Let $ A $ be an associative ring. A nonzero element $ t \in A $ is called fine if it can be written as $ t = n + v $, where $ v $ is a unit and $ n $ is a nilpotent element. A ring $ A $ is called an idempotent-fine ring if every nonzero idempotent in $ A $ is fine. Let $ A $ be a ring (respectively, an integral domain) of characteristic $ p^m $ for some prime $ p $ and positive integer $ m $, and let $ G $ be a locally finite nilpotent group (respectively, a locally finite group). We proved that $ A[G] $ is an idempotent-fine ring if and only if $ G $ is a $ p $-group. Moreover, if $ F $ is a field of characteristic $ p $ and $ F[G] $ is an idempotent-fine ring, then every nontrivial element $ g $ in the group $ G $ of finite order is a $ p $-element. Conversely, if G is a locally finite $ p $-group, then $ F[G] $ is an idempotent-fine ring.
Citation: Omar Al-Mallah, Mohammed Abu-Saleem, Noômen Jarboui. On idempotent-fine group rings[J]. AIMS Mathematics, 2026, 11(1): 345-352. doi: 10.3934/math.2026014
Let $ A $ be an associative ring. A nonzero element $ t \in A $ is called fine if it can be written as $ t = n + v $, where $ v $ is a unit and $ n $ is a nilpotent element. A ring $ A $ is called an idempotent-fine ring if every nonzero idempotent in $ A $ is fine. Let $ A $ be a ring (respectively, an integral domain) of characteristic $ p^m $ for some prime $ p $ and positive integer $ m $, and let $ G $ be a locally finite nilpotent group (respectively, a locally finite group). We proved that $ A[G] $ is an idempotent-fine ring if and only if $ G $ is a $ p $-group. Moreover, if $ F $ is a field of characteristic $ p $ and $ F[G] $ is an idempotent-fine ring, then every nontrivial element $ g $ in the group $ G $ of finite order is a $ p $-element. Conversely, if G is a locally finite $ p $-group, then $ F[G] $ is an idempotent-fine ring.
| [1] |
G. Călugăreanu, T. Y. Lam, A new class of simple rings, J. Algebra Appl., 15 (2016), 18. https://doi.org/10.1142/s0219498816501735 doi: 10.1142/s0219498816501735
|
| [2] |
J. Han, W. K. Nicholson, Extensions of clean rings, Commun. Algebra, 29 (2001), 2589–2595. https://doi.org/10.1081/agb-100002409 doi: 10.1081/agb-100002409
|
| [3] |
W. K. Nicholson, Y. Zhou, Rings in which elements are uniquely the sum of an idempotent and a unit, Glasgow Math. J., 46 (2004), 227–236. https://doi.org/10.1017/s0017089504001727 doi: 10.1017/s0017089504001727
|
| [4] |
G. Călugăreanu, Y. Zhou, Rings with fine idempotents, J. Algebra Appl., 21 (2022), 14. https://doi.org/10.1142/s021949882250013x doi: 10.1142/s021949882250013x
|
| [5] |
D. D. Anderson, O. A. Almallah, Commutative group rings that are presimplifiable or domainlike rings, J. Algebra Appl., 16 (2017). https://doi.org/10.1142/S0219498817500190 doi: 10.1142/S0219498817500190
|
| [6] |
I. G. Connell, On the group ring, Can. J. Math., 15 (1963), 650–685. https://doi.org/10.4153/cjm-1963-067-0 doi: 10.4153/cjm-1963-067-0
|
| [7] | D. S. Passman, The algebraic structure of group rings, Mineola, New York : Dover Publications, 2011. |
| [8] | T. Y. Lam, A first course in noncommutative rings, New York: Springer-Verlag, 1991. https://doi.org/10.1007/978-1-4684-0406-7 |
| [9] | D. J. S. Robinson, Finiteness conditions and generalized soluble groups, New York: Springer-Verlag, 1972. https://doi.org/10.1007/978-3-662-07241-7 |
| [10] | C. P. Milies, S. K. Sehgal, An introduction to group rings, Springer Science & Business Media, 2002. https://doi.org/10.1007/978-94-010-0405-3 |
| [11] |
D. B. Coleman, Idempotents in group rings, P. Am. Math. Soc., 17 (1966), 447–448. https://doi.org/10.1090/s0002-9939-1966-0193158-3 doi: 10.1090/s0002-9939-1966-0193158-3
|
| [12] |
G. Gardam, A counterexample to the unit conjecture for group rings, Ann. Math., 194 (2021), 967–979. https://doi.org/10.4007/annals.2021.194.3.9 doi: 10.4007/annals.2021.194.3.9
|
| [13] | M. Burger, A. Valette, Idempotents in complex group rings: Theorems of Zalesskii and Bass revisited, J. Lie Theory, 8 (1998), 219–228. |
| [14] |
H. Bass, Euler characteristics and characters of discrete groups, Invent. Math., 35 (1976), 155–196. https://doi.org/10.1007/bf01390137 doi: 10.1007/bf01390137
|