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Abstract: Probabilistic hesitant Pythagorean fuzzy sets (PrHPyFSs) provide a robust framework
for modeling decision-makers’ preferences by simultaneously capturing probabilistic uncertainty,
hesitation degrees, and the independent support/non-support relationships, thereby enabling a more
accurate representation of real-world decision-making compared to traditional fuzzy sets. This
study explores the aggregation of probabilistic hesitant Pythagorean fuzzy information in complex
environments and its application to multi-criteria decision-making (MCDM). The research includes
four main components: (1) developing an arithmetic operation system for probabilistic hesitant
Pythagorean fuzzy elements (PrHPyFEs); (2) proposing four types of generalized aggregation
operators for PrHPyFEs; (3) constructing a PrHPyFS-based MCDM framework using these operators,
with effectiveness validated through a teaching equipment procurement case study; and (4)
demonstrating the method’s advantages via comparative analysis. The results confirm that the proposed
solution effectively bridges the gap between theoretical foundations and practical decision-making
applications.
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1. Introduction

In complex real-world decision-making scenarios, processing ambiguous information holds
significant theoretical and practical value. Zadeh [1] pioneered fuzzy set (FS) theory, achieving the first
quantitative representation of ambiguity through membership functions—an innovative mathematical
tool that transcends classical set theory’s binary constraints (0/1) by employing continuous membership
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degrees within [0,1]. This multi-valued logic aligns with human cognition’s continuity, demonstrating
exceptional potential in expert systems, intelligent control, and pattern recognition. Driven by
increasingly complex application demands, FS theory has undergone continuous innovation and
evolution. Intuitionistic fuzzy sets proposed by Atanassov [2] establish a more refined binary
characterization framework through the introduction of non-membership functions. Pythagorean fuzzy
set (PyFS), developed by Yager [3], further relaxes membership and non-membership constraint
conditions and enhances the model’s expressive capacity. To characterize uncertainty in decision-
making processes or the hesitation psychology of decision-makers, Torra [4] proposed the hesitant
fuzzy set, which subsequently led to the derivation of hybrid models such as the dual hesitant
fuzzy set [5] and hesitant Pythagorean fuzzy set [6,7]. Xu and Zhou [8] innovatively introduced
a probabilistic dimension, proposing a probabilistic hesitant fuzzy set (PrHFS) to enhance the
model’s realism in decision-making scenarios. The evolution of fuzzy information processing
theory exhibits three distinct characteristics: (1) Transitioning from Zadeh’s single membership
degree to a multi-dimensional representation system; (2) Shifting from deterministic descriptions to
probabilistic modeling; (3) Advancing from static processing to dynamic decision-making support.
These theoretical breakthroughs continually expand application boundaries, exerting profound impacts
on fields including engineering optimization, economic forecasting, and social decision-making. In the
Al and big data era, integrating fuzzy information processing theory with cutting-edge technologies
such as deep learning and reinforcement learning will provide enhanced analytical tools for complex
system modeling, propelling intelligent decision-making to more sophisticated levels.

Probabilistic hesitant Pythagorean fuzzy set (PrHPyFS) [9-11] is an important theoretical
innovation in the field of fuzzy mathematics. By integrating the advantages of PyFS and PrHFS,
a comprehensive mathematical framework that can simultaneously handle fuzziness, hesitancy, and
randomness is constructed. This theory has significant core innovative features: (1) Mathematical
structural innovation: using probability-weighted sets of membership and non-membership degrees to
describe element attributes; strictly satisfying the Pythagorean constraint, that is, the sum of the squares
of membership and non-membership values does not exceed 1; representing hesitation characteristics
in the decision-making process through a set of multi-valued membership degrees; Using probability
distribution to reflect the credibility of evaluation results. (2) Theoretical advantage: improving the
accuracy of characterizing complex fuzzy phenomena; reflecting the uncertainty in the real world more
accurately; providing a more reliable theoretical foundation for intelligent decision-making systems.
(3) Application value: achieving collaborative processing of fuzzy and probabilistic information or
providing more accurate analysis and modeling tools in fields such as risk assessment, medical
diagnosis, and financial prediction. As a cutting-edge theory in fuzzy information processing, PrtHPyFS
not only expands the research boundaries of fuzzy mathematics but also provides new methodological
support for complex system analysis, which is of great significance for promoting the development and
application of innovation in uncertainty mathematical theory.

The current academic research on PrtHPyFS mainly focuses on the following core directions.

(1) Basic theoretical construction: Mainly including basic concepts, arithmetic operations and their
properties, comparative indicators and rules, distance measures, information aggregation operators,
etc.

e Basic concepts: Luo and Liu [9], Batool et al. [10], and Ji et al. [11] respectively provide different
formal definitions for PrtHPyFS, or probabilistic hesitant Pythagorean fuzzy element (PrHPyFE).
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e Arithmetic operations and properties: Luo and Liu [9], Batool et al. [10], and Ji et al. [11]
defined basic arithmetic operations based on the corresponding PrHPyFS or PrHPyFE, and further
provided some basic operation properties. Afterwards, Sun et al. [12], Ashraf et al. [13], and Liao
et al. [14] made some meaningful supplements and improvements to the properties of arithmetic
operations.

e Comparison indicators and rules: Luo and Liu [9], Batool et al. [10], Ji et al. [11], Sun et al.
[12], Liao et al. [14], Rasheed et al. [15], and Sarkar et al. [16] proposed different forms of the
PrHPyFE score function and accuracy function definitions and further provided the PrHPyFEs
comparison rules based on these indicators. Sun and Wang [17] pointed out that relying solely
on score functions and accuracy functions cannot achieve a complete comparison of PrHPyFEs
and developed a three-indicator PrHPyFEs, or probabilistic hesitant Pythagorean fuzzy vectors,
complete comparison method based on a new score function, accuracy function, and variance
functions.

e Distance measures: Batool et al. [10], Ji et al. [11], and Sun et al. [12] provided different
definitions of distance measures to characterize the relationship between PrHPyFEs. In addition,
Sun et al. [12] also proposed a similarity function based on the presented distance measure.

e Information aggregation operators: Fuzzy information aggregation is a research hotspot in this
field, and different forms of PrHPyFEs aggregation operators have been continuously proposed,
such as the Hamacher Choquet integral geometric operator [9], power Hamy mean operators [11],
weighted operators [18, 19], Einstein operators [13], triangular fuzzy aggregation operators [14],
Choquet integral operators [15], and the improved power weighted averaging operator [16].

(2) Innovation in decision-making methods: Significant progress has been made in the research
of MCDM and multi-criteria group decision-making (MCGDM) models based on PrHPyFS theory.
Batool et al. [10] presented an extended MCDM TOPSIS approach. Ji et al. [11] proposed a novel
MCGDM method. Sun et al. [12] developed an interactive method to solve the MCGDM problem.
Tang et al. [20] proposed an MCGDM method to solve the problem of unknown weight information.
Liao et al. [14] developed an MCDM model in probabilistic hesitant Pythagorean triangular fuzzy
environments. Qahtan et al. [21] presented an integrated MCDM method. In addition, Luo and Liu [9],
Batool et al. [18], Batool et al. [19], Ashraf et al. [13], Rasheed et al. [15], Sarkar et al. [16], and Sun
and Wang [17] have also made theoretical contributions in this field, jointly promoting the application
and development of PrHPyFS in complex decision-making scenarios.

(3) Frontier application exploration: Some researchers have successfully extended the probabilistic
hesitant Pythagorean fuzzy MCDM/MCGDM models to multiple interdisciplinary practice areas. Luo
and Liu [9] applied the proposed MCDM method to the selection of project private partners. Batool et
al. [10] developed a comprehensive evaluation system for the fog-haze factor. Tang et al. [20] achieved
intelligent decision-making for the commercialization path of breakthrough inventions. Qahtan et
al. [21] applied the proposed MCDM method to solve the optimization modeling problem of a fuel
supply system for electric vehicles. Sun and Wang [17] developed a multidimensional evaluation
framework for the level of professional development in universities. These empirical studies not only
validate the theoretical advantages of PrHPyFS in dealing with uncertain decision-making problems,
but also provide new decision-making support tools for major practical issues such as environmental
governance, technological innovation, and educational evaluation.

The current research trend indicates that the study of PrHPyFS is undergoing a paradigm shift
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from basic theoretical construction to complex decision-making applications, exhibiting dual-driven
characteristics of theoretical innovation and practical verification. As a cutting-edge approach in
uncertain decision-making, PrHPyFS demonstrates unique theoretical advantages in fuzzy clustering
analysis, intelligent pattern recognition, and multi-criteria evaluation, while providing methodological
innovations for smart manufacturing and urban governance. This transition not only enriches fuzzy
mathematical theory but also addresses real-world challenges in dynamic prediction and complex
information processing.

Notwithstanding the breakthroughs achieved in specific application scenarios, extant research on
PrHPyFSs exhibits persistent limitations across three critical dimensions:

(1) Theoretical completeness limitations

e Algebraic operation deficiencies: Current arithmetic operation systems lack comprehensive
closure verification mechanisms, particularly regarding normalized probability distribution
processing.

e Comparative metric shortcomings: Existing score/accuracy functions fail to achieve complete
comparability.

e Dynamic regulation limitations: Absence of coordinated mechanisms for synchronizing
membership degrees, non-membership degrees, and probability distributions.

(2) Technological universality challenges

e Operator architecture rigidity: Conventional linear weighted operators inadequately capture
nonlinear criterion interactions.

e Probability distribution handling: Certain comparison functions exhibit measurement deficiencies
in probability differences.

(3) Engineering applicability constraints

e Decision-making context adaptation: Limited generalization capacity for dynamic prediction and
complex information processing scenarios.

¢ Information aggregation bias: Traditional operator structures risk information distortion in group
decision-making environments.

The aforementioned limitations not only highlight key areas for future research breakthroughs but
also call for deep collaborative innovation between academia and industry to collectively advance the
field.

This study is driven by three key motivations for advancing the theory and applications of
PrHPyFSs, as outlined below:

(1) Theoretical refinement necessity

Current research reveals systematic limitations in algebraic operation systems and aggregation
operator frameworks.  Conventional linear weighted operators inadequately capture nonlinear
interactions among criteria, while existing operator structures lack dynamic mechanisms for
coordinated regulation of membership degrees, non-membership degrees, and probability distributions.
Moreover, certain comparison functions exhibit deficiencies in probability difference measurement,
directly affecting decision-making system reliability and effectiveness.

(2) Methodological innovation potential
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PrHPyFS’s research is currently undergoing a paradigm shift from fundamental theory to complex
decision-making applications. Developing parameter-tunable generalized aggregation operators,
refining PrHPyFEs’ algebraic operation systems, and establishing a comprehensive mathematical
framework integrating fuzziness, hesitancy, and randomness are expected to address existing technical
challenges.

(3) Practical value realization

As a frontier achievement in fuzzy mathematics, PrHPyFSs have demonstrated significant potential
in risk assessment and medical diagnosis. Methodological innovations promise to deliver more precise
decision-making tools for critical challenges in smart manufacturing and urban governance, thereby
advancing uncertainty mathematical theory.

In the fields of MCDM/MCGDM, the fuzzy information aggregation method, as the core link in
dealing with uncertainty and subjective preferences, directly determines the reliability and effectiveness
of the decision-making system based on its performance. Although the research on information
aggregation operators based on PrHPyFSs has achieved phased results, there are still several key
scientific issues to be addressed. Firstly, traditional linear weighted averaging and geometric weighted
averaging operators are difficult to effectively characterize the complex nonlinear interactions between
criteria, which can lead to information distortion when dealing with some complex decision-making
problems. Secondly, some existing operator architectures lack dynamic adjustment mechanisms for
the synergistic effects of membership degree, non-membership degree, and probability distribution,
which can easily lead to information aggregation bias in group decision-making environments. In
addition, some existing comparison indicator functions have deficiencies in measuring the differences
in probability distributions, which may lead to counterintuitive comparison results. In response to these
challenges, this study aims to systematically address them by constructing generalized aggregation
operators with adjustable parameters. The specific research content includes four progressive levels.
(1) Improve the algebraic operation system of PrHPyFEs, verify the applicable boundaries of operation
laws, and lay a theoretical foundation for operators’ construction. (2) Propose generalized aggregation
operators. (3) Develop an MCDM decision-making framework based on the proposed operators
and conduct empirical research using equipment procurement issues as a typical scenario. (4)
Verify the superiority of the proposed method in terms of decision-making accuracy, robustness, and
computational efficiency through comparative experiments.

This paper adopts the systematic research path of “theoretical construction - methodology
design - verification analysis”: Section 2 rigorously constructs the formal definition framework of
PrHPyFS and PrHPyFE from mathematical foundations and establishes arithmetic operation laws;
Section 3 systematically demonstrates the arithmetic operation properties of PrHPyFEs through
strict mathematical derivation; Section 4 innovatively proposes four types of generalized aggregation
operators, including generalized weighted averaging operator, generalized weighted geometric
operator, generalized hybrid averaging operator, and generalized hybrid geometric operator, providing
new mathematical tools for complex decision-making problems; Section 5 transforms theoretical
achievements into an application model by constructing a multi-criteria decision-making framework
based on the proposed operators, and verifies the model’s practicality through numerical simulation
of an educational equipment procurement case; Section 6 designs systematic comparative experiments
to quantitatively validate the advantages of the developed method over existing aggregation operators;
Section 7 summarizes the theoretical innovations and application value while outlining future research
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directions such as operator extensions and cross-domain applications.
2. Preliminaries

This section reviews the definitions of PrHPyFS and PrHPyFE, as well as the arithmetic operations
of PrHPyFEs.

Definition 1 [10] Let universe of discourse X be a nonempty set. Then a PrtHPyFS P on X is defined
as

P = {{x, u(x)/p(x), v(x)/q(x)) |x € X},

where u(x)/p(x) = {w(x)/pix))i=1,2,..,m} i1s a membership degree set with probabilistic
characteristics, and v(x)/g(x) = {vj(x)/qj(x)l j= 1,2,...,n} is a non-membership degree set with
probabilistic characteristics, and satisfy u;(x) € [0, 1], v;(x) € [0, 1], ul.z(x) + v?(x) <1, pi(x) € (0, 1],
q;(x) € (0,1], X, pi(x) = 1, and 3, g;(x) = L.

A PrHPYFE has the form of ({u:/pili = 1.2,...m}.{v;/q,lj = 1.2, ..n}), where y; € [0,1], v; €
[0, 1], 2 + v? <1,p;i€(0,1],g;€ (0,11, X1, p; = 1, and }._, g; = 1. For simplicity, PtHPyFE(X) is
used in the following text to represent the set consisting of all PrHPyFEs.

Definition 2 [10] For «, a;, @« € PrtHPyFE(X) and A > 0, where

([ /P4 in = 1.2, omi} V) 1 L = 1.2,
(/1 pfliz = 1.2, oma) (Vi Jg N2 = 1.2, oma)),
@ = (lw/pli = 1,2,.om) {vilq)lj = 1.2,...n}),

(03]

a

some arithmetic operations are defined as follows:

2 2 2 12 .
12 2 i :1,2,...,m,k:1’2},
(1) a’l@afzz {\/ﬂll Mlz 'ull quz /pl,P,2|k k },
D14 = 1.2, k= 1,2)
{ﬂ;u;;/p,’.lp;gik =1,2,...m, k= 1,2},
(2)(1’1@(1’2: , 2 72 r 2.2 1 i =12 k=172 ;
ijl + Vj2 - vjl ij /q“quljk =L 4,.,NK=1,

A
3) Aa = ({ 1= (1= 42) /pili = 1,2,...,m},{vj/qj|j: 1,2,...,n});
. /l .
4) ot = ({yf/p,.u = 12m}{ 1= (1=v2) /qjlj = 1,2,...,n});
S @ = ({vi/a)li = 1.2 con A/ pli = 1,2, .m)).
3. Some properties of arithmetic operations

In subsequent research on PrHPyFE aggregation operators, the arithmetic operations established in
Definition 2 serve as fundamental building blocks for operator construction, forming the cornerstone
for developing more complex computational models. As we know, closure is a core requirement
in defining operations, ensuring internal consistency and logical coherence within a specific set,
thereby simplifying compliance verification for complex operations. However, for relatively complex
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PrHPyFEs, the closure properties of these arithmetic operations in Definition 2 are not immediately
evident. Therefore, we provide a supplemental analysis of their closure properties.

Theorem 1 For «;, @, « € PrHPyFE(X) and 4 > 0, there are a; ® a», a; ® @, Aa, al, a €
PrHPyFE(X).

Proof: Let ay, a,, and a be as shown in Definition 2.

(1) According to

2
(et w2 = 2?) + () < =i 2w o+ (1= (1= ) = 1.
mp my

nmy mi
SIS =S o= -,
ir=1 i1=1

i1=1 ir=1 ii=1

and
n  np n ny
S =Yl |- a1
J1=1 jp=1 J1=1 ja=1 ji=1
it can be obtained that @ ® @, € PrHPyFE(X).
(2) According to
PEAY. 72 ) /122 ’ 2 12 r 2 72 r 2 .12 _
(,ul-l,uiz) +(\/ +V =V VY ) S(l—vj1 )(1_ij)+va +V =V VT =,
mp  mp
Z Zpllpiz/ = 1’
i1=1 ip=
and
n np
Zq;lq}; = 1’
J1=1 ja=1
it can be obtained that @y ® @, € PrHPyFE(X).
(3) According to
2
2 2 2 2 2 2
[V1=() | G = 1= (1) () < = () (1) =1
Zpi =1,
i=1
and .
q; = 1’
j=1

it can be obtained that Aa € PrHPyFE(X).
(4) According to

(/Jj)2+[ 1-(1 —V?)A]z =) -1 =) (1) 1-(1-9) =1,
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and

it can be obtained that a* € PrHPyFE(X).
(5) Obviously, @ € PrHPyFE(X). m

In the probabilistic hesitant Pythagorean fuzzy environment, the arithmetic operations of PrtHPyFEs
adhere to specific operational laws, which establish a theoretical foundation for the flexible
application of aggregation operators. By clarifying the commutativities, associativities, distributivities,
and dualities of arithmetic operations, it is possible to efficiently aggregate probabilistic hesitant
Pythagorean fuzzy information. These operation laws not only ensure the mathematical rigor of the
calculation process, but also enhance the reliability of complex information aggregation through the
fusion of probability and fuzzy logic.

In [12], some operation laws are provided for the arithmetic operations given in Definition 2: For
ay, @, a3, @ € PrHPyFE(X) and A > 0, there are

Do ®ar =a, ®ay;

Q)a®@a =a,Qay;

3) (a1 ® @) ® a3 = a1 & (2 & 3);

@ (@1 ®m) Qa3 = ® (@ a3);

5) A(a; @ ar) = Aa; & Aay;

6) (1 ® )" = o @ al.

The following will provide some other operation laws that PrHPyFE arithmetic operations satisfy.
Firstly, two stipulations are given: For @ € PrtHPyFE(X), let

(1) 0ar = ({0/1}, {1/1});

(2) @ = ({1/1},{0/1}), when @ # ({0/1}, {1/1}).

It is obvious that the above stipulations are reasonable.

Theorem 2 For a1, a,, @ € PrHPyFE(X) and 4, 4, 4, > 0, there are
(D a1 ®a; =@ ®a;

Qa1 ®a, = ®a;

(3) da = a';

4) ot = A@;

(5) Lia = Ay (ha) = A, (L),

(6) a1t = (0/“)/12 = (ah)ﬁl.

Proof: Let a1, a,, and a be as shown in Definition 2.

AIMS Mathematics Volume 11, Issue 1, 322-344.



330

(D
//2 72,12 _ _
Y _[ { — W 1 P Pl = 1,2, omy, ko= 1,2}, ]
v };/%ﬂ”lfk =12,k =1,2)
{ Ji ]Z/C]hq’,Uk_l 2,. nk,k:1,2},
N 2R 1l = 1.2k = 1,2
({ J]/q]',|]1 = 192a""nl}a{,u;]/p;1|il = 1’2’~--9m1})
® (Vi /gl = 1.2, om} full pflia = 1,2, ., mo))
:C_L’1 ®C_Z2.
(2
{ {lll]/llz/pl]plzhk - 1 2 mk’k = 1’2}5
a/1®a,2: ;7 2 72 ’ 20 0 s _
{\/vj1 +v) o=V vj2 /qjlquUk =1,2,....n,k = 1,2}
(i = 1.2 k= 1,2),
{u,.ulz/p,.p"lzk k= 1,2}
= ({le/quL]l = 172,“"”1}5{#;1/17;1“1 = 1923 "'$ml})
® ({Vi/q} i = 1.2 oma) fufl pllin = 1,2, ....my))
=a; D a;.

(3) When A = 0, it is clearly true. When A > 0, there are
Qo = [{ 1= (1-2) Ipili = 1,2,...,m},{vj/q,|j - 12n})
[{v 14j = 1.2, ., { 1= (1) /pili = 12m})
= ({v

X A
vilaili = 1,2, onf A/ pili = 1,2, ..,m})

(4) When A = 0, it is clearly true. When A > 0, there are

al = ({#f/mi =1,2, ...,m},{ 1- (1 - y?)lyf/qjlj = 1,2,...,n})
= ( 1-(1- V?)AV?/QJ'U = 1,2, n} Awd Ipii = 1,2, m})
A
A

= A({vi/qjli = 1.2, on} A/ pdi = 1,2, ....m})
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(5) When 4y = 0or 4, = 0, it is clearly true. When 4; > 0 and A, > 0, there are

/l/lza/—[{\/ -1 /1) Ipli=1,2,. } g lj = 12”})
[{\/ -(0- ) /pli=1.2.. } {(Vﬁz)ﬂl/q‘/lﬁ1,2,...,n})

-1 ({ 1-(1 —yg)h/piu =1,2, ...,m},{ij/qu =1,2, n}]

= i (A2 (li/pili = 1,2, om) v/ q)lj = 1.2, ....n}))
= /11 (/120’) .

Similarly, it can be proven that 4y La = 4; (4;@).
(6) When 4, = 0 or A, = 0, it is clearly true. When 4; > 0 and A, > 0, there are

oM = [ pili = 1,2, { “lgli=1.2.. }]
_ {( Y b = 1,2, . m}{\/ (1—v)/l)b/qj|j:1,2,...,n})

A2
= {,uf‘/l’i“:1’2’---am}’{W“ (1—v) /qlj=1,2,. })

(({ﬂi/pili = 1.2, m), {vi/g)lj = 1,2, -~-’”})M)A2

- (o")".

.. . Al PR
Similarly, it can be proven that a*'** = (a 2) .

According to Theorem 2, the following generalizations can be obtained.
Corollary 1 For @, € PrHPyFE(X) and 4, > 0, ¢ = 1,2, ..., [, there are

a1 Da,®---Dq
IR ®---Qq

HOBLE R,
2O O,

/llalea/lgazea---@/lloq:c'xf1®6z§2® ®(i’;ll,

' ®ar® - ®a =@ ®La ® - ® a.

It should be noted that due to the formal complexity of PtHPyFE, some commonly used operation
laws no longer apply to its arithmetic operations. Please refer to the following example.

Example 1 Leta; = ({0.7/0.6,0.6/0.4},{0.4/0.7,0.5/0.3}), @, = ({0.8/0.5,0.7/0.5},{0.3/1}), a3 =
({0.7/1},{0.4/1}), @ = ({0.7/0.5,0.6/0.5},{0.2/0.4,0.3/0.6}), 4; = 1, 4, = 2, 4 = 3. It can be
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calculated that

0.6325/0.3,0.6141/0.2,0.6021/0.3,0.5745/0.2},
0.4148/0.7,0.4230/0.3} ’

0.6917/0.3,0.6593/0.2,0.6500/0.3,0.6117/0.2}, \
0.2634/0.7,0.2952/0.3} ’

(al (&) Clz) ® (0%}

{
{
(a1 ® a3) ® (a2 ® @3) }

0.8062/0.3,0.7826/0.3,0.7794/0.2,0.7616/0.2} ,
0.1942/0.7,0.2254/0.3} ’

{
{
{0.7772/0.3,0.7416/0.2,0.7399/0.3,0.7060/0.2} , \
{0.1991/0.7,0.2320/0.3} ’

(CL’] ® a’z) @D a3

(a1 @ a3) ® (a2 © @3)

(A + ) a =({0.9313/0.5,0.8590/0.5} , {0.0080/0.4,0.0270/0.6}) ,

{0.9313/0.25,0.9130/0.25,0.8894/0.25, 0.8590/0.25} ,
{0.0080/0.16,0.0120/0.24,0.0180/0.24,0.0270/0.36}

2

/11&69/12& = (

o = ({0.3430/0.5,0.2160/0.5} , {0.3395/0.4, 0.4964/0.6}) ,

Mgt = {0.3430/0.25, 0.2940/0.25,0.2520/0.25,0.2160/0.25} ,
¢ rae= {0.3395/0.16,0.4017/0.24,0.4528/0.24,0.4964/0.36}

9

Ala; ® ap) = (10.8226/0.3,0.7491/0.3,0.7377/0.2,0.6643/0.2} ,{0.1144/0.7,0.1789/0.3}),
A ® ap, = ({0.7451/0.3,0.6872/0.2,0.6519/0.3,0.6013/0.2} ,{0.3061/0.7,0.3228 /0.3}) ,
a1 ® day = ({0.6835/0.3,0.6519/0.3,0.5858/0.2,0.5588/0.2} , {0.4008/0.7,0.5005/0.3}) .

According to the above calculation results, it can be concluded that
(i®m)®az # (@1 ®a3) ® (@ ®a3z),

(@1 ®@)®az # (a1 ®a3)® (12 ®a3),
(/ll + /lz)a’ E3 /110’@/12(1’,
a/11+/12 ;._é a,/ll ®a{/12,

/1(&’1 ®a2) ES /10’1 ® ap e a1®/1a/2.

Remark 1 The empirical analysis in Example 1 reveals that PrtHPyFE’s inherent formal complexity,
combined with the non-standard arithmetic operations introduced by Definition 2, leads to the
breakdown of certain conventional operational laws (e.g., the distributive law) under specific
conditions. The direct application of unverified operational laws in prior work (e.g., [12]) risks
introducing logical inconsistencies in derivations. Furthermore, as these arithmetic operations form
the foundation of aggregation operators, the failure of these operational laws may compromise
fundamental operator properties, including idempotency and boundedness.
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4. Generalized aggregation operators

In this section, we will discuss some generalized aggregation operators of PrHPyFEs. Due to the
fact that some definitions of aggregation operators involve the sorting of PrHPyFEs, it is necessary to
first provide a score function and an accuracy function, as well as a comparison rule based on them for
PrHPyFEs.

Definition 3 For @ = ({w/pili =1,2,...m}.{v;/q}lj =1,2,...n}) € PrHPYFE(X), the score
function S (@) and accuracy function H(a) of @ are defined as follows:

S@ =Y wpi= ) Via (.1)
i=1 j=1

H(a) = Z,u,-zp,- + Z v?qj. “4.2)
i=1 j=1

Notation 1 For a;, @, € PrHPyFE(X), a; > a; represents that @, is stronger than a;; a; < a,
represents that @ is weaker than a,; a; ~ a, represents that ; is equivalent to a,.
Comparison rule 1 For «, a, € PrHPyFE(X), let S (@) and S (a;) be score values, and H(a;) and
H(a,) are accuracy values. Then
(1) if S(ay) > S(ap), then a; > ay;
(2) if S(ay) < S(ay), then a; < as;
3)if S(ay) = S(ap) and
1) H(ay) > H(a»), then a1 > a»;
2) H(a)) < H(ay), then a; < a»;
3) H(ay) = H(ay), then a; ~ a».
Definition 4 For a, € PrHPyFE(X), t = 1,2, ..., [, the generalized probabilistic hesitant Pythagorean
fuzzy weighted averaging (GPrHPyFWA) operator is defined as follows:

/ 1/«
GPrHPyFWA; (a4, a3, ..., ;) = (691 wta/f) = (W) dws®--- @ wla/}‘)l/K, “4.3)
=

where « is the generalized aggregation operator parameter that satisfies k > 0; w = (wy, wa, ..., w;) and
w, is the weight of «, that satisfies w, € [0, 1] and Zi:l w, = 1.

Definition 5 For o, € PrHPYFE(X), t = 1,2, ..., [, the generalized probabilistic hesitant Pythagorean
fuzzy weighted geometric (GPrHPyFWG) operator is defined as follows:

11 1
GPrHPyFWG;, (a1, a3, ..., ;) = — ®l (k)" = — ((ka )" @ (kar)* ® -+ ® (ka)"™), 4.4)
K = K
where « is the generalized aggregation operator parameter that satisfies « > 0; w = (wy, wa, ..., w;) and
w; 1s the weight of a; that satisfies w, € [0, 1] and Zle w, = 1.
Definition 6 For «, € PrHPYFE(X), = 1,2, ..., [, the generalized probabilistic hesitant Pythagorean
fuzzy hybrid averaging (GPrHPyFHA) operator is defined as follows:

! 1/x 1/x
GPrHPyFHA], | (a1, @s, ..., @) = (IG_BI w,ﬁﬁ(,)) = (wlﬁf(l) O Wi @ D wlﬁ:(l)) ’ 4.5)
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where « is the generalized aggregation operator parameter that satisfies « > 0; w = (wy, wp, ..., w;) and
w;, is the weight of «, that satisfies w, € [0, 1] and Zﬁ:] w, =15 w = (W, W, ..., w;) and w;, is the weight
of the #-th position that satisfies w, € [0, 1] and Zﬁzl w; = 1; B; = lw, and By is the t-th strongest
PrHPyFE n {ﬁ],ﬁz, ---,,Bl}-

Definition 7 For a, € PrHPyFE(X), r = 1,2, ..., [, the generalized probabilistic hesitant Pythagorean
fuzzy hybrid geometric (GPrHPyFHG) operator is defined as follows:

GPrHPyFHG], , (a1, @2, ..., ;) = P (KYx0)™" = - ((ky=)™" ® (ky22) ® - ® (kyz))""),  (4.6)

where « is the generalized aggregation operator parameter that satisfies k > 0; w = (wy, w», ..., w;) and
w, is the weight of «, that satisfies w, € [0, 1] and Zﬁzl w, = 15 w = (W, Wy, ..., w;) and w;, is the weight
of the t-th position that satisfies w, € [0, 1] and 25:1 w =1y = aﬁw’ and 7y, 1s the t-th strongest
PI'HPYFE in {’)/1 3 V25 ey ’}/1}

Theorem 3 For o, € PrHPYFE(X), = 1,2, k > 0, w; € [0,1], w, € [0,1], £/, w; = I, and
>, w, = 1, there are

(1) GPrtHPYFWA| (a, @, ..., ;) € PtHPYFE(X);
(2) GPrtHPYFWG;, (a1, a3, ..., a;) € PrHPyFE(X);
(3) GPrHPyFHA[, | (a1, a3, ..., a;) € PtHPyFE(X);
(4) GPrHPyFHG;, , (a1, 3, ..., @;) € PtHPYFE(X).

Proof: According to the construction methods outlined in Definitions 4, 5, 6, and 7, the
generalized aggregation operators GPrHPyFWA, GPrHPyFWG, GPrHPyFHA, and GPrHPyFHG are
all constructed through the arithmetic operations of PrHPYFE as defined in Definition 2. Given the
closure property of PrHPyFE under arithmetic operations (as established in Theorem 1), it can be
concluded that the operation results of these operators are all PrHPyFEs. m

Existing research on PrHPyFE aggregation operators has proposed multiple implementation
approaches, including probabilistic hesitate Pythagorean fuzzy weighted averaging (PrHPyFWA)
operator, probabilistic hesitate Pythagorean fuzzy weighted geometric (PrHPyFWG) operator,
probabilistic hesitant Pythagorean fuzzy hybrid averaging (PrHPyFHA) operator, and probabilistic
hesitant Pythagorean fuzzy hybrid geometric (PrHPyFHG) operator developed by Batool et al.
[18, 19]; probabilistic dual-hesitant Pythagorean fuzzy power Hamy mean operator and probabilistic
dual-hesitant Pythagorean fuzzy power weighted Hamy mean operator designed by Ji et al. [11],
and Pythagorean probabilistic hesitant fuzzy Einstein weighted averaging operator, Pythagorean
probabilistic hesitant fuzzy Einstein ordered weighted averaging operator, Pythagorean probabilistic
hesitant fuzzy Einstein weighted geometric operator, and Pythagorean probabilistic hesitant fuzzy
Einstein ordered weighted geometric operator constructed by Ashraf et al. [13]. Notably, the operators
proposed in this study exhibit formal similarity with the PrtHPyFWA, PrHPyFWG, PrHPyFHA, and
PrHPyFHG operators introduced by Batool et al. [18, 19], as shown in Table 1.
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Table 1. The PrHPyFE aggregation operators introduced by Batool et al. [18, 19].

Operators Forms

PI'HPyFWA PI'HPyFWA (a/l, Ao, ..., Q’[) =wia Dwrar, ®--- G wia;

PrHPyFWG PrHPYFWG (ay, as, ...,) =)' ® @)’ ® - Q@ a}"

PrHPyFHA PI‘HPyFHA (CZ] 0 72, JR 0/1) = LL)],BT(l) @ wzﬁT(z) ®---bD CL)[,BT(I), where ﬁ[ = lwtoz,
(t=1,2,...,0) and B is the t-th strongest PrHPyFE in {5}, 52, ..., Bi}.

PrHPYFHG ~ PrHPYFHG (a1, @, ..., @) = Y&}, ® Ye3 @ - - ®@ye where y, = " (1 = 1,2, ..., ])
and 7y, is the t-th strongest PrHPyFE in {y;, y2, ..., yi}.

Note: As demonstrated in Table 1, operators PPHPyFHA and PrHPyFHG rely on the sorting of sets {8i,/,,...,8;} and

{¥1, 2, ..., y1}, respectively. The sorting indicator functions employed by these operators differ from those proposed in this
2 2 2

study, specifically in the score function s(a) = (i Y ﬂipi) —(% Z?Zl vjqj) and accuracy function h(a) = (i >y ,Uipi) +

2
(}l 2;=1 vjq_,-) , fora = ({,ui/p,-li =1,2,...m}, {v.,-/qjlj =1,2, ,n}) € PrHPyFE (X). However, the sorting rule adopted by
both operators are fully consistent with comparison rule 1 established in this research.

Through comparative analysis, it is evident that the generalized aggregation operator system
established in Definitions 4—7 constitutes a rigorous extension of the aggregation operators presented
in Table 1. Specifically, when the parameter « of the generalized aggregation operators GPrHPyFWA,
GPrHPyFWG, GPrHPyFHA, and GPrHPyFHG is set to 1, they exactly reduce to their corresponding
counterparts PrHPyFWA, PrHPyFWG, PrHPyFHA, and PrHPyFHG, respectively. Notably, this
parameterized design bestows upon the system substantial operational flexibility: in complex
information processing scenarios, by dynamically adjusting the parameter «, optimal operator
configurations can be selected based on specific application requirements, thereby enabling scenario-
specific optimization of information processing adaptability and computational accuracy.

5. Application in procurement of teaching equipment in universities

Nowadays, teaching based on information technology is becoming increasingly popular in
universities. With the continuous improvement of the utilization rate of modern teaching equipment,
they play an increasingly important role in improving teaching effectiveness. In this situation, how to
choose teaching equipment with good comprehensive performance has become a primary consideration
in equipment procurement.

A university wants to purchase a batch of equipment for information-based teaching. Through
open bidding, products {A;, A,,...,Ay} from H companies have been identified as candidates. In
order to comprehensively consider the opinions of all relevant personnel, the procurement department
organized an expert group consisting of frontline teachers, experimental teachers, laboratory managers,
logistics support personnel, and financial managers to evaluate these candidate products. The expert
group will evaluate the candidate products based on L criteria {C;, C, ..., C,} with an evaluation weight
vector of w = (wy, w, ..., wr) that satisfies w; € (0,1],/ = 1,2,...,L, and Zle w; = 1. Suppose that
PrHPyFE ¢, is the evaluation value given by the expert group for product A, subject to criterion Cy,
where h = 1,2,..,H and [ = 1,2, ..., L. Equipment procurement decision-makers need to determine
which equipment is the most optimal to choose.

In order to select the comprehensive optimal product, the equipment procurement department
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needs to develop a reasonable and effective MCDM method. This problem can be solved using the
generalized aggregation operators and comparison rule proposed in Section 4. The main operational
steps and executive process are shown in Table 2 and Figure 1, respectively.

Table 2. The main operational steps of the proposed MCDM method.

Steps  Operating

1 Convert the cost criterion values into the benefit criterion values: if C; is a cost criterion,
then set ap = C_L’hl, [ = 1, 2, ...,L, h= 1, 2, ...,H.
2 Calculate aggregation value o), = GPrHPyFWA{ (a1, @, ..., @nr)

(Clh = GPI‘HPyFWGI:V (Clh], (0771 ozhL), ap = GPI‘HPyFHA;’w (Clh], (0775 XN Cth),
ap = GPI‘HPyFHGK (a'hl, (07475 XN CL’;,L)), h= 1, 2, ceey H.

w,w

Calculate score value S () and accuracy value H(ay,), h=1,2,...,H.
Sort a4, as, ..., @y according to Comparison rule 1.
5 Provide the comprehensive optimal product.

/ Step 0: Give an expert evaluation matrix. /

I

Step 1: Concert the cost criterion values into the benefit criterion values.

I

Step 2: Calculate aggregation values of the row vectors in the evaluation matrix.

|

Step 3: Calculate score values and accuracy values of the aggregation values.

I
1

/ Step 5: Provide the comprehensive optimal product. /

B~ W

Step 4: Sort the aggregation values.

End

Figure 1. Executive process of the proposed MCDM method.

As shown in Table 2 and Figure 1, the proposed MCDM method based on PrHPyFE generalized
aggregation operators is systematic. Next, the effectiveness of the method will be tested through a
numerical example.
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Example 2 Five products {A;, A,, A3, A4, As} participated in the bidding process. Evaluation will
utilize four criteria: easy operation (C;), high quality (C,), low maintenance cost (C3), and good after-
sales service (Cy4), with w = (0.35,0.35, 0.2, 0.1) representing the criteria weight vector.

In multi-expert decision-making scenarios, achieving complete consensus on the same evaluation
object is often challenging due to variations in experts’ professional backgrounds, cognitive
frameworks, and subjective preferences. To more comprehensively and objectively represent group
assessment information, PrtHPyFS/PrHPyFE can be utilized for modeling.

Consider an expert group of ten members evaluating product performance across multiple criteria
from two dimensions: ‘“degree of conformity” and “degree of non-conformity”. For instance,
regarding product A; under criterion C,, the expert opinions are distributed as follows: There
are six experts who assign a conformity degree of 0.7 and a non-conformity degree of 0.2; the
remaining four experts assign 0.6 and 0.2, respectively. The aggregated group opinion is expressed
as ay; = ({0.7/0.6,0.6/0.4},{0.2/1}), where {0.7/0.6,0.6/0.4} indicates a probability of 0.6 for the
conformity degree being 0.7 and a probability of 0.4 for the conformity degree being 0.6; {0.2/1}
reflects unanimous agreement (a probability of 1) among experts that the non-conformity degree is 0.2.
This representation effectively captures the distributional characteristics of expert opinions, balancing
uncertainty and consensus in the assessment.

Similarly, other evaluation values in the form of PrHPyFE can be obtained, as shown in Table 3.

Table 3. Evaluation values given by the expert group.

Criteria
Products C; C, Cs Cy
0.7/0.6,0.6/0.4}, 0.7/1}, 0.8/0.6,0.7/0.4},
A, [{ / /0.4} ] {0.7/1) ] (04/1).105/1) ({ / /0.4} )
{0.2/1} {0.3/0.2,0.4/0.8} {0.2/0.7,0.3/0.3}
0.8/0.7,0.7/0.3}, 0.7/0.7,0.6/0.3}, 0.6/1
" ({ / /0.3} ] {0.7/ /0.3} ) {0.6/1}, ) (0.7/13. 04/1])
{0.3/1} {0.6/1} {0.5/0.7,0.6/0.3}
0.7/1}, 0.8/0.3,0.7/0.7 0.7/1
A (0.6/11.105/1) {0.7/1) ] {0.8/ /0.7}, ] ( {0.7/1}, ]
{0.3/0.3,0.4/0.7} {0.3/1} {0.4/0.8,0.5/0.2}
0.7/1}, 0.6/1 0.6/1
Ay [ 07711 ] (10.8/1},10.2/1}) . ] ( 0571, ]
{0.2/0.8,0.3/0.2} {0.4/0.7,0.5/0.3} {0.2/0.5,0.3/0.5}
{0.8/0.5,0.7/0.5},
As (10.6/1},{0.2/1}) ({0 1) ) (10.8/1},10.3/1}) (10.7/1},{0.3/1})

Notes: (1) In order to compare and analyze the impact of parameter values on decision-making
results, different values of the generalized aggregation operator parameter « are used in experiments.
(2) For GPrHPyFHA and GPrHPyFHG operators, the normal distribution weighting method [22] is
used to determine the position weight vector as w = (0.1550, 0.3450, 0.3450, 0.1550).

According to the decision-making process in Table 2 and Fig. 1, the implementation steps are given
as follows:

Step 1: There is no need to perform inverse operations on the evaluation values, as all criteria are
beneficial.

Step 2: Use the generalized aggregation operators proposed in Section 4 to perform aggregation
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operations on each row of PrHPyFEs in Table 3.
Step 3: Calculate the score values and accuracy values for the aggregation results according to
Equations (4.1) and (4.2), respectively. The results are shown in column 3 of Table 4.
Step 4: Sort the aggregation results according to Comparison rule 1. The results are shown in

column 4 of Table 4.

Step 5: Provide the optimal choice. See column 5 of Table 4.

Table 4. Relevant data and results in the decision-making process.

= (0.5000, 0.7094, 0.6203, 0.5479, 0.5766)

Aggregation Parameter Score values and accuracy values Sorting results The

operators values S =(S(a1), S(a2), S(@3), S (@4), S (@5)) optimal
H = (H(a1), H(az), H(as3), H(as), H(as)) choice
S =(0.3372,0.3027,0.2999, 0.4564, 0.4468)

GPrHPyFWA k=1 a4 > a5 > a1 > a > a3 Ay
H =(0.5224,0.6913,0.6180,0.5770, 0.5823)
S =1(0.3532,0.3139,0.3054,0.4651,0.4553)

GPrHPYyFWA k=2 4 > a5 > a1 > a > a3 Ay
H =(0.5354,0.6929,0.6209, 0.5846, 0.5905)
S =1(0.2574,0.2378,0.2726,0.4130,0.4139)

GPrHPYyFWG k=1 a5 > Qg > a3z > @ > Q) As
H = (0.5062,0.7165,0.6216,0.5680, 0.5595)
S =1(0.2237,0.2090, 0.2590, 0.3863, 0.4015)

GPrHPYFWG «k =2 a5 > @4 > a3 > @) > Q) As
H =(0.5159,0.7333,0.6284,0.5782,0.5542)
S =1(0.3565,0.2528,0.3073,0.4417,0.4589)

GPrHPyFHA « =1 a5 > Qg > ap > a3 > Q) As
H =(0.5115,0.7077,0.6138, 0.5629, 0.5700)
S =(0.3846,0.2855,0.3195,0.4736,0.4724)

GPrHPyFHA « =2 g > a5 > > a3 > ) Ay
H =(0.5312,0.7210,0.6189,0.5889, 0.5794)
S =1(0.2386,0.2532,0.2973,0.4005, 0.4305)

GPrHPyFHG « =1 as > @y > a3 > @ > @ As
H =(0.4916,0.6886,0.6152,0.5441, 0.5959)
S =(0.2057,0.2128,0.2558,0.3837,0.3999)

GPrHPyFHG « =2 o as > 4 > a3 > q > @) As

Due to the fact that complete sorting of alternative products can be achieved solely based on score
values, an intuitive comparison among them is provided. See Figure 2.

05
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0.2
0.1

Scores

0.5
04
0.3
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0.1
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Figure 2. Score values of the aggregation results under different parameter values.
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From Table 4 and Figure 2, it can be seen that the decision-making results obtained vary when
different aggregation operators or different parameter values are used. Sometimes A4 is the optimal
choice, while other times As is the optimal choice. In addition, the sorting results obtained also differ in
the order of A, A,, and A;. Through analysis, it can be inferred that the main reasons for the differences
come from three aspects. (1) The parameter selection of generalized aggregation operators has a certain
impact on the decision-making results. (2) The averaging operators and geometric operators have
different sensitivities to data, especially for some extreme data. (3) The actual differences between
alternatives A4 and As, as well as the actual differences among alternatives A, A,, and As, are not
significant. For example, from the data in Table 3, it can be roughly inferred that A, is slightly stronger
than As on criterion C;; As is slightly stronger than A4 on criterion Cj; there are not many differences
in strength between A4 and As on criteria C; and C4. A similar situation exists among A;, A,, and
Aj. Overall, the obtained sorting results and final decision-making results are within a reasonable
range. In applications, suitable generalized aggregation operators and parameter values can be selected
according to specific situations to obtain decision-making results that are more in line with reality.

6. Comparative analysis

This section conducts numerical computations of Example 2 using the following aggregation
operators (PrHPyFWA, PrHPyFWG, PrHPyFHA, and PrHPyFHG) within the PrHPyFE framework,
with a subsequent comparative analysis. The specific forms of these operators are presented in Table
1.

The detailed results obtained from the calculations are summarized in Table 5.

Table 5. Data and results corresponding to the aggregation operators for comparison.

Aggregation Values of sorting indicators Sorting results The optimal
operators s = (s(a1), s(@2), s(@3), s(@s), s(as)) choice
h = (h(a), h(@2), h(a3), h(as), h(as))
s =(0.0211,-0.0175,0.1048,0.5158,0.0608)
PrHPYyFWA g > a3 > as > a) > ap ay
h = (0.0326,0.0796,0.1246,0.5176,0.1963)
s = (0.0161,-0.0300, 0.1009, 0.4893, 0.0488)
PrHPYFWG a4 > a3 > as > a) > Q) ay
h =(0.0316,0.0896,0.1227,0.4917,0.1944)
s = (0.0222,-0.0012,0.0938,0.5014,0.0716)
PrHPyFHA a4 > @3 > as > q) > Q) y
h =(0.0319,0.0715,0.1180,0.5032,0.2093)
s =(0.0173,-0.0250,0.1041, 0.4875,0.0443)
PI'HPyFHG a4 > a3 > Q5 > Q1 > Qy (o7
h = (0.0326,0.0838,0.1239,0.4902, 0.1834)

Similarly, by utilizing score values, a complete sorting of the alternatives can be achieved, with the
intuitive comparison among them presented in Figure 3.
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Figure 3. Score values based on some existing aggregation operations.

From Table 5 and Figure 3, it can be seen that the optimal choice obtained is A4, which is consistent
with some of the decision-making results obtained in Section 5. However, if they are compared
comprehensively, there are many differences. This can be easily seen from Figures 2 and 3. (1)
From Table 2, it can be seen that the difference between alternatives A4 and As is not significant, but
Figure 3 shows that there is indeed a significant difference in their score values. This seems somewhat
inconsistent with the actual situation. (2) According to Table 3, A, satisfies that the membership values
are greater than or equal to the non-membership values for each criterion. From this, it can be roughly
inferred that there should be a corresponding score value greater than or equal to zero. However, the
calculated score is negative, which is somewhat inconsistent with the actual situation. (3) From Table
2, it can be seen that regardless of which criterion, the evaluation value of As is stronger than As;.
Therefore, after aggregating information, it is common sense that the score value corresponding to As
should still be greater than the score value corresponding to A;. However, opposite results are observed
in Table 5 and Figure 3. The sorting results obtained in Section 5 all maintain that As is stronger than
Aj, which is consistent with the actual situation. The main reason for the above problems is that the
score function used in this section has certain defects. That is, since probability value information is
already used in the score function, there should no longer be coefficients 1/m and 1/n in the score
function. Otherwise, the more elements a membership set contains, the more disadvantageous it is for
the score value. Similarly, the more elements a non-membership set contains, the more advantageous
the score will be.

Through the quantitative comparison of Tables 4 and 5 and the visual analysis of Figures 2
and 3, combined with systematic experimental validation, it has been found that existing decision-
making models suffer from systematic bias due to information redundancy in their scoring functions,
which simultaneously incorporate probability values and specific coeflicients. This bias manifests in
several critical issues: counterintuitive decision-making under data distribution imbalance, abnormal
ranking results where theoretically superior alternatives are positioned unfavorably. In contrast,
the proposed model addresses these limitations by: (1) Reconstructing the scoring function to
eliminate redundant design elements, (2) establishing a data distribution calibration framework, and (3)
employing parameterized operators for information aggregation. These innovations enable the model
to demonstrate stable performance in imbalanced data scenarios, effectively reducing systematic bias
and enhancing alignment with decision-making commonsense. The proposed approach provides a new
technical pathway for improving the reliability of intelligent decision-making systems in complex data
environments, particularly in addressing counterintuitive decision problems prevalent in real-world
applications.
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7. Conclusions

7.1. Foundational theoretical innovations

This research establishes three cornerstone theoretical advancements:

(1) Complete operational framework — A comprehensive arithmetic operation system for PrHPyFEs
is developed, enabling precise mathematical characterization of hybrid uncertainties through rigorously
defined algebraic structures.

(2) Generalized operator architecture — Four novel parameter-driven aggregation operators
(GPrHPyFWA, GPrHPyFWG, GPrHPyFHA, and GPrHPyFHG) are proposed, featuring dynamic
adjustment capabilities across membership degrees, non-membership degrees, and probability
distributions.

(3) Integrated decision-making methodology — A unified MCDM framework is constructed,
systematically bridging the gap between theoretical constructs and practical implementation scenarios
through rigorous algorithmic integration and scenario-based validation.

7.2. Empirical validation and comparative advantages

Through systematic case studies and comparative analysis, the proposed methodology demonstrates
three core advantages:

(1) Decision-making effectiveness — The framework enhances accuracy in processing probabilistic
and hesitant information via dynamic adjustment mechanisms that adaptively optimize information
aggregation based on uncertainty characteristics.

(2) Algorithmic superiority — It achieves improved computational efficiency and robustness
compared to conventional aggregation operators.

(3) Practical applicability — It demonstrates validated effectiveness in real-world scenarios through
educational equipment procurement cases.

7.3. Methodological limitations and constraints

The present framework exhibits three principal limitations:

(1) Scope restriction — The framework is currently confined to Pythagorean fuzzy environments,
without extension to g-rung orthopair fuzzy sets (g-ROFSs) that provide superior modeling capabilities
for complex uncertainty.

(2) Weighting constraint — Dependence on fixed weight vectors may introduce subjective bias,
especially in high-dimensional decision spaces where expert judgments might fail to fully capture
intricate interdependencies.

(3) Criterion interaction limitation — The aggregation operators assume non-interactive criteria,
inherently limiting their capacity to model complex nonlinear interdependencies in real-world decision-
making.

7.4. Strategic research trajectory

Future investigations will prioritize four critical dimensions:
(1) Cross-domain implementation: Deploying the methodology in supply chain optimization and
clinical decision support systems to validate its applicability.
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(2) Theoretical expansion: Extending the framework to g-ROFSs and other advanced uncertainty
modeling paradigms.

(3) Collaborative decision enhancement: Investigating PrHPyFSs in MCGDM contexts,
incorporating attribute interdependence modeling.

(4) Adaptive weighting systems: Developing intelligent aggregation operators for scenarios with
unknown or partially known weight vectors by integrating machine learning techniques.

7.5. Concluding synthesis and forward vision

This research presents theoretical tools for intelligent decision analysis in complex uncertainty
environments. Through the synergistic integration of generalized aggregation operators with the
PrHPyFS theoretical framework, a computational platform is established to address contemporary
decision-making challenges. The developed framework not only provides immediate solutions to
current complex decision problems but also delineates structured pathways for future theoretical
development and cross-disciplinary practical applications.

Author contributions

Mingxin Wang: Investigation, Conceptualization, Formal analysis, Validation, Writing — original
draft, Writing — revised draft. Luping Liu: Methodology, Writing — original draft.

Acknowledgments

This work has been partially supported by the Natural Science Foundation of Guizhou Province
(Grant No. MS(2025)047) and the Research Foundation of Guizhou University of Commerce (Grant
No. 2024XJSDYBO1).
Use of Generative-Al tools declaration

The authors declare they have not used Artificial Intelligence (Al) tools in the creation of this article.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353. https://doi.org/10.1016/S0019-
9958(65)90241-X

2. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst, 20 (1986), 87-96.
https://doi.org/10.1016/S0165-0114(86)80034-3

3. R.R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE T. Fuzzy Syst.,
22 (2014), 958-965. https://doi.org/10.1109/TFUZZ.2013.2278989

AIMS Mathematics Volume 11, Issue 1, 322-344.


https://dx.doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
https://dx.doi.org/https://doi.org/10.1016/S0019-9958(65)90241-X
https://dx.doi.org/https://doi.org/10.1016/S0165-0114(86)80034-3
https://dx.doi.org/https://doi.org/10.1109/TFUZZ.2013.2278989

343

10.

11.

12.

13.

14.

15.

16.

17.

V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst, 25 (2010), 529-539.
https://doi.org/10.1002/int.20418

B. Zhu, Z. Xu, M. Xia, Dual hesitant fuzzy sets, J. Appl. Math., 2012 (2012), Article 879629.
https://doi.org/10.1155/2012/879629

M. S. A. Khan, S. Abdullah, A. Ali, N. Siddiqui, F. Amin, Pythagorean hesitant fuzzy sets and their
application to group decision making with incomplete weight information, J. Intell. Fuzzy Syst., 33
(2017), 3971-3985. https://doi.org/10.3233/JIFS-17811

D. Liang, Z. Xu, The new extension of TOPSIS method for multiple criteria decision
making with hesitant Pythagorean fuzzy sets, Appl. Soft Comput., 60 (2017), 167-179.
http://dx.doi.org/10.1016/j.as0c.2017.06.034

Z. Xu, W. Zhou, Consensus building with a group of decision makers under the
hesitant probabilistic fuzzy environment, Fuzzy Optim. Decis. Ma., 16 (2017), 481-503.
http://dx.doi.org/10.1007/s10700-016-9257-5

S. Luo, J. Liu, The probabilistic interval-valued hesitant Pythagorean fuzzy set and its application
in selecting processes of project private partner, [EEE Access, 7 (2019), 170304-170321.
http://dx.doi.org/10.1109/ACCESS.2019.2954995

B. Batool, M. Ahmad, S. Abdullah, S. Ashraf, R. Chinram, Entropy based Pythagorean
probabilistic hesitant fuzzy decision making technique and its application for fog-haze factor
assessment problem, Entropy, 22 (2020), Article 318. http://dx.doi.org/10.3390/e22030318

C. Ji, R. Zhang, J. Wang, Probabilistic dual-hesitant Pythagorean fuzzy sets and their
application in multi-attribute group decision-making, Cogn. Comput., 13 (2021), 919-935.
https://doi.org/10.1007/s12559-021-09858-1

G. Sun, W. Hua, G. Wang, Interactive group decision making method based on probabilistic
hesitant Pythagorean fuzzy information representation, Appl. Intell., 52 (2022), 18226-18247.
https://doi.org/10.1007/s10489-022-03749-0

S. Ashraf, B. Batool, M. Naeem, Novel decision making methodology under Pythagorean
probabilistic hesitant fuzzy Einstein aggregation information, Comput. Model. Eng. Sci., 136
(2023), 1785—1811. https://doi.org/10.32604/cmes.2023.024851

F. Liao, W. Li, G. Liu, X. Zhou, Pythagorean probabilistic hesitant triangular fuzzy aggregation
operators with applications in multiple attribute decision making, J. Syst. Eng. Electron., 34 (2023),
422-438. https://doi.org/10.23919/JSEE.2023.000015

M. Rasheed, E. Tag-Eldin, N. A. Ghamry, M. A. Hashmi, M. Kamran, U. Rana, Decision-
making algorithm based on Pythagorean fuzzy environment with probabilistic hesitant fuzzy set
and Choquet integral, AIMS Math., 8 (2023), 12422-12455. https://doi.org/10.3934/math.2023624

R. Sarkar, V. Bakka, R. S. Rao, Multi-attribute decision making based on probabilistic dual hesitant
Pythagorean fuzzy information, Operat. Resear. Eng. Sci.: Theory Appl., 6 (2023), 176-202.
https://doi.org/10.31181/oresta/060309

G. Sun, M. Wang, New ranking methods of probabilistic hesitant Pythagorean fuzzy information
and their application in multi-criteria decision-making, Comput. Appl. Math., 44 (2025), Article
406. https://doi.org/10.1007/s40314-025-03343-3

AIMS Mathematics Volume 11, Issue 1, 322-344.


https://dx.doi.org/https://doi.org/10.1002/int.20418
https://dx.doi.org/https://doi.org/10.1155/2012/879629
https://dx.doi.org/https://doi.org/10.3233/JIFS-17811
https://dx.doi.org/http://dx.doi.org/10.1016/j.asoc.2017.06.034
https://dx.doi.org/http://dx.doi.org/10.1007/s10700-016-9257-5
https://dx.doi.org/http://dx.doi.org/10.1109/ACCESS.2019.2954995
https://dx.doi.org/http://dx.doi.org/10.3390/e22030318
https://dx.doi.org/https://doi.org/10.1007/s12559-021-09858-1
https://dx.doi.org/https://doi.org/10.1007/s10489-022-03749-0
https://dx.doi.org/https://doi.org/10.32604/cmes.2023.024851
https://dx.doi.org/https://doi.org/10.23919/JSEE.2023.000015
https://dx.doi.org/https://doi.org/10.3934/math.2023624
https://dx.doi.org/https://doi.org/10.31181/oresta/060309
https://dx.doi.org/https://doi.org/10.1007/s40314-025-03343-3

344

18. B. Batool, S. S. Abosuliman, S. Abdullah, S. Ashraf, EDAS method for decision support modeling
under the Pythagorean probabilistic hesitant fuzzy aggregation information, J. Amb. Intell. Hum.
Comput., 13 (2022), 5491-5504. https://doi.org/10.1007/s12652-021-03181-1

19. B. Batool, S. Abdullah, S. Ashraf, M. Ahmad, Pythagorean probabilistic hesitant fuzzy
aggregation operators and their application in decision-making, Kybernetes, 51 (2022), 1626—-1652.
https://doi.org/10.1108/K-11-2020-0747

20. F. Tang, Y. Zhang, J. Wang, How do enterprises determine which breakthrough invention should be
commercialized? Amultiple attribute group decision-making-basedmethod, Comput. Appl. Math.,
41 (2022), Article 385. https://doi.org/10.1007/s40314-022-02068-x

21. S. Qahtan, H. A. Alsattar, A. A. Zaidan, M. Deveci, D. Pamucar, W. Ding, A novel fuel supply
system modelling approach for electric vehicles under Pythagorean probabilistic hesitant fuzzy
sets, Inform. Sciences, 622 (2023), 1014—1032. https://doi.org/10.1016/;.ins.2022.11.166

22. 7. Xu, An overview of methods for determining OWA weights, Int. J. Intell. Syst., 20 (2005),
843-865. https://doi.org/10.1002/int.20097

EE ©2026 the Author(s), licensee AIMS Press. This

is an open access article distributed under the
@ AIMS Press terms of the Creative Commons Attribution License
o (https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 11, Issue 1, 322-344.


https://dx.doi.org/https://doi.org/10.1007/s12652-021-03181-1
https://dx.doi.org/https://doi.org/10.1108/K-11-2020-0747
https://dx.doi.org/https://doi.org/10.1007/s40314-022-02068-x
https://dx.doi.org/https://doi.org/10.1016/j.ins.2022.11.166
https://dx.doi.org/https://doi.org/10.1002/int.20097
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Some properties of arithmetic operations
	Generalized aggregation operators
	Application in procurement of teaching equipment in universities
	Comparative analysis
	Conclusions
	Foundational theoretical innovations
	Empirical validation and comparative advantages
	Methodological limitations and constraints
	Strategic research trajectory
	Concluding synthesis and forward vision


