Theory article Special Issues

Boundedness and continuity of local bilinear maximal commutators on Triebel–Lizorkin spaces and Besov spaces

  • Published: 04 January 2026
  • MSC : 42B25, 46E35

  • In the present paper we investigated the mapping properties for the bilinear maximal commutator in the domain setting. Some new boundedness and continuity for the above operator on the Triebel–Lizorkin spaces and Besov spaces were established under suitable symbol function conditions. The main results essentially extend some known ones to the local setting.

    Citation: Feng Liu, Simin Liu, Xiao Zhang. Boundedness and continuity of local bilinear maximal commutators on Triebel–Lizorkin spaces and Besov spaces[J]. AIMS Mathematics, 2026, 11(1): 167-191. doi: 10.3934/math.2026007

    Related Papers:

  • In the present paper we investigated the mapping properties for the bilinear maximal commutator in the domain setting. Some new boundedness and continuity for the above operator on the Triebel–Lizorkin spaces and Besov spaces were established under suitable symbol function conditions. The main results essentially extend some known ones to the local setting.



    加载中


    [1] E. Carneiro, D. Moreira, On the regularity of maximal operators, Proc. Amer. Math. Soc., 136 (2008), 4395–4404. https://doi.org/10.1090/S0002-9939-08-09515-4 doi: 10.1090/S0002-9939-08-09515-4
    [2] P. Hajłasz, J. Onninen, On boundedness of maximal functions in Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 29 (2004), 167–176.
    [3] J. Hart, F. Liu, Q. Xue, Regularity and continuity of local multilinear maximal type operators, J. Geom. Anal., 31 (2021), 3405–3454. https://doi.org/10.1007/s12220-020-00400-7 doi: 10.1007/s12220-020-00400-7
    [4] T. Heikkinen, J. Kinnunen, J. Korvenpää, H. Tuominen, Regularity of the local fractional maximal function, Ark. Mat., 53 (2015), 127–154. https://doi.org/10.1007/s11512-014-0199-2 doi: 10.1007/s11512-014-0199-2
    [5] J. Kinnunen, The Hardy–Littlewood maximal function of a Sobolev function, Israel J. Math., 100 (1997), 117–124. https://doi.org/10.1007/BF02773636 doi: 10.1007/BF02773636
    [6] J. Kinnunen, P. Lindqvist, The derivative of the maximal function, J. Reine. Angew. Math., 503 (1998), 161–167. https://doi.org/10.1515/crll.1998.095 doi: 10.1515/crll.1998.095
    [7] J. Kinnunen, E. Saksman, Regularity of the fractional maximal function, Bull. London Math. Soc., 35 (2003), 529–535. https://doi.org/10.1112/S0024609303002017 doi: 10.1112/S0024609303002017
    [8] S. Korry, A class of bounded operators on Sobolev spaces, Arch. Math., 82 (2004), 40–50. https://doi.org/10.1021/cen-v082n040.p050 doi: 10.1021/cen-v082n040.p050
    [9] S. Korry, Boundedness of Hardy–Littlewood maximal operator in the framework of Lizorkin–Triebel spaces, Rev. Mat. Complut., 15 (2002), 401–416. https://doi.org/10.5209/rev_REMA.2002.v15.n2.16899 doi: 10.5209/rev_REMA.2002.v15.n2.16899
    [10] M. Lacey, The bilinear maximal function map into $L^p$ for $2/3 < p\leq1$, Ann. Math., 151 (2000), 35–57. https://doi.org/10.1080/15627020.2000.11407203 doi: 10.1080/15627020.2000.11407203
    [11] F. Liu, H. Wu, On the regularity of maximal operators supported by submanifolds, J. Math. Anal. Appl., 453 (2017), 144–158. https://doi.org/10.1016/j.jmaa.2017.03.058 doi: 10.1016/j.jmaa.2017.03.058
    [12] H. Luiro, Continuity of the maximal operator in Sobolev spaces, Proc. Amer. Math. Soc., 135 (2007), 243–251. https://doi.org/10.1090/S0002-9939-06-08455-3 doi: 10.1090/S0002-9939-06-08455-3
    [13] H. Luiro, On the regularity of the Hardy–Littlewood maximal operator on subdomains of $\mathbb{R}^n$, Proc. Edinburgh Math. Soc., 53 (2010), 211–237. https://doi.org/10.1017/S0013091507000867 doi: 10.1017/S0013091507000867
    [14] F. Liu, S. Liu, S. Wang, Multilinear maximal operators on Triebel–Lizorkin spaces and Besov spaces, Acta Math. Sin. Engl. Ser., (accepted).
    [15] F. Liu, S. Liu, X. Zhang, Regularity properties of bilinear maximal function and its fractional variant, Results Math., 75 (2020), 1–29. https://doi.org/10.1007/s00025-020-01215-2 doi: 10.1007/s00025-020-01215-2
    [16] F. Liu, S. Wang, Q. Xue, Regularity of local bilinear maximal operator, Results Math., 75 (2020), 1–12. https://doi.org/10.1007/s00025-021-01522-2 doi: 10.1007/s00025-021-01522-2
    [17] C. Pérez, R. H. Torres, Sharp maximal function estimates for multilinear singular integrals, Contemp. Math., 320 (2003), 323–331. https://doi.org/10.1090/conm/320/05615 doi: 10.1090/conm/320/05615
    [18] J. P. G. Ramos, O. Saari, J. Weigt, Weak differentiability for fractional maximal functions of general $L^p$ functions on domains, Adv. Math., 368 (2020), 107–144. https://doi.org/10.48550/arXiv.1909.04375 doi: 10.48550/arXiv.1909.04375
    [19] H. Triebel, Theory of function spaces, II, Monographs in Mathematics, Volume 84, Birkhäuser, 1992.
    [20] G. Wang, F. Liu, Commutators of local bilinear maximal operator with Sobolev symbols, Inter. J. Math., 33 (2022), 2250061. https://doi.org/10.1142/S0129167X22500616 doi: 10.1142/S0129167X22500616
    [21] G. Wang, F. Liu, Regularity of commutator of bilinear maximal operator with Lipschitz symbols, Math. Inequal. Appl., 25 (2022), 573–600. https://doi.org/10.7153/mia-2022-25-35 doi: 10.7153/mia-2022-25-35
    [22] G. Wang, F. Liu, Regularity of commutators of the bilinear maximal operator, Rocky Mount. J. Math., 53 (2023), 1609–1634. https://doi.org/10.1216/rmj.2023.53.1609 doi: 10.1216/rmj.2023.53.1609
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(267) PDF downloads(21) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog