We investigate the structural stability of solutions to boundary value problems for the variable exponent $ p(x) $-Laplacian. Stability questions for such problems under perturbations of the boundary operator, the differential operator, boundary data, or the domain have a long history and play a central role in the analysis of nonlinear partial differential equations (PDEs). In this work, we consider the Poisson boundary value problem with nonhomogeneous boundary conditions and study the behavior of its solutions under variations of the exponent functions $ p(x) $. Our results extend the classical stability theorem of Lindqvist (1987), originally formulated for constant $ p $, to the variable exponent setting. Moreover, our approach sharpens and generalizes the framework developed by Zhikov (2011), allowing for nonhomogeneous boundary data and providing stronger convergence results for the associated family of solutions. Specifically, it is shown that if the sequence $ (p_j(x)) $ increases uniformly to $ p(x) $ in a bounded, smooth domain $ \Omega $, then the sequence $ (u_i) $ of solutions to the Dirichlet problem for the $ p_i(x) $-Laplacian with fixed boundary datum $ \varphi $ converges (in a sense to be made precise) to the solution $ u_p $ of the Dirichlet problem for the $ p(x) $-Laplacian with boundary datum $ \varphi $. A similar result is proved for a decreasing sequence $ p_j\searrow p $.
Citation: Behzad Djafari Rouhani, Osvaldo Méndez. $ p(x) $-stability of the Dirichlet problem for Poisson's equation with variable exponents[J]. AIMS Mathematics, 2026, 11(1): 192-210. doi: 10.3934/math.2026008
We investigate the structural stability of solutions to boundary value problems for the variable exponent $ p(x) $-Laplacian. Stability questions for such problems under perturbations of the boundary operator, the differential operator, boundary data, or the domain have a long history and play a central role in the analysis of nonlinear partial differential equations (PDEs). In this work, we consider the Poisson boundary value problem with nonhomogeneous boundary conditions and study the behavior of its solutions under variations of the exponent functions $ p(x) $. Our results extend the classical stability theorem of Lindqvist (1987), originally formulated for constant $ p $, to the variable exponent setting. Moreover, our approach sharpens and generalizes the framework developed by Zhikov (2011), allowing for nonhomogeneous boundary data and providing stronger convergence results for the associated family of solutions. Specifically, it is shown that if the sequence $ (p_j(x)) $ increases uniformly to $ p(x) $ in a bounded, smooth domain $ \Omega $, then the sequence $ (u_i) $ of solutions to the Dirichlet problem for the $ p_i(x) $-Laplacian with fixed boundary datum $ \varphi $ converges (in a sense to be made precise) to the solution $ u_p $ of the Dirichlet problem for the $ p(x) $-Laplacian with boundary datum $ \varphi $. A similar result is proved for a decreasing sequence $ p_j\searrow p $.
| [1] |
M. Bachar, M. Khamsi, O. Méndez, Modular uniform convexity in variable exponent Sobolev spaces, Symmetry, 15 (2023), 1988. https://doi.org/10.3390/sym15111988 doi: 10.3390/sym15111988
|
| [2] | H. Brézis, Annalyse fonctionelle, théorie et applications, Mason, Paris, 1983. |
| [3] |
A. Charkaoui, A. B. Loghfyry, S. Zeng, Nonlinear parabolic double phase variable exponent systems with applications in image noise removal, Appl. Math. Model., 132 (2024), 495–530. https://doi.org/10.1016/j.apm.2024.04.059 doi: 10.1016/j.apm.2024.04.059
|
| [4] |
A. Charkaoui, A. B. Loghfyry, S. Zeng, A novel parabolic model driven by double phase flux operator with variable exponents: Applications to image decomposition and denoising, Comput. Math. Appl., 174 (2024), 97–141. https://doi.org/10.1016/j.apm.2024.04.059 doi: 10.1016/j.apm.2024.04.059
|
| [5] |
A. Charkaoui, A. B. Loghfyry, A class of nonlinear parabolic PDEs with variable growth structure applied to multi-frame MRI super resolution, Nonlinear Anal.-Real, 83 (2024), 97–141. https://doi.org/10.1016/j.nonrwa.2024.104259 doi: 10.1016/j.nonrwa.2024.104259
|
| [6] |
A. C. Blanco, L. Gasiński, P. Harjulehto, P. Winkert, A new class of double phase variable exponent problems: Existence and uniqueness, J. Differ. Equ. Appl., 323 (2022), 182–228. https://doi.org/10.1016/j.jde.2022.03.029 doi: 10.1016/j.jde.2022.03.029
|
| [7] | L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017 (2011). |
| [8] |
D. Edmunds, J. Lang, A. Nekvinda, Some $s$-numbers of an integral operator of Hardy type on $L^{p(\cdot)}$ spaces, J. Funct. Anal., 257 (2009), 219–242. https://doi.org/10.1016/j.jfa.2009.02.015 doi: 10.1016/j.jfa.2009.02.015
|
| [9] |
X. Fan, Q. Zhang, Existence of solutions for $p(x)$-Laplacian problem, Nonlinear Anal., 52 (2003), 1843–1852. https://doi.org/10.1016/S0362-546X(02)00150-5 doi: 10.1016/S0362-546X(02)00150-5
|
| [10] |
X. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424–446. https://doi.org/10.1006/jmaa.2000.7617 doi: 10.1006/jmaa.2000.7617
|
| [11] |
G. Fragnelli, Positive periodic solutions for a system of anisotropic parabolic equations, J. Math. Anal. Appl., 367 (2010), 204–228. https://doi.org/10.1016/j.jmaa.2009.12.039 doi: 10.1016/j.jmaa.2009.12.039
|
| [12] |
L. Hedberg, T. Kilpelainen, On the stability of Sobolev functions with zero boundary values, Math. Scand., 85 (2009), 245–258. https://doi.org/10.7146/math.scand.a-18274 doi: 10.7146/math.scand.a-18274
|
| [13] |
M. Khamsi, O. Méndez, Modular uniform convexity structures and applications to boundary value problems with non-standard growth, J. Math. Anal. Appl., 536 (2024). https://doi.org/10.1016/j.jmaa.2024.128203 doi: 10.1016/j.jmaa.2024.128203
|
| [14] | O. Kováčik, J. Rákosník, On spaces $L^{p(x)}, W^{k, p(x)}$, Czech. Math. J., 41 (1991), 592–618. https://dml.cz/handle/10338.dmlcz/102493 |
| [15] |
J. Lang, O. Méndez, $\Gamma$- convergence of the energy functional for the variable exponent $p$-Laplacian and stability of the minimizers with respect to integrability, J. Anal. Math., 134 (2018), 575–596. https://doi.org/10.1007/s11854-018-0018-y doi: 10.1007/s11854-018-0018-y
|
| [16] |
P. Lindqvist, Stability of the solutions of $\text{div}\left(|\nabla u|^{p-2}\nabla u\right) = f$ with variable $p$, J. Math. Anal. Appl., 127 (1987), 92–102. https://doi.org/10.1016/0022-247X(87)90142-9 doi: 10.1016/0022-247X(87)90142-9
|
| [17] |
J. Manfredi, J. Rossi, J. Urbano, Limits as $p(x)\rightarrow \infty$ of $p(x)$-harmonic functions, Nonlinear Anal.-Theor., 72 (2010), 309–315. https://doi.org/10.1016/j.na.2009.06.054 doi: 10.1016/j.na.2009.06.054
|
| [18] |
W. Orlicz, Über konjugierte Exponentenfolgen, Stud. Math., 3 (1931), 200–211. https://doi.org/10.4064/sm-3-1-200-211 doi: 10.4064/sm-3-1-200-211
|
| [19] |
V. V. Zhikov, On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci., 173 (2011), 463–570. https://doi.org/10.1007/s10958-011-0260-7 doi: 10.1007/s10958-011-0260-7
|
| [20] | V. V. Zhikov, On Lavrentiev's phenomenon, Russ. J. Math. Phy., 3 (1995), 249–269. |
| [21] | V. V. Zhikov, Averaging of functionals in the calculus of variations and elasticity theory, Izvestiya Rossiiskoy Akademii Nauk., 50 (1986), 675–710. |