Ωt(· , t)

 = K
Ω(· , t)

Ωt(· , t)

 + B
(
R(t) − Ω̃t(1, t)

−
ℏ5

1 − ℏ1
e2γΩ̃(0, t) − 2ℏ5

∫ 1

0
e2γ(1−ϵ)(Ω̃t(ϵ, t) + Ω̃s(ϵ, t))dϵ

)
,

(5.5)

with the operator K : D (K) (⊆ X)→ X
K(ϖ,ψ)⊤ = (ψ,ϖ′′)⊤, ∀(ϖ,ψ)⊤ ∈ D(K),

D(K) =
{

(ϖ,ψ)⊤ ∈ X : K(ϖ,ψ)⊤ ∈ X
∣∣∣∣∣ϖ′(0) =

ℏ1

1 − ℏ1
ψ(0) −

γ

1 − ℏ1
ϖ(0),

ϖ′(1) = −ψ(1) − ℏ5
1−ℏ1

e2γϖ(0) − 2ℏ5

∫ 1

0
e2γ(1−ϵ)(ψ(ϵ) +ϖ′(ϵ))dϵ

}
,

(5.6)

and
B1 = (0, δ(s − 1))⊤.

It can be verified that the principal part of the Ω- subsystem coincides with the ŵ- subsystem in [25]
and exhibits exponential decay. Furthermore,

R(·) ∈ C([0,∞);R)

converges exponentially to zero as t → ∞. To achieve this, it suffices to verify the time-domain
continuity of f ′0(1, ϑ̂(t)) and the exponential convergence

lim
t→∞

∣∣∣ f ′0(1, ϑ̂) − f ′0(1, ϑ)
∣∣∣ = 0.

Thus,
ϑ(·) ∈ C([0,∞);Rm),

and ϑ̂(t) converges exponentially to ϑ in norm; the boundedness of ϑ̂ follows as a result. Let

ϑ, ϑ̂(t) ∈ [−D,D]N ,D > 0,

and according to Lemma 3.3, f ′0(1, ϑ) is continuously differentiable in ϑ, which implies its Lipschitz
continuity over [−D,D]N . Furthermore, it can be established that f ′0(1, ϑ̂(t)) is continuous in time, and

lim
t→∞

∥∥∥ f ′0(1, ϑ̂) − f ′0(1, ϑ)
∥∥∥ ≤ lim

t→∞
L∥ϑ̂(t) − ϑ∥ = 0
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are both exponentially. By applying [25, Lemma 2.3], (which establishes well-posedness and
exponential stability of a wave equation with analogous boundary structure and parameters ℏ1, γ, ℏ5

matching k1, q, k3 therein), the Ω-subsystem of (5.3) possesses a unique solution

(Ω,Ωt) ∈ C([0,∞);H)

satisfying
∥(Ω(·, t), Ωt(·, t))∥H ≤ L′e−wt,

for some L′,w > 0.
At this point, we have established the exponential stability of all subsystems. The overall closed-

loop stability follows from the fact that the original system state can be recovered through invertible
coordinate transformations from these exponentially stable subsystems. Under the transformations

y(s, t) = Ω(s, t) + f0(s)ℓ(t) − κ(s)α(t) + m(s, t),

Ω̂(s, t) = Ω(s, t) + Ω̃(s, t),
ξ̂(s, t) = Ω(s, t) + f0(s)ℓ(t) − ξ̃(s, t),

the state vector (y, yt, Ω̂, Ω̂t, ξ̂, ξ̂t) is well-posed in

C([0,∞);H2)
⋂

L∞(0,∞;H2)

and exhibits uniform boundedness in time. Furthermore, by Sobolev trace theorem, |Ω(0, t)| → 0, as
t → ∞.

To complete the proof of Theorem 4.1, it remains to show that Ê(t) is square-integrable with
exponential weight. This is achieved through an energy estimate.

Let

δ(t) = 2
∫ 1

0
(s − 1)Ωt(s, t)Ωs(s, t)ds,

and it satisfies
|ℓ(t)| ≤ ∥(Ω(·, t), Ωt(·, t))∥2H .

Differentiation and subsequent integration by parts leads to

δ̇(t) = 2
∫ 1

0
(s − 1)Ωt(s, t)Ωst(s, t)ds + 2

∫ 1

0
(s − 1)Ωss(s, t)Ωs(s, t)ds

= Ω2
t (0, t) + Ω2

s(0, t) −
∫ 1

0
[Ω2

t (s, t) + Ω2
s(s, t)]ds

≥ Ω2
t (0, t) − ∥Ω(·, t), Ωt(·, t)∥2H ,

∀ 0 < µ < 2w,∫ ∞

0
eµtΩ2

t (0, t)dt ≤
∫ ∞

0
eµt ∥Ω(·, t), Ωt(·, t)∥2H dt + |δ(0)| + µ

∫ ∞

0
eµt |δ(t)| dt < ∞.

□
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6. Simulation results

To evaluate the effectiveness of the proposed controller (4.24), numerical simulations are performed
on the resulting closed-loop system (5.1), which governs the dynamics of the original system (2.1). The
disturbances are applied to all input channels according to the structure of the studied system, with

ρ1(t) = ρ2(t) = ρ3(t) = 2 sin(0.6t),

while the reference signal is set as
D4α(t) = 2 sin(2t) + 1.

The remaining parameters are configured as

F (s) = s/6, γ = 2, ℏ1 = 1, ℏ2 = 2,
ℏ3 = 2, ℏ4 = 0.5, ℏ5 = 3, εb = εc = 0.5,
b = [4, 6, 4, 1]⊤, a = 0.7, g = 1, χ = 0.05.

All numerical simulations presented in this section were conducted using MATLAB 2020b. To
comprehensively validate the accuracy of the proposed adaptive observer, the convergence of
parameter estimates, and the effectiveness of the controller, this study draws on relevant simulation
verification methods [29–31] to construct a numerical simulation design tailored to the system under
investigation. The system is initialized with the following conditions

y(s, 0) = 0.7(sin 5s) + s,

yt(s, 0) = 0,

Ω̂(s, 0) = sin 3s − 0.03s,

Ω̂t(s, 0) = sin(2s) − s,

ξ̂(s, 0) = sin 0.5s + cos s,

ξ̂t(s, 0) = sin(2πs) − s,

Θ(0) =
[
1 0
0 1

]
,

(Q̂(0), ϑ̂(0), Ĵ1(0), {ζk(0)}Nk=1) = (0, 0, 0, 0).

(6.1)

In contrast to existing studies (e.g., [24]) where the disturbances and the reference share the same
frequency, the numerical example here considers a more general scenario in which the disturbances
on all channels have one frequency while the reference signal possesses a different frequency. This
validates the controller’s ability to handle multi-source disturbances with distinct frequencies.

The simulation results are now discussed with an emphasis on their physical interpretation, directly
linking the observed phenomena to the theoretical challenges addressed in this paper.

Figure 1 depicts the spatiotemporal displacement y(s, t) of the controlled wave system. The achieved
bounded evolution, starting from the initial condition given by (6.1), provides a numerical verification
of the theoretical result established in Section 4: The proposed controller successfully stabilizes a
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system that is open-loop unstable due to the nonlocal term γyt(0, t). The stabilization is achieved
despite the persistent action of distributed and boundary disturbances.

Figure 1. Solution of closed-loop system (5.1) (y-part).

Figures 2 and 3 display the states of the observers, Ω̂ and ξ̂. Their bounded and well-behaved
transients demonstrate the physical realizability and effectiveness of the observer designs presented
before. Critically, the observer for ξ successfully operates using only the tracking error E(t) and its
derivative Ė(t), which are the only measured outputs. This validates the practical premise of output-
feedback control. The observer for Ω̂, in turn, remains stable, confirming that the feedforward part of
the control law is implemented based on a reliable internal state estimate.

Figure 2. Solution of closed-loop system (5.1) (Ω̂-part).
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Figure 3. Solution of closed-loop system (5.1) (ξ̂-part).

The primary physical achievement is evidenced in Figure 4. The exponential decay of the tracking
error

E(t) = y(0, t) − r(t)

to zero confirms that the physical output y(0, t) asymptotically tracks the reference signal r(t). This
occurs under the combined difficulties of: (i) structural instability from the nonlocal term, (ii) multi-
channel harmonic disturbances ρk(t) with an unknown frequency acting on all input channels, and (iii)
an unknown reference frequency. Therefore, the simulation validates that the adaptive error-feedback
regulator not only stabilizes the plant but also achieves the core objective of output regulation in a
realistic scenario where the exosystem generates both disturbances and the reference is fully unknown.

Figure 4. Tracking performance (E(t)).
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Although γ does not appear explicitly in E(t), it enters the Ω-dynamics via (3.19) and the controller
via (3.31), thereby affecting the convergence speed. This influence can be compensated by tuning ℏ1,
ℏ2, ℏ5, as demonstrated in the simulation with γ = 2.

7. Conclusions

This paper has developed an adaptive error feedback tracking scheme for a 1-D wave equation
subject to a nonlocal term and multi-channel unknown harmonic disturbances. The core of the work
lies in providing a systematic and rigorous solution to the integrated problem of stabilizing an
open-loop unstable wave system while achieving exact output regulation under multiple exogenous
disturbances with unknown frequencies. To address these challenges sequentially, the control design
first eliminated the nonlocal term involving boundary velocity through a coordinate transformation
that constructed an auxiliary system. The controlled PDE was then decoupled from the exosystem
ODE, thereby confining disturbances exclusively to the tracking error. Furthermore, a feedforward
plus state feedback controller was developed, accompanied by a state observer for system state
reconstruction and a parameter adaptation mechanism for uncertainty estimation. Within this
framework, an error-feedback regulator was implemented using the error signal and its temporal
derivative. Theoretical analysis has established the closed-loop system’s well-posedness and stability,
together with exponential convergence of the tracking error. This work thus demonstrates and
validates a complete control framework for a class of unstable wave equations with complex,
multi-source unknown harmonic disturbances. Future work may explore relaxing the assumption of a
known upper bound on the number of disturbance frequencies, as well as extending the control
architecture to higher-dimensional spatial domains or other types of unstable PDEs.

Author contributions

Xinting Xiao: conceptualization, methodology, writing—Original draft; Feng-Fei Jin:
writing—review & editing, investigation, validation; Xiyu Liu: writing–review & editing,
visualization. All authors have read and approved the final version of the manuscript for publication.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work was supported by the Natural Science Foundation of Shandong Province (NO.
ZR2024MF003).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

AIMS Mathematics Volume 11, Issue 1, 291–321.



319

References

1. B. Z. Guo, R. X. Zhao, Output regulation for a heat equation with unknown exosystem, Automatica,
138 (2022), 110159. https://doi.org/10.1016/j.automatica.2022.110159

2. S. Wang, Z. J. Han, Z. X. Zhao, Output regulation for a one-dimensional heat equation with input
delay and unknown exosystem, 2023 42nd Chinese Control Conference (CCC), 2023, 977–982.
https://doi.org/10.23919/CCC58697.2023.10239825

3. J. Wang, M. Krstic, Adaptive control of coupled hyperbolic PDEs with piecewise-constant inputs
and identification, 2021 60th IEEE Conference on Decision and Control (CDC), 2021, 442–447.
https://doi.org/10.1109/CDC45484.2021.9683208

4. C. T. Yilmaz, H. I. Basturk, Adaptive output regulator for wave PDEs with unknown harmonic
disturbance, Automatica, 113 (2020), 108808. https://doi.org/10.1016/j.automatica.2020.108808

5. D. Bresch-Pietri, M. Krstic, Output-feedback adaptive control of a wave PDE with boundary anti-
damping, Automatica, 50 (2014), 1407–1415. https://doi.org/10.1016/j.automatica.2014.02.040

6. W. Guo, H. C. Zhou, Adaptive error feedback regulation problem for an Euler-Bernoulli beam
equation with general unmatched boundary harmonic disturbance, SIAM J. Control Optim., 57
(2019), 1890–1928. https://doi.org/10.1137/18M1172727

7. J. J. Liu, B. Z. Guo, Robust tracking error feedback control for a one-dimensional
Schrödinger equation, IEEE Trans. Autom. Control, 67 (2021), 1120–1134.
https://doi.org/10.1109/TAC.2021.3056599

8. D. Steeves, M. Krstic, R. Vazquez, Prescribed-time estimation and output regulation of
the linearized Schrödinger equation by backstepping, Eur. J. Control, 55 (2020), 3–13.
https://doi.org/10.1016/j.ejcon.2020.02.009

9. E. Davison, The robust control of a servomechanism problem for linear time-
invariant multivariable systems, IEEE Trans. Autom. Control, 21 (1976), 25–34.
https://doi.org/10.1109/TAC.1976.1101137

10. B. A. Francis, W. M. Wonham, The internal model principle of control theory, Automatica, 12
(1976), 457–465. https://doi.org/10.1016/0005-1098(76)90006-6

11. R. Rebarber, G. Weiss, Internal model based tracking and disturbance rejection for stable well-
posed systems, Automatica, 39 (2003), 1555–1569. https://doi.org/10.1016/S0005-1098(03)00192-
4

12. B. Z. Guo, R. X. Zhao, Output regulation for Euler-Bernoulli beam with unknown
exosystem using adaptive internal model, SIAM J. Control Optim., 61 (2023), 2088–2113.
https://doi.org/10.1137/22M1501805

13. J. Q. Han, Extended state observer for a class of uncertain systems, Control Decis., 10 (1995),
85–88.

14. J. Q. Han, Active disturbance rejection controller and its applications, Control Decis., 13 (1998),
19–23.

AIMS Mathematics Volume 11, Issue 1, 291–321.

https://dx.doi.org/https://doi.org/10.1016/j.automatica.2022.110159
https://dx.doi.org/https://doi.org/10.23919/CCC58697.2023.10239825
https://dx.doi.org/https://doi.org/10.1109/CDC45484.2021.9683208
https://dx.doi.org/https://doi.org/10.1016/j.automatica.2020.108808
https://dx.doi.org/https://doi.org/10.1016/j.automatica.2014.02.040
https://dx.doi.org/https://doi.org/10.1137/18M1172727
https://dx.doi.org/https://doi.org/10.1109/TAC.2021.3056599
https://dx.doi.org/https://doi.org/10.1016/j.ejcon.2020.02.009
https://dx.doi.org/https://doi.org/10.1109/TAC.1976.1101137
https://dx.doi.org/https://doi.org/10.1016/0005-1098(76)90006-6
https://dx.doi.org/https://doi.org/10.1016/S0005-1098(03)00192-4
https://dx.doi.org/https://doi.org/10.1016/S0005-1098(03)00192-4
https://dx.doi.org/https://doi.org/10.1137/22M1501805


320

15. H. C. Zhou, B. Z. Guo, S. H. Xiang, Performance output tracking for multidimensional heat
equation subject to unmatched disturbance and noncollocated control, IEEE Trans. Autom. Control,
65 (2019), 1940–1955. https://doi.org/10.1109/TAC.2019.2926132

16. X. Zhang, H. Feng, S. Chai, Performance output exponential tracking for a wave
equation with a general boundary disturbance, Syst. Control Lett., 98 (2016), 79–85.
https://doi.org/10.1016/j.sysconle.2016.10.007

17. Z. D. Mei, Disturbance estimator and servomechanism based performance output
tracking for a 1-D Euler-Bernoulli beam equation, Automatica, 116 (2020), 108925.
https://doi.org/10.1016/j.automatica.2020.108925

18. W. Guo, H. C. Zhou, M. Krstic, Adaptive error feedback regulation problem for 1-D wave equation,
Int. J. Robust Nonlinear Control, 28 (2018), 4309–4329. https://doi.org/10.1002/rnc.4234

19. H. Feng, B. Z. Guo, X. H. Wu, Trajectory planning approach to output tracking
for a 1-D wave equation, IEEE Trans. Autom. Control, 65 (2019), 1841–1854.
https://doi.org/10.1109/TAC.2019.2937727

20. J. Wang, S. X. Tang, Y. Pi, M. Krstic, Exponential regulation of the anti-collocatedly disturbed
cage in a wave PDE-modeled ascending cable elevator, Automatica, 95 (2018), 122–136.
https://doi.org/10.1016/j.automatica.2018.05.022

21. B. Z. Guo, T. Meng, Robust output regulation of 1-d wave equation, IFAC J. Syst. Control, 16
(2021), 100140. https://doi.org/10.1016/j.ifacsc.2021.100140

22. R. X. Zhao, B. Z. Guo, Output regulation for a wave equation with unknown exosystem, IEEE
Trans. Autom. Control, 69 (2023), 3066–3079. https://doi.org/10.1109/TAC.2023.3303340

23. X. H. Wu, J. M. Wang, Adaptive output tracking for 1-D wave equations subject to
unknown harmonic disturbances, IEEE Trans. Autom. Control, 69 (2023), 2689–2696.
https://doi.org/10.1109/TAC.2023.3333797

24. J. J. Liu, N. Peng, J. M. Wang, Adaptive output regulation for wave PDEs with a
nonlocal term and unknown harmonic disturbances, Syst. Control Lett., 197 (2025), 106043.
https://doi.org/10.1016/j.sysconle.2025.106043

25. H. C. Zhou, W. Guo, Output feedback exponential stabilization of one-dimensional wave
equation with velocity recirculation, IEEE Trans. Autom. Control, 64 (2019), 4599–4606.
https://doi.org/10.1109/TAC.2019.2899077

26. R. Marino, G. L. Santosuosso, Regulation of linear systems with unknown
exosystems of uncertain order, IEEE Trans. Autom. Control, 52 (2007), 352–359.
https://doi.org/10.1109/TAC.2006.890376

27. R. Marino, P. Tomei, Disturbance cancellation for linear systems by adaptive internal models,
Automatica, 49 (2013), 1494–1500. https://doi.org/10.1016/j.automatica.2013.02.011

28. P. A. Ioannou, J. Sun, Robust adaptive control, PTR Prentice-Hall, 1996.

AIMS Mathematics Volume 11, Issue 1, 291–321.

https://dx.doi.org/https://doi.org/10.1109/TAC.2019.2926132
https://dx.doi.org/https://doi.org/10.1016/j.sysconle.2016.10.007
https://dx.doi.org/https://doi.org/10.1016/j.automatica.2020.108925
https://dx.doi.org/https://doi.org/10.1002/rnc.4234
https://dx.doi.org/https://doi.org/10.1109/TAC.2019.2937727
https://dx.doi.org/https://doi.org/10.1016/j.automatica.2018.05.022
https://dx.doi.org/https://doi.org/10.1016/j.ifacsc.2021.100140
https://dx.doi.org/https://doi.org/10.1109/TAC.2023.3303340
https://dx.doi.org/https://doi.org/10.1109/TAC.2023.3333797
https://dx.doi.org/https://doi.org/10.1016/j.sysconle.2025.106043
https://dx.doi.org/https://doi.org/10.1109/TAC.2019.2899077
https://dx.doi.org/https://doi.org/10.1109/TAC.2006.890376
https://dx.doi.org/https://doi.org/10.1016/j.automatica.2013.02.011


321

29. E. A. Az-Zo’bi, K. Al-Khaled, A new convergence proof of the Adomian decomposition method
for a mixed hyperbolic elliptic system of conservation laws, Appl. Math. Comput., 217 (2010),
4248–4256. https://doi.org/10.1016/j.amc.2010.10.040

30. E. A. Az-Zo’bi, K. Al-Dawoud, M. Marashdeh, Numeric-analytic solutions of
mixed-type systems of balance laws, Appl. Math. Comput., 265 (2015), 133–143.
https://doi.org/10.1016/j.amc.2015.04.119

31. E. A. Az-Zo’bi, E. Hussain, M. Iqbal, Q. M. M. Alomari, S. A. A. Shah, D. Yaro, et al.,
Chaotic, bifurcation, sensitivity, modulation stability analysis, and optical soliton structure to
the nonlinear coupled Konno-Oono system in magnetic field, AIP Adv., 15 (2025), 095103.
https://doi.org/10.1063/5.0291009

© 2026 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 11, Issue 1, 291–321.

https://dx.doi.org/https://doi.org/10.1016/j.amc.2010.10.040
https://dx.doi.org/https://doi.org/10.1016/j.amc.2015.04.119
https://dx.doi.org/https://doi.org/10.1063/5.0291009
https://creativecommons.org/licenses/by/4.0

	Introduction
	Problem statement
	Feedforward plus state feedback regulator design
	Tracking error-based controller design
	Well-posedness and stability of the closed-loop system
	Simulation results
	Conclusions

