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1. Introduction

The primary purpose of this paper is to investigate the mapping properties for the local bilinear
maximal commutators

Map(f,9)(x) = sup

[(b(x) — b(x +y) f(x+y)g(x — y)|dy,
o<rdisitxany 1BO: D)l Jpo. IS+ )g(x = yldy

on the Triebel-Lizorkin space F??(Q) and Besov space B} ?(Q), where Q is a subdomain in R". See
Section 2 for the definitions of F7?(Q) and BY(Q). This type of commutator was introduced by Wang
and Liu [20] who established the boundedness properties of Mg ;, on first-order Sobolev spaces. Here
we shall establish the boundedness and continuity of Mg, on FF4(Q) and BY(Q). Our main results
will extend the main results of [22] to the local setting. It should be pointed out that the commutativity
with translations for maximal operators plays a key role in proving the boundedness and continuity of
maximal operators on Triebel-Lizorkin spaces and Besov spaces. Since the local maximal operator
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lacks the commutativity with translations, it makes the study of the boundedness and continuity of
local bilinear maximal commutators more complex.
Let us begin with a brief review of the research in the regularity theory of maximal operators.

1.1. Regularity of maximal operators

The regularity theory of maximal operators is an active area of current research. This topic
originated with Kinnunen [5], who first established the W!'»(R") (1 < p < oo) for the centered Hardy—
Littlewood maximal operator

M f(x) = sup

lf)Idy, xe€R",
0 |1B(x,7)| B(x,r)

where B(x,r) is the open ball in R" centered at x with radius r, and |B(x, r)| is the volume of B(x, r).
Later on, Kinnunen’s result was extended to various settings, see [6] for the local case, [7] for the
fractional case, and [1, 16] for the bilinear case. The continuity properties for the Hardy-Littlewood
maximal operator and its various variants on Sobolev spaces can be found in [1,12, 13]. An important
extension of Sobolev regularity for maximal operators is to study their behaviors on other smooth
function spaces. This direction was initiated by Korry [9], who concluded that M is bounded on
inhomogeneous Triebel-Lizorkin spaces and inhomogeneous Besov spaces for 0 < s < 1 and 1 <
P, q < co. As a direct consequence, it is valid that M is bounded on fractional Sobolev spaces W*7(R")
forO0 < s <land1 < p < oo (also see [8]). Subsequently, Luiro [13] established the continuity of
M : FPYR") — FPYR") for0 < s < 1and 1 < p,q < oo. The continuity of M : BY/(R") — BY(R™)
forO<s<1land1 < p,g < oocanbe found in [11].

It is worth noting that maximal operator M enjoys commutativity with translations, which plays
a key role in proving the boundedness of maximal operators on first-order Sobolev spaces, Triebel—
Lizorkin spaces, and Besov spaces (see [2, 5, 9]). However, the maximal operator in a local setting
lacks commutativity with translations, which makes the investigation on the regularity of maximal
operators in a local setting more interesting and challenging. In 1998, Kinnunen and Lindqvist [6] first
studied the Sobolev regularity of local maximal operator

Mqf(x)=  sup

|f(x = yldy, xe€Q,
0<r<dist(x,00) 1B(O, | Jpo.r)

where Q C R” is a subdomain of R”. They showed that M, : W'*(Q) — W!'P(Q) is bounded
forall 1 < p < oo (also see [2]). Later on, the above result was extended to the fractional variant
(see [4, 18]) and to the multilinear variant (see [3, 16]). In [13], Luiro established the continuity of
Mg : WHP(Q) — WP(Q) for all 1 < p < 0. Luiro also studied the boundedness and continuity of M
on Triebel-Lizorkin spaces (see Section 2 for its definition). Very recently, Liu, Liu and Wang [14]
extended the above result to the multilinear setting.

Compared with the Hardy-Littlewood maximal operator, the bilinear maximal operator is more
complex. Let Q) be a subdomain in R”. The local bilinear maximal operator is defined by

Ma(f,8)(x) =  sup

lfCx+y)g(x = yldy, x €,
0<r<dist(x,00) |B(O, r)| B(O,r)
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where O = (0,...,0) € R". This type of maximal operator was introduced in [16] which studied
the Sobolev regularity of Mg. When Q = R”, M reduces to the usual bilinear maximal operator IN,
which originated from Calderén’s work in 1964 when he posed whether the mapping M : L?(R) x
L*(R) — L'(R) is bounded. In Lacey’s seminal work [10], Lacey addressed Calderén’s conjecture by
establishing the boundedness of M : LP'(R) X LP?(R) — LP(R) for 1 < py,p, < ,2/3 < p < 1,
and 1/py + 1/p, = 1/p. It was pointed out in [1] that 9t is bounded from M : LP'(R") x LP*(R")
to LP(R") for 1 < py,pp < 00,1 < p <ooand 1/p; +1/p, = 1/p. Based on the above Lebesgue
boundedness, Carneiro and Moreira [1] proved that 0 : Wr1(R") x WHP2(R") — WP(R") is bounded
and continuous for 1 < py, po,p < coand 1/p = 1/p; + 1/p,. Subsequently, Liu, Liu and Zhang [15]
established the boundedness and continuity of 9 on F7“(R") and BY“(R"). In the local setting, Liu,
Wang and Xue [16] showed that M, is bounded and continuous from W'*1(Q) x W!-P2(Q) to WP(Q),
where 1 < p;,pp <oo,1 < p<ooand1/p, +1/py=1/p.

1.2. Regularity of the bilinear maximal commutator

The regularity properties of maximal commutators have been studied by many authors. It should
be pointed out that the commutators of bilinear operators were originally introduced by Pérez and
Torres [17], who studied the boundedness for the commutators of the bilinear Calderon—Zygmund
operator [T, b];(i = 1,2), where T is the bilinear Calderén—Zygmund operator. When Q = R”, the
operator Mg, reduces to the bilinear maximal commutator 9t,. The bilinear maximal commutator
I, was first introduced by Wang and Liu [21] in 2022 when they established the boundedness and
continuity of M, on Triebel-Lizorkin spaces and Besov spaces under the condition that the symbol
function b belongs to the Lipschitz space. Very recently, Wang and Liu [22] proved the following
result.

1

i

Theorem A. ([22]) Let0 < s < 1, 1 < py, p2, p3,p <00, and ¥, + = >
(i) Let p' < g < 0, p3 < pa(p1 + p3) and p3 < pi(p2 + p3). If b € FY(R™), then M, = FY(R") X
FPP(RY — FPUR™M) is bounded and continuous.
(ii) Let b € BP*(R"). Then M, : BY"(R™) x BE*(R") — BY(R") is bounded and continuous.

1.3. Motivation and main results
In this subsection we shall present the main motivations and results.

Based on Theorem A, a natural question is the following:

Question 1. What is the local case of Theorem A? More precisely, what conditions for py, p2, p3, p, ¢
guarantee the boundedness and continuity of Mg, : FL1(Q)x F7(Q) — F(Q) when b € FY¥(Q)?
What happens when we consider the Besov spaces?

This is the main motivation of this paper. Before establishing our main results, let us point out the
following fact.

Remark 2. Let 1 < py,py, p3,p <oo, 1/p=1/p1 +1/pa+ 1/p3, and b € LP*(Q). If f € LP'(Q) and
g € L”*(Q), then we have

1Mas(fs e < bl @ll fllrn @llglliie -
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By the above boundedness and the sublinearity of Mig 5, we have that
Ma,p o LPN(Q) X LP2(Q) — LP(Q)

is continuous.
Our main results are the following:

Theorem 1. Let 1 < py,py, p3,p < 00, 0 < 5 < 1, Z?:l,% = % and max{p/, p,} < min{p,q}. If
b € F*(Q), then the following mapping

Vo, : FL(Q) x FRAQ) - FL4Q)
is bounded and continuous. Moreover, there exists C > 0 such that

M, (f, Olrray < CllbI prsagyll fll pria g lIgl pr2a - (1.1)
Theorem 2. Let 1 < pi,ps,p3,p,q < 0, 0 < s < 1, and 21-3:1!% = % If b € BY(Q), then the
following mapping
Vo : BIMQ) X BIQ) — BIQ)

is bounded and continuous. Moreover, there exists C > 0 such that

”gﬁQ,b(f, g)”Bﬁ’”(Q) < C||b||Bf3”/(Q)||f||Bfl"I(Q)l|g||3§’2’q(g)- (12)

Remark 3. Theorems 1 and 2 can be regarded as a local variant of Theorem A. Compared with
Theorem A, our main results and their proofs are more complex and refined. It should be pointed out
that the estimate of difference for an objective function plays a key role in concluding the boundedness
and continuity of the objective operator on Triebel-Lizorkin spaces and Besov spaces, both in the
global and local cases. However, the difference estimates of the local bilinear maximal commutators
are more detailed and complex than those of the global case.

This paper is organized as follows. Section 2 contains some properties of Triebel-Lizorkin spaces
and Besov spaces as well as maximal functions, and some refined estimates of difference for extension
functions of the local bilinear maximal commutator, which are the main ingredients of proving our
main results. In Section 3 we present the proofs of Theorems 1 and 2. We would like to remark that
the main ideas used to prove our main results are a combination of ideas and arguments from [13,22].
The novelty is how to extend the results of [22] to the local setting.

Throughout this paper, for any p € [1, co], we denote by p’ the dual exponent to p, i.e., 5 + - = 1.
We set p = co when p = 1 and p’ = 1 when p = oco. The letter C, sometimes with additional
parameters, will stand for positive constants, not necessarily the same one at each occurrence but is
independent of the essential variables. If there exists a constant ¢ > 0 depending only on ¢ such that
A < c¢B, we then write A <y B; and if A <y B <y A, we then write A ~y B. For any x, h € R” and a
function f defined on R", we set A, f(x) = f(x + h) — f(x).
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2. Preliminaries

2.1. Triebel-Lizorkin spaces and Besov spaces

Let us start with the definition of local Triebel-Lizorkin spaces. This definition is due to Triebel.
This is not the only way to define these spaces.

Definition 4. (Local Triebel-Lizorkin spaces, [13]). Let 1 < p,g < coand 0 < s < 1. Let
FPYR™) (resp., FP'(R")) be inhomogeneous (resp., homogeneous) Triebel-Lizorkin spaces. The
inhomogeneous local Triebel-Lizorkin space FY(Q) is defined by

FPUQ) = {fla: f € FPIRMY, Il pray = inf{||g||F§"‘1(Rn) : gla = [}
It is well known that (see [19]):
EP*R") = LP(R"), 1< p<oo;
Wfllpragny ~ 1flgragny + 1 fllr@n, 1< p, g <oo, s>0;

”f”Ffl‘q(R”) < ||f||F§’2*‘1(Rn)’ s1< 8, 1 <p,qg<oo;

”f”pf'qZ(Rn) < ”f”pf"“(Rn), s € R’ I < p <09, 1< qi < go < 0. (2~1)

functions g : R" x (0, 1) X B(O, 1) — R satisfying

1
||g||F,,_W = (Ln (f(; (L(O,l) 18(x. 1, h)lrdh)q/rdTI)p/qu)l/p o

It was established in [19, p. 194] that

Letl < p,g <o0,0< s < 1,and 1 <r < min{p,q}. Let F,,(R") be the set of all measurable

glleracen ~ 1S s&llF,,, + l1gllr@n, (2.2)

where S ; is defined by setting

lg(x + th) — g(x)|
r '

Next we present the definition of local Besov spaces.

Sg(x,t,h) =

Definition 5. (Local Besov spaces, [14]). Let 1 < p, g < coand 0 < s < 1. Let BY(R") (resp.,
B?Y(R™)) be inhomogeneous (resp., homogeneous) Besov spaces. The inhomogeneous local Besov
space BYY(Q) is given by

BY(Q) = {fla: f € BY'RMY, | fllgraq) = inflllgllpraen : gla = f}-
It is well known that (see [19]):
BPM(R") ~ BMR") N LPR"), 1< p, qg<oo, s>0;
BPP(R™) = FPP(R"), s€R, 1< p< oo
I lgrany ~ Wl gragny + 1 fllr@my, 1 < p, g <00, 5> 0;
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”g”Bfiq(]R”) < ||g||B§;1(Rn)a s1< 8, 1 <p,g<oo;

”g”B”'qZ Ry < ||g||31""“ rmys S € R, 1 <p<oo, 1< q1 < @2
s (R s (R

< 0. (2.3)

Letl < p,g<oo,0<s<1l,and1 <r < p. Let E, ,.(R") be the set of all measurable functions

g :R"x(0,1)x B(O, 1) — R satisfying

1
el = ([ ([ ([ e )"y

It was pointed out in [14] that

Igllgraceny ~ IS 8lle,,, + 18llLrn).
s P4

When r = p, we denote E,, = E,, , . Clearly,
gllgrany ~ IS s8llg,, + l1gllLr@n.

2.2. Preliminary lemmas

For 1 < r < co we denote
M, f(x) = (M|fIN""(x), xeR"

When r = 1 we denote M; = M. By Holder’s inequality, we have
M(f, &) (x) < M f(x)Mrg(x), VYT €(l,00).

For convenience, we set

1
ux)z—f lu(z) — u(x)|dz, xeR"
pr |B(x, 20| Jpx2n) )~

Denote
S u(x,t) =t pu(x), uelLl

loc(Rn)'
We have the following basic properties of M, and S ;.

Lemma3. Let 1 < p,g<ooand 1 <t <r <min{p,q}. Then
(i) For any f € LP(R") we have ||M. fllr@ny S [1fllzen).
(11) For any f € Fp,q,r we have ||M‘rf||F,,,q,r < ”f”FM,,-
(iii) For any function f € LP(R", L1((0, 1), t"'dt)) we have

M fllF,,, < fllr@ecao.0).1an)-

(iv) For any f € E, , we have M flg,, < Ifllz,,-
(v) For any function f € LP(R", L((0, 1), t"'dt)), we have

IMfllg,, S Ifllzr@e Lo,y 1dn)-

(vi) Let 0 < s < 1. Then we have
IS s S llLr @ a0,y 1ary S min{“f”Ff’q(R")’ ”f”Bf’q(R”)}-

AIMS Mathematics
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Proof. Part (1) follows from the L? bounds for the Hardy—Littlewood maximal operator. Part (ii) with
7 = 1 follows directly from the results in [9]. In view of part (ii) with 7 = 1, we have that for any 7 > 1,

1 1
IM e, <IMFILT <IN =1fls,,,-

Fpreglrre Fpreglric

This yields part (ii). As proved in [13, p. 234], we have ||M, fl|r,,, < Ifllf,,,- This implies that for any
T>1,

1/ 1/
IMfllF,,, < IMifll; S WMt om0y 1any = Ml Laco.n.mtany-

Fpreglrre

Then part (ii1) holds. We get by part (1) that || M. fl|.r®) < lIfller@n. This together with (2.4) implies

that .
a/lpdt\1/q
IIMTfIIEMs( f ( f f If(x,t,h)lpdxdh) —) =1/llg,,-
0 B(O,1) JRn t

This gives part (iv). We also note that

1
alpdt\1/q
(f (f |f(x, f)|dedh) —) < [BO, DI fllr@r o0 any-
0 B(0,1) JR" t

This proves part (V).
Next we prove part (vi). By some changes of variables, one gets

Sl,sf(x7 t) =

2th) — ~dh.
BO. 1) B(O,l)lf(x+ th) = f(Olt

Further we get by a change of variable that

1S 1. f 1 Lo e Lac0.1).4 ey

! 1 _s o \adt\pla | \1/p
= ( fR ( fo (IB(O,l)I fB o |F(x + 2th) = f(x)|e*dh) 7) dx)

2 adt\pla , \1/p
Ly smsmny
dt\p/ 1/
< IS o Sllr, . + ( f K fl ( fB (O,I)sz(x,t,h)dh)qT)p "ax) "

R

By a change of variable and Minkowski’s inequality,

2 dt\p/ 1
(jl;n (I (sz(o,l) Ssf (ot h)dh)q t )p qd:lc) ’
t\p/ 1
) L (j: (f3<o,z) fx+2) =71 (X)|dZ)q7)p qu) ’

(
(L] o= sl )"

R~ B(0,2)
» 1/p
< (| 1fr+2) = f)Pdx) dz < lIfllr.
B(0,2) R”
This together with (2.2) implies that
IS s f ”LP(R",L‘I((O,l),t‘]dt)) S ”Ff’q(R”)'
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On the other hand, by a change of variable, Holder’s inequality, and applying Fubini’s theorem,

! Ipdt\1/
([ (f Istf(x opaz)" )"

f f f |f(x + 2th) — f(X)lpdhd )q/pdt)l/q
R |B(0 1)| B(0,1) [ald

f f |f (X+th) fr dh)q/pd_t)l/q
B(O.1) t
<II8sfllg,, + (f f(o 1)f IS F(x, 1, h)|ﬁdxdh)q/pdt)l/q

One can easily check that

2 q/pdt\1/q
(L, o sroompay )

d
<( f ( f UGty = P dh)q/p t) < Ml
1 B(0O,1)

This together with (2.4) yields that

|/\

2/\

IS t.s fllzrn oo,y 1any S I 11gragn-

So part (vi) holds. O

The following results play key roles in the continuity part of Theorems 1 and 2.

Lemmad. Let 1 < p,q,r < 0o and F;, ®, ¥; be mappings from R" x (0, 1) X B(O, 1) to R such that
|Fi(x,t,h)| < D(x,t,h) +¥;(x,t,h), Vj>1landae. (x,t,h) € R"x(0,1) x B(O,1).

Then:

(1) Let [¥llr,,, — O0as j — oo and ||®||r, , < 0. Moreover, for a.e. x € R" and t € (0, 1), we have

p-q.r p-q.r

{h € B(O,1) : |Fi(x,t,h)| > €} > 0 as j— oo, Ye>O0.

Then we have ||F |||,
(ii) Let [[¥)llg,, — 0 as j — co and ||®||g,, < co. Moreover, for a.e. (x,t,h) € R" X (0,1) X B(O, 1)
we have F(x,t,h) — 0 as j — oco. Then we have ||Fj||g,, — 0 as j — co.

— 0as j— oo.

Proof. Part (1) was proved in [13]. Part (i1) can be proved by the dominated convergence theorem. The
details are omitted. O
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2.3. Difference estimates of extension functions

In this subsection we introduce some extension functions and establish some refined difference
estimates. These are the main ingredients for proving our main results. In order to prove our main
results, we need to introduce some auxiliary functions. Let b € L, (R") and (f, g) € L, (R") X L (R").
We define the function A; 74, : [0, 00) — R by

0, if r =0;

Ap.fgax(r) = 1 f ~ ) . .
g { B0 S [(b(x) = b(x + y) f(x + y)g(x — y)ldy, if r € (0, ).

Lemma 5. Let f € L)' (R"), g € L7”(R"), b € L> (R"), where 1 < py, p>,p3 < o0 and >3, [% <1
Then we have:

(1) For any x € R, Ay, 5,.,(r) is continuous on (0, c0).

(i1) For a.e. x € R", A}, 5, (1) is continuous at r = 0.

Proof. Let py € [1, 00] be such that Zle i = 1. Letr € (0,0) and ¢ € (0,2r). By Holder’s inequality
and the Lebesgue dominated convergence theorem, one gets

‘ f |b(x) — b(x + Y| f(x + y)g(x — y)ldy — f |b(x) — b(x + Y| f(x + y)g(x — y)ldy
B(O,n B

(0.r)

: ‘ f(oz ) 16Cx) = b + MF(x + )8 = Wlson () = xsonDldy
B(O,2r

1
< |B(O, 2r)|7+||b(x) — b(x + ')||LP3(B(0,2r))||g(X - ')||LP2(B(0,2r))||f(x + ')(/\/B(O,t) —)(B(o,r))”LPl(B(o,zr))
— 0 ast—or

This gives part (i).
On the other hand, we get by Holder’s inequality and the Lebesgue differentiation theorem that for
almost every x € R",

f 1b(x) = b(x + y)IIf(x + y)g(x — y)ldy
B(O.r)

<( b0 — bx + dy) (-
|B(0, r)| B(O,r) |B(0’ I")l B(O,r)

1/
gx = yI2dy) =0 as r— 0.

Ao = (B0,

e+ ydy) "

X(
|B(O, | Jpo.r
This gives part (ii). O

We now introduce the extension function of the local bilinear maximal commutator. This plays a
key role in our proofs. Let f € L} (R"), g € L} (R"), and b € L] (R"). Define the extension function
Taus(f,8) by

if x € Q°,

Tap(f,8)(x) = { iU’ig,b(f, D). ifxeQ. (2.6)

We now establish the refined difference estimates for T ,(f, g).
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Lemma 6. Let f € L} (R"), g€ L. (R"), andb € L (R"). Then for a.e. x € R" and x + th € R" with

loc loc loc

t€(0,1)and h € B(O, 1), we have

Tau(f, 8)(x + th) — Tau(f, )(X)|

< (1AnD(O)] + [bCODONR(Am S, Ang)(x) + M(Af, 8)(x) + M(f, Apg)(x))
+MODALS s Ang)(X) + M(AnDAW S, Aung)(x) + M(DALS, )(X)
+M(AnbARS, 8)(x) + MODf, Apg)(x) + M(Anbf, Apg)(x)
HARD(O)IM(S, ©)(x) + M(AnbS, g)(x) + 2" M, f(x)Mis,8(x)Ms,p:b(x)
+2" N (M5, f(x) My, p,8(X)p:ib(x) + Miss f(x) My, 0,8(x)Ms,0,b(x))
+2" (Moo, f ()M, g(X)p,b(x) + M0, f (X)Mis,,8(x) My, p:b(x))

= O(x,1,h),

where 6; € (1,00), 1 <i<1L, ¥, + =1, ¥t =1land 3}y 1 = 1.

Proof. First, we prove the following:
Claim 1. Let x, y be the Lebesgue points of f and g in R". There exist r; > 0 and r, > 0 such that
|ri — o] < |x -yl and

ITap(f, 8)(x) — Tap(f, )W < |Ap fgx(r1) — Ap fg(r2)l. (2.7)

We assume without loss of generality that Tq,(f, g)(x) > Tqu(f,g)(y). For convenience, we set
o(x) = dist(x, 9Q) and

R(f, 8)(x) = {r € [0,6(0)] : Taup(f, 8)(x) = Ap 1g.(r)}.

By Lemma 5 we see that for almost every x € €, the function A, s, (r) is continuous on [0, 6(x)]. Thus,
for a.e. x € Q, the set R(f, g)(x) is non-empty. Let r; € R(f, g)(x) and set r, = max{0,r; — |x — y|}.
Clearly, |r; — 5| < |x—y|. If r, = 0, then (2.7) is clear. If r, > O, thenr; > |[x—yland r, = r; —|x —y| <
0(x) = |x =yl < 6(y). In this case (2.7) holds since Tq,(f, 8)(¥) = Ap r0(12).

In view of Claim 1, for the conclusion of Lemma 6, it suffices to show the following:

Claim 2. For a.e. x e R" and x + th € R" with ¢t € (0, 1) and h € B(O, 1), and for any r{, r, > 0 and
|ry — rp| < t, we have

|Ap. . xem(r1) — Ap fgx(r2)l < @(x, 1, h). (2.8)

We now prove Claim 2. Let E be the set of all x € R" for which A;, £, ,(r) is continuous on [0, c0).
Invoking Lemma 5, we see that |[R" \ E| = 0. Let x, x + th € E witht € (0,1) and & € B(O, 1). Let
ri, ry > 0 with |r; — rp| < t. Without loss of generality we may assume ry, r, > 0. Observe that

|Ap, f.axrin(11) = Ap 10 x(r)] < |Ap 1o xeim(T1) = Ap fo (r) + |Ap f0.x(r1) — Ap 0.x(12)]. (2.9)

By some changes of variables, one gets

1
|Ap fox+tn(T1) = Ap g x(r)| £ ——— |(b(x +th) — b(x +y+th))f(x +y +th)g(x —y + th)
|B(O, r)| Jpo.r)
—(b(x) = b(x + y) f(x + y)g(x — y)ldy
=1+,
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where

11'

= f |(b(x + th) — b(x +y + th))(f(x + y + th)g(x — y + th) — f(x + y)g(x — y))|dy,
|B(O, r)| Jpo.r)

1
12'

= B0 o BHPCOI+ 1B+ DS+ 3)g(r = ey

It is clear that
|b(x + th) — b(x +y + th)| < |Aypb(X)| + |b(X)] + |b(x + Y)| + |Apnb(x + y)|

and
|f(x+y+thg(x —y+th) — f(x+y)gx—yl
< Anf(x + PIAARE(x = )| + 1g(x = YD) + [f(x + YIIAzg(x — y)I.

Hence, we have

I < (1Amb ()] + [b(ODOR(Awf, Ang)(x) + M(Apf, &)(x) + M(f, Aug)(x))
+IMOALS, Ang)(x) + MAnbAw [, Ang)(x) + MDA, 8)(x)
+M(AnbAnf, 8)(x) + Mbf, Ang)(x) + M(Anbf, Ang)(x).

We also note that
L < | Apb(X)M(f, &)(x) + M(AnDf, g)(x).

It follows that

|Ah, f,g,x+th(r 1) — Ab, f,g,x(” DI

< (1Amb (0] + [bODONAn S, Ang)(x) + M(Ap f, £)(x) + M(f, Apg)(x))
+IMDARS, Ang)(xX) + M(ARDAW S, Ang)(x) + MDA T, 8)(x) (2.10)
+MAnbAu f, 8)(x) + M(Df, Apg)(x) + M(Ambf, Ang)(x)
HAmb(X)M(f, g)(x) + M(Anmbf, g)().

It remains to estimate |Ay ¢, (1) — Ap f,0..(r2)]. By some change of variables,

Ap fax(r2) = BO.] L(O,rl) (b(x) - b(x + :—?y))f(x + :—jy)g(x - ::—?y)‘dy.
Write
|Ap £ox(1) = Ap fax(r) < Iy + Ihp + 13,
where |
,
B 3= (g0 S (L4 29) = blx e )+ gt - »dy,
1
B2 3= (o S (00 = 2+ (gt =) = gl = 2.
1
s = BO ] Jsion ‘(b(x) - b(x + %y))(f(x +y) - f(x + :—jy))g(x - :—jy)‘dy.
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It is not difficult to verify that when |x — y| < ¢,

If ) = fO < 2% f ) + prf(X)).
It follows that

2 ,
L) £ —— blx+ —=y)+pbx+y)f(x+ (x —y)|d
! |B(O, 1) B(o,rl)(pt ( ) rly) pib( y)f( Y8 yldy
< 2"Mi(p,bf, - b n o,
<2"M(p,bf, g)(x) + BO. D) B(O,rl)pt (x+ rly)lf(x+y)g(x V)dy

Leto; € (1,00),i=1,2,3, and Z?zl é = 1. By a change of variable, one gets

1 r \\%3 1/03
(|B(0, rol L(o,rl) (p,b(x ’ F_ly)) dy)

< (— (peb(x +2))” dz)l/§3 < Ms,p,b(x).
|l;(()’r2)| B(0O,r) .

This together with Holder’s inequality implies that
1 ry
Iy~ b\x + —=y)lf (x + y)g(x = y)ldy
|B(O, rp)l B(O,rl)pt ( r )f

83 1/6 1 1/6
(oo + 290 ) (g [ vewra)”

(ot
|B(O, r)| Jpo.m)
1/67
X( = lg(x — )I*dy
(|B(0, rol B(O,r1) )
< Mss, f(x)Ms,8(x)Ms,p,D(x).
This together with (2.5) and the fact that M(;/zptb f < Ms, f Ms,p,b implies that
Ly < 2" M, f(x)Ms,8(x)Mjs,0,b(x).

Next we estimate /,,. We have

n

|B(O, 1) B(O,r1)
< 2'pb(x)

-~ |B(O, rlgn BO.r1)

Ly < (oib(x) + pib(x + %y))lf(x + (o =) + pig(x - %y))dy

£Ce+ (peg(x = 3) + pug(x - :—?y))dy
+—| BO. )] B(O’rl)ptb(x + :—?y)lf(x + y)l(ng(x -y + ptg(x - %y))dy.

By Holder’s inequality, Minkowski’s inequality, and some changes of variables, we have that for any
04 € (1, 00),
1 "
m—— | I+ l(piee =) + pig(x - Zy))d
BO, ] Juon fO+ (o= )+ pig( . v))dy

1/64 1
<\ |f(x + y)|*d _—
(|B(0,V1)| BO.) / Y y) (|B(0,V1)| B(O.)

i i
< Ms S [ oste-yia)”

|B(O, r)| Jo.m /
7 & 1/¢,
+M54f(x)(m o (ng(x - r_jy)) 4d)’) 4

< 2M;, f(x)Ms,0:8(x).

(rg(x = ) + pig(x - :—jy))a‘dy)l/ég
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Let §; € (1,00),i=5,6,7,and 3/ s
changes of variables again,

1
|B(O, ro)| Jpo.)

It follows that

6%_ = 1. By Holder’s inequality, Minkowski’s inequality, and some

pzb(x + Qy)lf (x+ y)l(ptg(x -+ ng(x = Qy))dy < 2Ms, f(x)Mis,0,8(x) M5, 0,D(x).
r r

Ly < 2" (Ms, f(x) My, p:8(0)p:ib(x) + M, f (X)Ms,p,8(x)Mis, p,b(x)).
Similarly we get

L3 < 2" (Mo f ()M, 8()pib(x) + Moy, f (X)Ms,,£(X)Ms,, 0:b(x)),
where 6; € (1,00),i=8,9,10,11, and Z“ L = 1. Hence, we have

i=9 5,

|Ap fg.x(r1) = Ap .o x(r)| < 2" My, f(x)M5,8(x)Mis,0,b(x)
+2 (M, f ()M, p:8(x)p:b(x) + Mis, f (x) M p18(x) Ms,p,b(x))
+2" N (Mis, f(x) Mgy 0,8(X)p:ib(x) + Ms,p, f (X)Ms,,8(x) My, p:b(x)).

This together with (2.9) and (2.10) yields (2.8). Then Lemma 6 is proved. O
3. Proof of Theorem 1

In this section we present the proofs of Theorems 1 and 2.

Proof of Theorem 1. We divide the proof of Theorem 1 into two steps.
Step 1. Proof of the boundedness part. Let #; € FY"(Q) for i = 1,2,3. We want to show that

||wﬂ,h3(hl’h2)”Ff’q(Q) < ||h3||Ff3"1(Q)”hl”Ffl’q(Q)”hZ”FfZ’q(Q)- (31)

Let f € FIY(RY), g € FP*(R"), and b € FP*(R") satisfy flo = hi, glo = hy, and blg = h3. Let
Tq,(f, g) be defined as in (2.6). Since Mg, (A1, h2) = Tau(f, 8)la, for (3.1) it is enough to prove that

I Tan(f, ONEragny S BN prsa gl fll prragn 181l r2a - (3.2)
By Remark 2, we have
||TQ,b(f, g)”LP(R") < ||9ﬁ£2,b(f’ g)”LP(Q) < ”b”U’S(Q)”f”LPI(Q)”g”LPZ(Q) s ||b||U’3(Rﬂ)||f||LP1(Rn)”g”LPZ(R")- (3.3)

In view of (2.2) and (3.3), for (3.2) it is enough to prove that
”S s(TQ,b(f, g))”Fp_q,, < ||b||pf3*‘1(Rn)”f||Ffl*q(Rn)”g”FfZ'q(Rny (34)
By Lemma 6 and the definitions of Sy and S, , we have that for a.e. x € R" and x + th € R" with
te(0,1)and h € B(O, 1),

6
S (Tau(f: )1, h) < 2% 3" Ti(f, @), 1,h), (3.5)
i=1
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where
Tl(f’ g) = |S sblgﬁ(f’ g),

T5(f,8) = IDIS s f, S s8) + M(S s f, &) + M(f, S ,:8)),

TS(f’ g) = |Ssb|(gﬁ(S sf’ Ssg) + E]‘R(S sf, g) + ED?(f, Ssg))a
Tu(f,8) = M(DS s f, S s8) + M(S DS o f, S 58) + MBS s f, &) + M(S ;DS s f, &)
+IM(DS, S s8) + M(Sbf, S ;g) + M(S DS, g),
Ts(f.8) = M5, fMy S 58S 150 + M5, S . f M gS 1.,
Te(f,8) = Ms, fMs,gMs.S b+ Ms, fMs,S M5, S b+ Ms,S: o f Ms,,gMs, S sb.
Here 1 < §; <o, 1 <i <11, 3731 =1,%%¢L =1, and 3}}'yL = 1. Hence, by Minkowski’s
inequality and (3.5), one gets

6
IS (Tas(f, @Dllr,,, < 2" > ITAL, Ir, . (3.6)
i=1

In what follows, we set

1 1 1 1 1 1 1 1 1 ;o -
_ 1, — = —+—, —=—+—, max{p},py} < r < min{p, g}.

b

qi P2 p3 492 pr p3 4g3 P11 P2

It is clear that
1 1 1 1 1 1 1 , , ,
—:—+—:—+—:—+—, p1 >q1, p2>q2, p3>q3.
p P 9 P2 49 P33 g3
Next we estimate ||7:(f, 2llr, . ., i =1,2,3,4,5,6, respectively.
Estimate for ||7',(f, &)lIF, .,
By Holder’s inequality, (2.2), and the L? bounds of 9t, we have

p.q.r’

WT1(fs N, < IS sDlle,, , IS, @ls@ny S 116l prsa gl f e @nlgllr e (3.7)

Estimate for ||7>(f, 9)l|F,,,-
By Holder’s inequality and Minkowski’s inequality, one gets

IT2(f5 NIF,,, < 1blles @IS o f, S s, + IS s fo NIF,, ., + IS S ONF,,,,)-

Let % <T) < %. Clearly, 7| < %. By (2.5), (2.1), (2.2), and Lemma 3, we have

”iIR(S sfa Ssg)”quq,r < ”M‘rlszMT’lSsg”Fq},q,,
SNMeySflle, ay oy M7 S 58l apy 1

43 q3 *q3 43

S ||SSf||F qry ﬂ”SSg”F) qpy P

1.113.43 12.q3,43

SUAL ez Mgl 2 S Nl prragen I8l preagen.-
Fil* a3 R FSZ’ q3 (R Fy (R") Fy R™)

Let 7, € (p},r). Then 75 < p,. By (2.5), (2.2), and Lemma 3, we have

RS f, ), < IMesS  f Mgl
< IMz,S s fllF,, , N\ Mz,8llLrgmy
N sf||F,,,,,,,,||g||LP2(R") < ||f||F§,’l"’(Rn)|lgl|LP2(R")-
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Similarly one gets
IS, S s@Mr,y,, S Wfllm@nllgllprzegn.

Thus, we obtain
WT2(f, ©IF,,, < 1Bllees @l fllprra g8l pr2a g, (3.8)

Estimate for ||75(f, 9)lIF,,,-
By Holder’s inequality and Minkowski’s inequality, one gets

1S sPIONCS 5.f, S sy S NS sOlE a0y RS 513 S 5ONE aas oy -

P

In view of (2.1) and (2.2), we get

IS5BllE s s S IIbII T S 161l 234 gny-

3"p P

Let 7} € (%,min{pz, 2}) and @ € (75, min{p,, qu}) Clearly, 13 < % By (2.5) and Holder’s
inequality, one gets

”E)jt(ssfaSsg)”Fq3 493 193 < ”MTgszMTgSsg”F% 993 43 < ||1‘4‘r3'5'sf||F171 ary rLl”M‘r3 sg”F qpy py *
PP >pp p TP

P2

By (2.1), (2.2), Lemma 3, and Holder’s inequality, one gets

IIMT3sz||Fp,qp1,r,;. SUSSAlE gy S IS B S N1fllprroggny,s

1% r A5t
||Mr;Ssg||Fp2,q%mT2 < ”M‘rgSsg”sz,q%ﬂ < ”SSg”sz’q’#'n]# < llgllprze g
It follows that
1S DIRCS s f, S sIF,,, < NPl prsaggm |l fll prran 18Il pr2agn-
Let 74 € (p}, r). Clearly, ) < p>. By (2.5), Holder’s inequality and Lemma 3, one gets

1S sDIORCS o f, ©IF,,, < IS bIME,S s f M 8llF

p-q.r

< M gllonnllS bl o IMeS ol
P ‘i2 7R
< n
”g“LPz(R )”b” p3 WT3( ”f” ”' G (R
< ||b||F§’3’q<Rn>||f ||F§’1 f’(R">||g ||F§’2 KEOk
Similarly one gets
IS DIM(S , £, g)”qur < ||b||Fn3 q(R,,)”fIIFm q(Rn)”g”sz 4Ry

Thus, we have
||T3(f’ g)”F,,q, = ||b||F”3 "(Rn)”f”F”l "(Rn)||g||F”2 4Ry (39)

Estimate for ||74(f, 2)lIr

par®

Let 7l € (%, ’%) and 75 < %. By (2.5) and Hoélder’s inequality, one gets

MBS s/, S &F,,, < 1Mes(BS /)M S s8llr,,, < IMes(bS PlF, 002 152 1M sgllr iz
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In view of (2.1), (2.2), Lemma 3, and Holder’s inequality, we have

IIMTS(stf)IIFqZ’q%mTZ S III?LS’sflllv%[,q2 S Ibllzes L f] e S 16lzrs @yl fll oo gy

IMeS 58l ay y SIS s8lIE oy 1y S IIgII B oy S 18172 gn)-

PP PP Th
It follows that
MBS s f, S s&F,,, S WDlLes@nllfll prranlIgllpr2agn-
Similarly one gets
IM(S D, S F,,, S W ller@nllbllprsagnligllpr2agn-

By (2.5) and Holder’s inequality again,

(S DS 5f, S s

pg.r

< ||MT5(S sbS Sf)MTISSSg”Fp'q,r < ||MT5(S sbS sf)”qu 99y ray ”M‘r’SSsg”F qp
PP

PIE
By (2.1), (2.2), Lemma 3, and Holder’s inequality again,

||MT5(S SbS Sf)”Fq qq

4492 9z
22"pp

S IS8 sfllr, i S < IS sbllr qumllszllF 1

P3:7p

S0l A e Wl e

Hence, we obtain
IM(S DS s f, S s@MF, o, S 1Bl prsa gL f 11 po1a g 181 pr2a gy

By (2.5) and Holder’s inequality again,
IS DS s f, OMIF,,, < Mey(S DS s )Mz 8llF,,, < IM2y(S bS IF,, ., |1Mz 8l @,

IS 5 f, NF,,, < M, (bS )Mz 8lF,,, < 1Mo, (bS s f)llF

By (2.1), (2.2), Lemma 3, and Holder’s inequality again,

||MT’2g||LP2(R”)~

q24."

”MTz(S sbS sf)”F

q2,9:r ™~ |

S sDS s flIF.

4.4
< ||S b”F UL ”sz”F L ey
Q) G 42 g9

SUBN o AN, 02 S DI prsa gl fllpriagen,s
Ff3’ 1z (R f Ffl' p (RM) F7m(R™) f Fo W @R

M, (bS s PllF,, .. S WDS s flIFy, . S WbllLrs@nllS sfllF,, . S Wbllrs @l fllprragn)-

The above estimates together with the trivial estimate ||MT; 8l @y < gl @y imply that
IS sbS s f, NIF,,, S WDl prsa gl F 1l prra e l1gllLr2 gy

IS s f, ONIF,,, < 1Bl @l fll prro g I8l e .-

Similarly we obtain
IS sbf, ONIF,,, < 1B prsa gl fllr @nllgl e .-
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Let ¢, < 7y < min{py,q}. Then 74 < gq». Let @ € (max{rg,r}, min{ps,g}). By (2.5), (2.1), (2.2),
Lemma 3, and Holder’s inequality,

MBS, S sNF,,, < Me(bf )My S 8lIr,,,
< IMeD) 2@ lIMz, S 8l .,
S b flle@nllMz S &k, .
S W llzrr @nl1Ollrs @nllS s8llF,, .0
S WS llzrr @n 1Dl rs @nlIgll 224 gny-

Therefore, we obtain

||T4(f, g)”qu, ~ ”bllpm ‘1(Rn)||f||FP1 ‘1(er)||g||F”2q(Rn) (310)
Estimate for ||75(f, 9llr,,, -
Let ¢} € (p},r). Clearly, 6; < p;. By (2.1), Lemma 3, and Holder’s inequality,
||M61 fM(S’lSt,sgS t,sb“Fp,q’r < HSt st L3R, L%((O - ldt)) 6|f||LP1(R")”M6’St sg”F ,"(f}zyr%
”b” W3( ”f”Lpl (RH)”S“g”LPz(R"L P ((0,1),r~dr))
IIbII pm q(Rn)Ilf llzr1 eIl P2
< I|b||Ff3'q(Rn)||f||L"l (R")||g||pf2 1Ry
Similarly we obtain
||M625t,sfMé'zgSt,sb”Fp,q,, < ||b||Ff3’q(Rn)”f”Ffl’q(Rn)“g”LM(R")-
Thus, we have
3.11)

IT5(f, ©NF,,, S Bl prsa gl fllprragn 1811 pr2a gny-
Estimate for ||T(f, 2)|| Frar®
There exist 63 € (1, p1), 64 € (1, p2), and g} < 65 < min{ps, g} such that Z, 3 5 = 1. There exist
0 € (1,p1), 07 € (1, %), and 63 € (1, %) such that 2?26% = 1. Let 8 € (max{0s, r}, min{ps, g}).
By (2.1), Lemmas 3 and 4, and Holder’s inequality,

1Ms, fMs,8Ms.S 1 bllF,,, < IMs, fMs,8llros@nllMs;S 1sllF,,,,
< ||M53f||LP1(Rﬂ)||M64g||LP2(R")||M65St,sb”Fp},qﬁ
S WAl @nllgllzrz@nllS 1Bl o3 ®e rago,1),-1a1y)
S WS llzrr @mlgllr2 @m 1Dl o3 gny s
IMs f M5,S 158 Ms,S 1 5DllF,,, < ”Mé@f”LPl(R")HM&St,ngszﬂ ﬂllMégsl,Sblle3 s
T 4191 T 4141
< oLz || S.sb
WAl oSl om0 ISl o
S W llerenllgll a2 ||b|| i
Fy (R L ®rm
< ||f||L”l(R”)||g||F§’2"1(Rn)||b||Ff3 ARy
Similarly we get
||M69St,SfM510gM511St,Sb”Fp,q,r s ||f||Ffl’q(]R”)||g||L"2(R")||b||Ff3’q(R”)'
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It follows that
||T6(f, g)”Fp,q, < ||b||Ff3"1(Rn)||f”Ffl"1(er)||gllpf2’q(Rn)- (312)
Combining (3.12) with (3.6)—(3.11) implies (3.4).

Step 2. Proof of the continuity part. Let i; € F{"(Q) for i = 1,2,3. Fori = 1,2, let {h;}»1 C
FP(Q) satisfy h; ; — h; in F{"(Q) as j — oo. It suffices to show that

W, (B js o) = Moy (hys ho)lpragqy = 0 as j — oo (3.13)

Let f € FI"(R"), g € FP*(R"), and b € FY*(R") satisfy flo = hy, glo = hy, and blg = hs. Let hy ; be
the extensions of the functions A, — h; ; with [|h | FOVIgny 0 as j — oo. Let h, ; be the extensions of
the functions h, — h, ; with [|h, || FP gy 0 as j — oo. Itis clear that f; (resp., g;) is an extension of
hy j (resp., hy ;) and f—f; = ﬁ],j, g-8; = 712,]». Thus, we have ||fj—f||F§717q(Rn) — O and ||g;—g||Ffz‘q(Rn) -0
as j — oo. Observe that

Top(fisg)la = Man(hjhaj), Tap(f,8)la = Man,(hi, hy).

It follows that
(Tap(fi» &) — Tap(f,)la = Map,(hy j, hy ;) — Ma p, (A, ho).

Thus, for (3.13) it suffices to prove that

ITas(fj, &) = Tap(fs g — 0 as j— oo. (3.14)
It is not difficult to see that

Tap(fig)(x) = Tap(f,8)X)| < Map,(hy j, ho j)(x) — M n, (hi, h)(X)ya(x).
This together with Remark 2 implies that
ITap(fjs &) = Tap(fs Ollr@ny — 0 as j— co. (3.15)

In view of (2.2) and (3.15), for (3.14) it is enough to show that

1S s(Tas(fi» &) = Tas(f &)F,, — 0 as i — co. (3.16)

Next we prove (3.16) by contradiction. Without loss of generality we may assume that there exists
a constant ¢ > 0 such that

IS s(Tas(fj &) = Tas(fs eF,,, > ¢, ¥Vjz1 (3.17)

From the definitions of S and S, ;, we have

1S 5(f) =S DI Ss(fi = ) 1S0s(f) = S5 < S5(f; = - (3.18)
Moreover, by the definition of M., one can easily check that

MTfJ' < 2(Mr(fj - f) + M‘rf)’ V7 € (1, 00). (3.19)
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We get from (3.5) that for a.e. x € R” and x + th € R" witht € (0,1) and & € B(O, 1),

6
S {(Tap(f g N0 1) <2 3 Ti(f;, )61, ). (3.20)

i=1

By (3.5) and (3.20), we have that for a.e. x € R" and x + th € R" witht € (0, 1) and h € B(O, 1),

IS s(Tas(fjs gN(x, 1, 1) = S (Tap(fNX, 1, W < ©j(x, 1, h) + ¥(x,1, h), (3.21)

where

6
O;(x, 1,h) = 2" N (Ti(f; = f,)% 1, 1) + Ti(fy = f.8) = )06 1, ) + Ti(f, 8 = 8)(x, 1, ),
i=1

6
W, 1, h) = 2" 3 Ti(f ), 1, h).
i=1
By Minkowski’s inequality and (3.7)—(3.12), we have

lDlF,,, =0 as j— oo, [P, <oo. (3.22)

p-q.r p-q.r

Let A > 0and (x,¢) € R" x (0, 1). It is clear that

Ss(Tap(fi &) — Tap(f, &))(x,t,h)
St (Tap(fi, g)(x + th) — Tou(f, 8)(x + th)| + |Tap(fj, 8)(x) — Tau(f, &)(X))).

This together with (3.15) and Fubini’s theorem implies that for any ¢ € (0, 1),

f f 1S {(Tas(f;: 8) — Taslfo 9))x. 1, H)P dhdx
" JB(0,1)
< P Tap(fir8) = Tas(f. @)lpg = 0 as j— oo,

Hence, for any ¢ € (0, 1), there exists a subsequence {j; };>; such that for a.e. x € R”,

f 1S s(Tap(fi 81) — Tap(fs )X, 1, )I"dh — 0 as k — co.
B(0,1)
This together with Chebyshev’s inequality implies that for any 7 € (0, 1) and a.e. x € R",
[{h € B(O, 1) : S (Tau(fi, 8j) — Tap(f,8))(x,t,h) > A}| = 0 as k — co. (3.23)
By (3.21)—(3.23) and Lemma 4,

1S s(Tap(fi> 8j) = Tan(fs 8lF,,, — 0 as k — co.

This leads to a contradiction with (3.17). The proof of Theorem 1 is now proved. O
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Proof of Theorem 2. The proof of Theorem 2 will be divided into two parts.
Step 1. Proof of the boundedness part. Let i; € BY*(Q) fori = 1,2, 3. It suffices to show that

”gﬁQJn(hla hZ)HBf‘q(Q) < ||h3||3f3"1(g)”h1”Bfl"I(Q)”hZ”BfZ"I(Q)' (324)

Let f € BYY(R"), g € BY**(R"), and b € By (R") satisfy flo = hy, glo = ha, and blg = h3. Clearly,
Tou(f, 9la = Mo, (hi, hy). Hence, for (3.24) it is enough to show that

”Tﬂ,b(f’ g)”Bf“’(Rﬂ) < ||b||3f3"1(Rn)”f”Bfl'q(Rn)“g”BfZ*q(Rn)- (325)

By (3.3) and (2.4), for (3.25) it is enough to prove that

”S s(TQ,b(f’ g))”Ep,q < ||b||Bf3'q(Rn)”f”Bf'"I(Rn)llg||3§’2*q(Rn)- (326)

By Lemma 6 and the definitions of S and S, ;, we have that for a.e. x € R" and x + th € R" with
te(0,1)and i € B(O, 1),

5
S {(Tap(f, )(x, 1, h) < 2" Z Ii(f, &)(x, 1, ), (3.27)
i=1

where
L(f,8) = |S bM(S, &),

L(f,8) = (1Ambl| + [DDORCS o f, Amg) + (S 5 f, &) + M(f, S ),

I3(f, 8) = MODALS. S 58) + M(AnbAn f, S ;&) + M(DS ;. f, &)
+M(AnbS s f, ) + MBS, S 8) + M(Anbf, S s8),

I4(f’ g) = M&[fMé’lptht,sb + Mélpth(‘)"lgSt,‘s‘b’
IS(f’ g) = M(ssz53gM54St,sb + M52fM53pIgM64St,sb + M&zpthdng&;Sl,sb'
Here 1 <§; <oo, 1 <i<4, Yt L=1.

=25
By (3.27) and Minkowski’s inequality,

5
IS {(Tas(fs )N, <2 Z L:(f, &I, ,- (3.28)
i=1
Let g1, g2, g3 be given in the proof of Theorem 1. We now estimate ||1;(f, g)|| Epys respectively.
Estimate for ||/,(f, 9)llg,,-
By (2.4), Holder’s inequality and the bounds for 9t, we have
W1 (f, 8)||Ep,q S ||Ssb||Ep3.q||5m(f, lrs@n S ”f”L"l(R”)l|g||L"2(R")||b||Ff3’q(Rn)~ (3.29)

Estimate for ||L(f, 9)lE,,,-
By Minkowski’s inequality and the boundedness for 9i, we have

IR(S s f, Amg) + DS s f, &) + MM(f, S s@)lLos @y

< S o f s Az ey + DS o f s DlIzas @y + (IS, S 5@ Lo @y

SIS sflleer @nllAmgllr @y + IS s fllr @ollglze ey + 1 e @IS sgllzr @y
SIS sflleer@nllgllzrz@ny + 1 1z @S sgllzr @n-
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This together with (2.4), Holder’s inequality, and Minkowski’s inequality implies that

IL(fs @llE,, S UAmbllLrsgny + 1DllLrs @IS 5 f Ang) + (S s f, &) + M(S, S 9, ,
S 1bllzes @y (1S s fllE,, MgllLr2@ny + 111l @S s8llE,, ) (3.30)
S ||f||3f1’q(Rn)||g||B§’2"1(Rn)||b||Ll’3(R")~

Estimate for ||5(f, 9k,
By the boundedness for i, Minkowski’s inequality, and Holder’s inequality,

3(f, Der@ny < NIMDALS, S s@llrwny + (IMARDALS, S sl r@ny + IRDS o f, o @)
+MARDS s f, Dlr@ny + MBS, S @ r@ny + [IMAwDS, S @)
S IbA Iz @ry + I ARD AR f o2y + 1D f |2 ®ey + [1Amb [l a2 wny)
X|S sgllzr2@ny + (1BS s fllzo2 ey + 1ARDS s fllzo2 @ey)lIglLr2 oy

Observe that

DA fllza2®ry + A A fllLazwry + 10 fllL2wry + 1 AmD [l 02wy
< (1Dllzrs wry + AR s @) N Am Sl 21 ey + 1 f e @eny) S DM pes el f1lzor ey

15S s fllza2 ey + 1ARDS s fllraz )
< (161l zr3 ey + NARD L3 @IS s fllor ey S 6 ees @) l1S s fllze gy

It follows that

I5(f, lerwny < bl @IS s flleo @nllgllirz@ny + 1 e @nllS sgllir@ny)-

This together with (2.4) implies that

W5(fs ©Ie,, < WDles @n (IS s fllg,, MgllLr2eny + 11 lr ey lIS 58llE,, )

(3.31)
< ||b||L/’3(R")||f||F§’1"’(Rn)llgllFfQ"’(Rn)-

Estimate for ||I4( S 9)llE, -
Since - ot plz — < 1, then p), < p;. We also note that p,u < |u|+ Mu for any function u € Ll

Let p, <61 < pi. By Holder’s inequality, one gets

(R™).

loc

||M61fMd’ptht,sb”Ll’(R") < ||M51f||LP1(RH)HM&/Ptg”LPz(R")”Sz,sb”m(Rn)
1 1
S o @ollogllr@nllS 5Bl ey S N fllr @mllgller2@mllS ¢ 5Dl Lrs wny-

Similarly one gets

||M62Pth5;gS tsbllr@ny S fllem @nllgllrz@nllS ¢ sblles gy

It follows that

Ma(fs e, < W llri@nligllier @nllS tsbllirs @ a1y S Wfller @nllgliern@nlibllgsagn. — (3.32)

Estimate for ||/5(f, 9)llg,,,-
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Since Z?:l [% = % < 1, there exist 6, € (1, py), 05 € (1, py), and 64 € (1, p3) such that Z?:z = 1.

By Holder’s inequality, one gets

1
di
M5, fMs,gMs,S ; bllrr@ny < My, fllzr @il Ms, 8l o2 @n|Ms,S 1 5Bl o3 ey
S N llerr @nllgllrz@nllS 1Bl e reny.-
Similarly we obtain
1M, fMs,p:.8Ms,S ¢ sbllrwny < |l wmllgllzrzgmllS 1Bl 2e3 ey,
||M62pth63gM64St,stLl’(R") < ”f”LPl(R")”g”LPZ(R”)”St,sb”LPS(R")~
These estimates together with (2.4) and Minkowski’s inequality imply that
Ws(f @M, , < Wl @nlgllzra@nllS ¢sDllrs o raqo.a1any S 11 ler @ellgllerz e l1Bllgrsa gy (3.33)

Then (3.26) follows from (3.28)—(3.33).

Step 2. Proof of the continuity part. Let i; € B{**(Q) fori = 1,2,3. Fori = 1,2, let {h; j};»1 C
BY(Q) satisfy h; ; — h; in BY(Q) as j — oo. It suffices to show that

M5 (1 js b2, j) — Map(hy, ho)llgroq) — 0 as j — oo. (3.34)

Let f € BY"(R"), g € B{*(R"), and b € By (R") satisfy flo = hy, gla = ha, and blg = hs. By (3.3)
and (2.4), for (3.34) it is enough to show that

IS s(Tap(fj: &) = Tas(fs e)E,, = 0 as j— co. (3.35)

Now we prove (3.35) by contradiction. We may assume without loss of generality that there exists
a constant ¢ > 0 such that

1S s(Tap(fi» 8)) = Tas(f> &g, > ¢, Vjz1. (3.36)

By Lemma 6, we have that for almost every x € R and x + th € R" with 7 € (0,1) and & € B(O, 1),

5
S {(Tap(f g N0 1, 1) <2 3 15, 8)(x, 1, ). (3.37)
i=1

In view of (3.27) and (3.37), we have that for almost every x € R" and x + th € R" with ¢ € (0, 1) and
h e BO,1),

1S s(Tas(fj> 8 (X, 1, h) = S (Tap(f, (X, 1, W < Tj(x, £, h) + O(x, £, h), (3.38)

where

5
Fj(x’ , h) = 2'l+3 Z(Il(‘fj - f’ 8j~ g)(x’ f, h) + Il(‘fj - f’ g)(x’ f, h) + Ii(f’ 8j— g)(x7 f, h))7

i=1
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5
OCx,1,h) = 2" 3" Ii(f, &)(x, 1, ).
i=1
By Minkowski’s inequality and (3.29)—(3.33), we have

ITillg,, = 0 as j— oo, [O|g,, < oo.
On the other hand, it was proved in the proof of Theorem 1 that for any ¢ € (0, 1),
IS s(TQ,b(fjagj) = Top(f, ONr@xo.1y — 0 as j— oo, (3.39)

Hence, there exists a subsequence {ji};>1 such that for any ¢ € (0, 1) and almost every (x,h) € R" X
B(O, 1),

Ss(Tap(fi>8i) — Tap(f,8)(x,t,h) > 0 as k — oo. (3.40)
By (3.38)—(3.40) and Lemma 4, we have

IS s(Tap(fi> &) — Tas(f, 8)lE,, = 0 as k — co.
This contradicts with (3.36). So (3.35) holds. This completes the proof of Theorem 2. O

4. Conclusions

In the present paper we investigate the mapping properties of bilinear maximal commutator in the
domain setting. We establish some new boundedness and continuity for the above operator on the
Triebel-Lizorkin spaces and Besov spaces under suitable symbol function condition. The main results
we obtain essentially extend some known ones to local setting.
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