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1. Introduction

The primary purpose of this paper is to investigate the mapping properties for the local bilinear
maximal commutators

MΩ,b( f , g)(x) = sup
0<r<dist(x,∂Ω)

1
|B(O, r)|

∫
B(O,r)

|(b(x) − b(x + y)) f (x + y)g(x − y)|dy,

on the Triebel–Lizorkin space F p,q
s (Ω) and Besov space Bp,q

s (Ω), where Ω is a subdomain in Rn. See
Section 2 for the definitions of F p,q

s (Ω) and Bp,q
s (Ω). This type of commutator was introduced by Wang

and Liu [20] who established the boundedness properties ofMΩ,b on first-order Sobolev spaces. Here
we shall establish the boundedness and continuity of MΩ,b on F p,q

s (Ω) and Bp,q
s (Ω). Our main results

will extend the main results of [22] to the local setting. It should be pointed out that the commutativity
with translations for maximal operators plays a key role in proving the boundedness and continuity of
maximal operators on Triebel–Lizorkin spaces and Besov spaces. Since the local maximal operator
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lacks the commutativity with translations, it makes the study of the boundedness and continuity of
local bilinear maximal commutators more complex.

Let us begin with a brief review of the research in the regularity theory of maximal operators.

1.1. Regularity of maximal operators

The regularity theory of maximal operators is an active area of current research. This topic
originated with Kinnunen [5], who first established the W1,p(Rn) (1 < p < ∞) for the centered Hardy–
Littlewood maximal operator

M f (x) = sup
r>0

1
|B(x, r)|

∫
B(x,r)
| f (y)|dy, x ∈ Rn,

where B(x, r) is the open ball in Rn centered at x with radius r, and |B(x, r)| is the volume of B(x, r).
Later on, Kinnunen’s result was extended to various settings, see [6] for the local case, [7] for the
fractional case, and [1, 16] for the bilinear case. The continuity properties for the Hardy–Littlewood
maximal operator and its various variants on Sobolev spaces can be found in [1, 12, 13]. An important
extension of Sobolev regularity for maximal operators is to study their behaviors on other smooth
function spaces. This direction was initiated by Korry [9], who concluded that M is bounded on
inhomogeneous Triebel–Lizorkin spaces and inhomogeneous Besov spaces for 0 < s < 1 and 1 <

p, q < ∞. As a direct consequence, it is valid that M is bounded on fractional Sobolev spaces W s,p(Rn)
for 0 < s < 1 and 1 < p < ∞ (also see [8]). Subsequently, Luiro [13] established the continuity of
M : F p,q

s (Rn) → F p,q
s (Rn) for 0 < s < 1 and 1 < p, q < ∞. The continuity of M : Bp,q

s (Rn) → Bp,q
s (Rn)

for 0 < s < 1 and 1 < p, q < ∞ can be found in [11].
It is worth noting that maximal operator M enjoys commutativity with translations, which plays

a key role in proving the boundedness of maximal operators on first-order Sobolev spaces, Triebel–
Lizorkin spaces, and Besov spaces (see [2, 5, 9]). However, the maximal operator in a local setting
lacks commutativity with translations, which makes the investigation on the regularity of maximal
operators in a local setting more interesting and challenging. In 1998, Kinnunen and Lindqvist [6] first
studied the Sobolev regularity of local maximal operator

MΩ f (x) = sup
0<r<dist(x,∂Ω)

1
|B(O, r)|

∫
B(O,r)

| f (x − y)|dy, x ∈ Ω,

where Ω ⊂ Rn is a subdomain of Rn. They showed that MΩ : W1,p(Ω) → W1,p(Ω) is bounded
for all 1 < p < ∞ (also see [2]). Later on, the above result was extended to the fractional variant
(see [4, 18]) and to the multilinear variant (see [3, 16]). In [13], Luiro established the continuity of
MΩ : W1,p(Ω)→ W1,p(Ω) for all 1 < p < ∞. Luiro also studied the boundedness and continuity of MΩ

on Triebel–Lizorkin spaces (see Section 2 for its definition). Very recently, Liu, Liu and Wang [14]
extended the above result to the multilinear setting.

Compared with the Hardy–Littlewood maximal operator, the bilinear maximal operator is more
complex. Let Ω be a subdomain in Rn. The local bilinear maximal operator is defined by

MΩ( f , g)(x) = sup
0<r<dist(x,∂Ω)

1
|B(O, r)|

∫
B(O,r)

| f (x + y)g(x − y)|dy, x ∈ Ω,
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where O = (0, . . . , 0) ∈ Rn. This type of maximal operator was introduced in [16] which studied
the Sobolev regularity of MΩ. When Ω = Rn, MΩ reduces to the usual bilinear maximal operator M,
which originated from Calderón’s work in 1964 when he posed whether the mapping M : L2(R) ×
L2(R) → L1(R) is bounded. In Lacey’s seminal work [10], Lacey addressed Calderón’s conjecture by
establishing the boundedness of M : Lp1(R) × Lp2(R) → Lp(R) for 1 < p1, p2 < ∞, 2/3 < p ≤ 1,
and 1/p1 + 1/p2 = 1/p. It was pointed out in [1] that M is bounded from M : Lp1(Rn) × Lp2(Rn)
to Lp(Rn) for 1 < p1, p2 < ∞, 1 ≤ p < ∞ and 1/p1 + 1/p2 = 1/p. Based on the above Lebesgue
boundedness, Carneiro and Moreira [1] proved thatM : W1,p1(Rn) ×W1,p2(Rn)→ W1,p(Rn) is bounded
and continuous for 1 < p1, p2, p < ∞ and 1/p = 1/p1 + 1/p2. Subsequently, Liu, Liu and Zhang [15]
established the boundedness and continuity of M on F p,q

s (Rn) and Bp,q
s (Rn). In the local setting, Liu,

Wang and Xue [16] showed thatMΩ is bounded and continuous from W1,p1(Ω) ×W1,p2(Ω) to W1,p(Ω),
where 1 < p1, p2 < ∞, 1 ≤ p < ∞ and 1/p1 + 1/p2 = 1/p.

1.2. Regularity of the bilinear maximal commutator

The regularity properties of maximal commutators have been studied by many authors. It should
be pointed out that the commutators of bilinear operators were originally introduced by Pérez and
Torres [17], who studied the boundedness for the commutators of the bilinear Calderón–Zygmund
operator [T, b]i(i = 1, 2), where T is the bilinear Calderón–Zygmund operator. When Ω = Rn, the
operator MΩ,b reduces to the bilinear maximal commutator Mb. The bilinear maximal commutator
Mb was first introduced by Wang and Liu [21] in 2022 when they established the boundedness and
continuity of Mb on Triebel–Lizorkin spaces and Besov spaces under the condition that the symbol
function b belongs to the Lipschitz space. Very recently, Wang and Liu [22] proved the following
result.

Theorem A. ([22]) Let 0 < s < 1, 1 < p1, p2, p3, p < ∞, and
∑3

i=1
1
pi

= 1
p .

(i) Let p′ < q < ∞, p2
3 < p2(p1 + p3) and p2

3 < p1(p2 + p3). If b ∈ F p3,q
s (Rn), thenMb : F p1,q

s (Rn) ×
F p2,q

s (Rn)→ F p,q
s (Rn) is bounded and continuous.

(ii) Let b ∈ Bp3,q
s (Rn). ThenMb : Bp1,q

s (Rn) × Bp2,q
s (Rn)→ Bp,q

s (Rn) is bounded and continuous.

1.3. Motivation and main results

In this subsection we shall present the main motivations and results.
Based on Theorem A, a natural question is the following:

Question 1. What is the local case of Theorem A? More precisely, what conditions for p1, p2, p3, p, q
guarantee the boundedness and continuity ofMΩ,b : F p1,q

s (Ω)×F p2,q
s (Ω)→ F p,q

s (Ω) when b ∈ F p3,q
s (Ω)?

What happens when we consider the Besov spaces?

This is the main motivation of this paper. Before establishing our main results, let us point out the
following fact.

Remark 2. Let 1 < p1, p2, p3, p < ∞, 1/p = 1/p1 + 1/p2 + 1/p3, and b ∈ Lp3(Ω). If f ∈ Lp1(Ω) and
g ∈ Lp2(Ω), then we have

‖MΩ,b( f , g)‖Lp(Ω) . ‖b‖Lp3 (Ω)‖ f ‖Lp1 (Ω)‖g‖Lp2 (Ω).
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By the above boundedness and the sublinearity ofMΩ,b, we have that

MΩ,b : Lp1(Ω) × Lp2(Ω)→ Lp(Ω)

is continuous.

Our main results are the following:

Theorem 1. Let 1 < p1, p2, p3, p < ∞, 0 < s < 1,
∑3

i=1
1
pi

= 1
p and max{p′1, p′2} < min{p, q}. If

b ∈ F p3,q
s (Ω), then the following mapping

MΩ,b : F p1,q
s (Ω) × F p2,q

s (Ω)→ F p,q
s (Ω)

is bounded and continuous. Moreover, there exists C > 0 such that

‖MΩ,b( f , g)‖F p,q
s (Ω) ≤ C‖b‖F p3 ,q

s (Ω)‖ f ‖F p1 ,q
s (Ω)‖g‖F p2 ,q

s (Ω). (1.1)

Theorem 2. Let 1 < p1, p2, p3, p, q < ∞, 0 < s < 1, and
∑3

i=1
1
pi

= 1
p . If b ∈ Bp3,q

s (Ω), then the
following mapping

MΩ,b : Bp1,q
s (Ω) × Bp2,q

s (Ω)→ Bp,q
s (Ω)

is bounded and continuous. Moreover, there exists C > 0 such that

‖MΩ,b( f , g)‖Bp,q
s (Ω) ≤ C‖b‖Bp3 ,q

s (Ω)‖ f ‖Bp1 ,q
s (Ω)‖g‖Bp2 ,q

s (Ω). (1.2)

Remark 3. Theorems 1 and 2 can be regarded as a local variant of Theorem A. Compared with
Theorem A, our main results and their proofs are more complex and refined. It should be pointed out
that the estimate of difference for an objective function plays a key role in concluding the boundedness
and continuity of the objective operator on Triebel–Lizorkin spaces and Besov spaces, both in the
global and local cases. However, the difference estimates of the local bilinear maximal commutators
are more detailed and complex than those of the global case.

This paper is organized as follows. Section 2 contains some properties of Triebel–Lizorkin spaces
and Besov spaces as well as maximal functions, and some refined estimates of difference for extension
functions of the local bilinear maximal commutator, which are the main ingredients of proving our
main results. In Section 3 we present the proofs of Theorems 1 and 2. We would like to remark that
the main ideas used to prove our main results are a combination of ideas and arguments from [13, 22].
The novelty is how to extend the results of [22] to the local setting.

Throughout this paper, for any p ∈ [1,∞], we denote by p′ the dual exponent to p, i.e., 1
p + 1

p′ = 1.
We set p′ = ∞ when p = 1 and p′ = 1 when p = ∞. The letter C, sometimes with additional
parameters, will stand for positive constants, not necessarily the same one at each occurrence but is
independent of the essential variables. If there exists a constant c > 0 depending only on ϑ such that
A ≤ cB, we then write A .ϑ B; and if A .ϑ B .ϑ A, we then write A ∼ϑ B. For any x, h ∈ Rn and a
function f defined on Rn, we set ∆h f (x) = f (x + h) − f (x).
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2. Preliminaries

2.1. Triebel–Lizorkin spaces and Besov spaces

Let us start with the definition of local Triebel–Lizorkin spaces. This definition is due to Triebel.
This is not the only way to define these spaces.

Definition 4. (Local Triebel–Lizorkin spaces, [13]). Let 1 < p, q < ∞ and 0 < s < 1. Let
F p,q

s (Rn) (resp., Ḟ p,q
s (Rn)) be inhomogeneous (resp., homogeneous) Triebel–Lizorkin spaces. The

inhomogeneous local Triebel–Lizorkin space F p,q
s (Ω) is defined by

F p,q
s (Ω) = { f |Ω : f ∈ F p,q

s (Rn)}, ‖ f ‖F p,q
s (Ω) = inf{‖g‖F p,q

s (Rn) : g|Ω = f }.

It is well known that (see [19]):

Ḟ p,2
0 (Rn) = Lp(Rn), 1 < p < ∞;

‖ f ‖F p,q
s (Rn) ∼ ‖ f ‖Ḟ p,q

s (Rn) + ‖ f ‖Lp(Rn), 1 < p, q < ∞, s > 0;

‖ f ‖F p,q
s1 (Rn) ≤ ‖ f ‖F p,q

s2 (Rn), s1 ≤ s2, 1 < p, q < ∞;

‖ f ‖F p,q2
s (Rn) ≤ ‖ f ‖F p,q1

s (Rn), s ∈ R, 1 < p < ∞, 1 < q1 ≤ q2 < ∞. (2.1)

Let 1 < p, q < ∞, 0 < s < 1, and 1 ≤ r < min{p, q}. Let Fp,q,r(Rn) be the set of all measurable
functions g : Rn × (0, 1) × B(O, 1)→ R satisfying

‖g‖Fp,q,r :=
( ∫
Rn

( ∫ 1

0

( ∫
B(O,1)

|g(x, t, h)|rdh
)q/r dt

t

)p/q
dx

)1/p
< ∞.

It was established in [19, p. 194] that

‖g‖F p,q
s (Rn) ∼ ‖S sg‖Fp,q,r + ‖g‖Lp(Rn), (2.2)

where S s is defined by setting

S sg(x, t, h) =
|g(x + th) − g(x)|

ts .

Next we present the definition of local Besov spaces.

Definition 5. (Local Besov spaces, [14]). Let 1 < p, q < ∞ and 0 < s < 1. Let Bp,q
s (Rn) (resp.,

Ḃp,q
s (Rn)) be inhomogeneous (resp., homogeneous) Besov spaces. The inhomogeneous local Besov

space Bp,q
s (Ω) is given by

Bp,q
s (Ω) = { f |Ω : f ∈ Bp,q

s (Rn)}, ‖ f ‖Bp,q
s (Ω) = inf{‖g‖Bp,q

s (Rn) : g|Ω = f }.

It is well known that (see [19]):

Bp,q
s (Rn) ∼ Ḃp,q

s (Rn) ∩ Lp(Rn), 1 < p, q < ∞, s > 0;

Ḃp,p
s (Rn) = Ḟ p,p

s (Rn), s ∈ R, 1 < p < ∞;

‖ f ‖Bp,q
s (Rn) ∼ ‖ f ‖Ḃp,q

s (Rn) + ‖ f ‖Lp(Rn), 1 < p, q < ∞, s > 0;
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‖g‖Bp,q
s1 (Rn) ≤ ‖g‖Bp,q

s2 (Rn), s1 ≤ s2, 1 < p, q < ∞;

‖g‖Bp,q2
s (Rn) ≤ ‖g‖Bp,q1

s (Rn), s ∈ R, 1 < p < ∞, 1 < q1 ≤ q2 < ∞. (2.3)

Let 1 < p, q < ∞, 0 < s < 1, and 1 ≤ r ≤ p. Let Ep,q,r(Rn) be the set of all measurable functions
g : Rn × (0, 1) × B(O, 1)→ R satisfying

‖g‖Ep,q,r :=
( ∫ 1

0

( ∫
Rn

( ∫
B(O,1)

|g(x, t, h)|rdh
)p/r

dx
)q/p dt

t

)1/q
< ∞.

It was pointed out in [14] that

‖g‖Bp,q
s (Rn) ∼ ‖S sg‖Ep,q,r + ‖g‖Lp(Rn).

When r = p, we denote Ep,q = Ep,q,r. Clearly,

‖g‖Bp,q
s (Rn) ∼ ‖S sg‖Ep,q + ‖g‖Lp(Rn). (2.4)

2.2. Preliminary lemmas

For 1 ≤ r < ∞ we denote
Mr f (x) = (M| f |r)1/r(x), x ∈ Rn.

When r = 1 we denote M1 = M. By Hölder’s inequality, we have

M( f , g)(x) ≤ Mτ f (x)Mτ′g(x), ∀τ ∈ (1,∞). (2.5)

For convenience, we set

ρtu(x) =
1

|B(x, 2t)|

∫
B(x,2t)

|u(z) − u(x)|dz, x ∈ Rn.

Denote
S t,su(x, t) = t−sρtu(x), u ∈ L1

loc(R
n).

We have the following basic properties of Mr and S t,s.

Lemma 3. Let 1 < p, q < ∞ and 1 ≤ τ ≤ r < min{p, q}. Then
(i) For any f ∈ Lp(Rn) we have ‖Mτ f ‖Lp(Rn) . ‖ f ‖Lp(Rn).
(ii) For any f ∈ Fp,q,r we have ‖Mτ f ‖Fp,q,r . ‖ f ‖Fp,q,r .
(iii) For any function f ∈ Lp(Rn, Lq((0, 1), t−1dt)) we have

‖Mτ f ‖Fp,q,r . ‖ f ‖Lp(Rn,Lq((0,1),t−1dt)).

(iv) For any f ∈ Ep,q we have ‖Mτ f ‖Ep,q . ‖ f ‖Ep,q .
(v) For any function f ∈ Lp(Rn, Lq((0, 1), t−1dt)), we have

‖Mτ f ‖Ep,q . ‖ f ‖Lp(Rn,Lq((0,1),t−1dt)).

(vi) Let 0 < s < 1. Then we have

‖S t,s f ‖Lp(Rn,Lq((0,1),t−1dt)) . min{‖ f ‖F p,q
s (Rn), ‖ f ‖Bp,q

s (Rn)}.
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Proof. Part (i) follows from the Lp bounds for the Hardy–Littlewood maximal operator. Part (ii) with
τ = 1 follows directly from the results in [9]. In view of part (ii) with τ = 1, we have that for any τ > 1,

‖Mτ f ‖Fp,q,r ≤ ‖M1 f τ‖1/τFp/τ,q/τ,r/τ
. ‖ f τ‖1/τFp/τ,q/τ,r/τ

= ‖ f ‖Fp,q,r .

This yields part (ii). As proved in [13, p. 234], we have ‖M1 f ‖Fp,q,r . ‖ f ‖Fp,q,r . This implies that for any
τ > 1,

‖Mτ f ‖Fp,q,r ≤ ‖M1 f τ‖1/τFp/τ,q/τ,r/τ
. ‖ f τ‖1/τ

Lp/τ(Rn,Lq/τ((0,1),t−1dt)) = ‖ f ‖Lp(Rn,Lq((0,1),t−1dt)).

Then part (iii) holds. We get by part (i) that ‖Mτ f ‖Lp(Rn) . ‖ f ‖Lp(Rn). This together with (2.4) implies
that

‖Mτ f ‖Ep,q .
( ∫ 1

0

( ∫
B(O,1)

∫
Rn
| f (x, t, h)|pdxdh

)q/p dt
t

)1/q
= ‖ f ‖Ep,q .

This gives part (iv). We also note that( ∫ 1

0

( ∫
B(O,1)

∫
Rn
| f (x, t)|pdxdh

)q/p dt
t

)1/q
. |B(O, 1)|1/p‖ f ‖Lp(Rn,Lq((0,1),t−1dt)).

This proves part (v).
Next we prove part (vi). By some changes of variables, one gets

S t,s f (x, t) =
1

|B(O, 1)|

∫
B(O,1)

| f (x + 2th) − f (x)|t−sdh.

Further we get by a change of variable that

‖S t,s f ‖Lp(Rn,Lq((0,1),t−1dt))

=
( ∫
Rn

( ∫ 1

0

( 1
|B(O, 1)|

∫
B(O,1)

| f (x + 2th) − f (x)|t−sdh
)q dt

t

)p/q
dx

)1/p

.
( ∫
Rn

( ∫ 2

0

( ∫
B(O,1)

S s f (x, t, h)dh
)q dt

t

)p/q
dx

)1/p

. ‖S s f ‖Fp,q,1 +
( ∫
Rn

( ∫ 2

1

( ∫
B(O,1)

S s f (x, t, h)dh
)q dt

t

)p/q
dx

)1/p
.

By a change of variable and Minkowski’s inequality,( ∫
Rn

( ∫ 2

1

( ∫
B(O,1)

S s f (x, t, h)dh
)q dt

t

)p/q
dx

)1/p

.
( ∫
Rn

( ∫ 2

1

( ∫
B(O,t)
| f (x + z) − f (x)|dz

)q dt
t

)p/q
dx

)1/p

.
( ∫
Rn

( ∫
B(O,2)

| f (x + z) − f (x)|dz
)p

dx
)1/p

.

∫
B(O,2)

( ∫
Rn
| f (x + z) − f (x)|pdx

)1/p
dz . ‖ f ‖Lp(Rn).

This together with (2.2) implies that

‖S t,s f ‖Lp(Rn,Lq((0,1),t−1dt)) . ‖ f ‖F p,q
s (Rn).
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On the other hand, by a change of variable, Hölder’s inequality, and applying Fubini’s theorem,

( ∫ 1

0

( ∫
Rn
|S t,s f (x, t)|pdx

)q/p dt
t

)1/q

≤
( ∫ 1

0

( ∫
Rn

1
|B(O, 1)|

∫
B(O,1)

| f (x + 2th) − f (x)|p

tsp dhdx
)q/p dt

t

)1/q

.
( ∫ 2

0

( ∫
B(O,1)

∫
Rn

| f (x + th) − f (x)|p

tsp dxdh
)q/p dt

t

)1/q

≤ ‖S s f ‖Ep,q +
( ∫ 2

1

( ∫
B(O,1)

∫
Rn
|S f (x, t, h)|pdxdh

)q/p dt
t

)1/q
.

One can easily check that

( ∫ 2

1

( ∫
B(O,1)

∫
Rn
|S f (x, t, h)|pdxdh

)q/p dt
t

)1/q

≤
( ∫ 2

1

( ∫
B(O,1)

∫
Rn
| f (x + th) − f (x)|pdxdh

)q/p dt
t

)1/q
. ‖ f ‖Lp(Rn).

This together with (2.4) yields that

‖S t,s f ‖Lp(Rn,Lq((0,1),t−1dt)) . ‖ f ‖Bp,q
s (Rn).

So part (vi) holds. �

The following results play key roles in the continuity part of Theorems 1 and 2.

Lemma 4. Let 1 ≤ p, q, r < ∞ and F j, Φ, Ψ j be mappings from Rn × (0, 1) × B(O, 1) to R such that

|F j(x, t, h)| ≤ Φ(x, t, h) + Ψ j(x, t, h), ∀ j ≥ 1 and a.e. (x, t, h) ∈ Rn × (0, 1) × B(O, 1).

Then:
(i) Let ‖Ψ j‖Fp,q,r → 0 as j→ ∞ and ‖Φ‖Fp,q,r < ∞. Moreover, for a.e. x ∈ Rn and t ∈ (0, 1), we have

|{h ∈ B(O, 1) : |F j(x, t, h)| > ε}| → 0 as j→ ∞, ∀ε > 0.

Then we have ‖F j‖Fp,q,r → 0 as j→ ∞.
(ii) Let ‖Ψ j‖Ep,q → 0 as j → ∞ and ‖Φ‖Ep,q < ∞. Moreover, for a.e. (x, t, h) ∈ Rn × (0, 1) × B(O, 1)

we have F j(x, t, h)→ 0 as j→ ∞. Then we have ‖F j‖Ep,q → 0 as j→ ∞.

Proof. Part (i) was proved in [13]. Part (ii) can be proved by the dominated convergence theorem. The
details are omitted. �
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2.3. Difference estimates of extension functions

In this subsection we introduce some extension functions and establish some refined difference
estimates. These are the main ingredients for proving our main results. In order to prove our main
results, we need to introduce some auxiliary functions. Let b ∈ L1

loc(R
n) and ( f , g) ∈ L1

loc(R
n)×L1

loc(R
n).

We define the function Ab, f ,g,x : [0,∞)→ R by

Ab, f ,g,x(r) =


0, if r = 0;

1
|B(O, r)|

∫
B(O,r)

|(b(x) − b(x + y)) f (x + y)g(x − y)|dy, if r ∈ (0,∞).

Lemma 5. Let f ∈ Lp1
loc(R

n), g ∈ Lp2
loc(R

n), b ∈ Lp3
loc(R

n), where 1 < p1, p2, p3 < ∞ and
∑3

i=1
1
pi
≤ 1.

Then we have:
(i) For any x ∈ Rn, Ab, f ,g,x(r) is continuous on (0,∞).
(ii) For a.e. x ∈ Rn, Ab, f ,g,x(r) is continuous at r = 0.

Proof. Let p4 ∈ [1,∞] be such that
∑4

i=1
1
pi

= 1. Let r ∈ (0,∞) and t ∈ (0, 2r). By Hölder’s inequality
and the Lebesgue dominated convergence theorem, one gets∣∣∣∣ ∫

B(O,t)
|b(x) − b(x + y)|| f (x + y)g(x − y)|dy −

∫
B(O,r)

|b(x) − b(x + y)|| f (x + y)g(x − y)|dy
∣∣∣∣

≤

∣∣∣∣ ∫
B(O,2r)

|b(x) − b(x + y)|| f (x + y)g(x − y)||χB(O,t)(y) − χB(O,r)(y)|dy

≤ |B(O, 2r)|
1

p4 ‖b(x) − b(x + ·)‖Lp3 (B(0,2r))‖g(x − ·)‖Lp2 (B(O,2r))‖ f (x + ·)(χB(O,t) − χB(O,r))‖Lp1 (B(O,2r))

→ 0 as t → r.

This gives part (i).
On the other hand, we get by Hölder’s inequality and the Lebesgue differentiation theorem that for

almost every x ∈ Rn,

Ab, f ,g,x(r) =
1

|B(O, r)|

∫
B(O,r)

|b(x) − b(x + y)|| f (x + y)g(x − y)|dy

≤
( 1
|B(O, r)|

∫
B(O,r)

|b(x) − b(x + y)|p3dy
)1/p3( 1

|B(O, r)|

∫
B(O,r)

| f (x + y)|p1dy
)1/p1

×
( 1
|B(O, r)|

∫
B(O,r)

|g(x − y)|p2dy
)1/p2

→ 0 as r → 0.

This gives part (ii). �

We now introduce the extension function of the local bilinear maximal commutator. This plays a
key role in our proofs. Let f ∈ L1

loc(R
n), g ∈ L1

loc(R
n), and b ∈ L1

loc(R
n). Define the extension function

TΩ,b( f , g) by

TΩ,b( f , g)(x) =

{
0, if x ∈ Ωc,

MΩ,b( f , g)(x), if x ∈ Ω.
(2.6)

We now establish the refined difference estimates for TΩ,b( f , g).
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Lemma 6. Let f ∈ L1
loc(R

n), g ∈ L1
loc(R

n), and b ∈ L1
loc(R

n). Then for a.e. x ∈ Rn and x + th ∈ Rn with
t ∈ (0, 1) and h ∈ B(O, 1), we have

|TΩ,b( f , g)(x + th) − TΩ,b( f , g)(x)|
≤ (|∆thb(x)| + |b(x)|)(M(∆th f ,∆thg)(x) +M(∆th f , g)(x) +M( f ,∆thg)(x))

+M(b∆th f ,∆thg)(x) +M(∆thb∆th f ,∆thg)(x) +M(b∆th f , g)(x)
+M(∆thb∆th f , g)(x) +M(b f ,∆thg)(x) +M(∆thb f ,∆thg)(x)
+|∆thb(x)|M( f , g)(x) +M(∆thb f , g)(x) + 2n+1Mδ1 f (x)Mδ2g(x)Mδ3ρtb(x)
+2n+1(Mδ4 f (x)Mδ′4

ρtg(x)ρtb(x) + Mδ5 f (x)Mδ6ρtg(x)Mδ7ρtb(x))
+2n+1(Mδ8ρt f (x)Mδ′8

g(x)ρtb(x) + Mδ9ρt f (x)Mδ10g(x)Mδ11ρtb(x))
=: Φ(x, t, h),

where δi ∈ (1,∞), 1 ≤ i ≤ 11,
∑3

i=1
1
δi

= 1,
∑7

i=5
1
δi

= 1 and
∑11

i=9
1
δi

= 1.

Proof. First, we prove the following:
Claim 1. Let x, y be the Lebesgue points of f and g in Rn. There exist r1 ≥ 0 and r2 ≥ 0 such that

|r1 − r2| ≤ |x − y| and

|TΩ,b( f , g)(x) − TΩ,b( f , g)(y)| ≤ |Ab, f ,g,x(r1) − Ab, f ,g,y(r2)|. (2.7)

We assume without loss of generality that TΩ,b( f , g)(x) > TΩ,b( f , g)(y). For convenience, we set
δ(x) = dist(x, ∂Ω) and

R( f , g)(x) = {r ∈ [0, δ(x)] : TΩ,b( f , g)(x) = Ab, f ,g,x(r)}.

By Lemma 5 we see that for almost every x ∈ Ω, the function Ab, f ,g,x(r) is continuous on [0, δ(x)]. Thus,
for a.e. x ∈ Ω, the set R( f , g)(x) is non-empty. Let r1 ∈ R( f , g)(x) and set r2 = max{0, r1 − |x − y|}.
Clearly, |r1 − r2| ≤ |x− y|. If r2 = 0, then (2.7) is clear. If r2 > 0, then r1 > |x− y| and r2 = r1 − |x− y| ≤
δ(x) − |x − y| ≤ δ(y). In this case (2.7) holds since TΩ,b( f , g)(y) ≥ Ab, f ,g,y(r2).

In view of Claim 1, for the conclusion of Lemma 6, it suffices to show the following:
Claim 2. For a.e. x ∈ Rn and x + th ∈ Rn with t ∈ (0, 1) and h ∈ B(O, 1), and for any r1, r2 ≥ 0 and

|r1 − r2| ≤ t, we have
|Ab, f ,g,x+th(r1) − Ab, f ,g,x(r2)| ≤ Φ(x, t, h). (2.8)

We now prove Claim 2. Let E be the set of all x ∈ Rn for which Ab, f ,g,x(r) is continuous on [0,∞).
Invoking Lemma 5, we see that |Rn \ E| = 0. Let x, x + th ∈ E with t ∈ (0, 1) and h ∈ B(O, 1). Let
r1, r2 ≥ 0 with |r1 − r2| ≤ t. Without loss of generality we may assume r1, r2 > 0. Observe that

|Ab, f ,g,x+th(r1) − Ab, f ,g,x(r2)| ≤ |Ab, f ,g,x+th(r1) − Ab, f ,g,x(r1)| + |Ab, f ,g,x(r1) − Ab, f ,g,x(r2)|. (2.9)

By some changes of variables, one gets

|Ab, f ,g,x+th(r1) − Ab, f ,g,x(r1)| ≤
1

|B(O, r1)|

∫
B(O,r1)

|(b(x + th) − b(x + y + th)) f (x + y + th)g(x − y + th)

−(b(x) − b(x + y)) f (x + y)g(x − y)|dy
=: I1 + I2,
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where

I1 :=
1

|B(O, r1)|

∫
B(O,r1)

|(b(x + th) − b(x + y + th))( f (x + y + th)g(x − y + th) − f (x + y)g(x − y))|dy,

I2 :=
1

|B(O, r1)|

∫
B(O,r1)

(|∆thb(x)| + |∆thb(x + y)|)| f (x + y)g(x − y)|dy.

It is clear that

|b(x + th) − b(x + y + th)| ≤ |∆thb(x)| + |b(x)| + |b(x + y)| + |∆thb(x + y)|

and
| f (x + y + th)g(x − y + th) − f (x + y)g(x − y)|
≤ |∆th f (x + y)|(|∆thg(x − y)| + |g(x − y)|) + | f (x + y)||∆thg(x − y)|.

Hence, we have

I1 ≤ (|∆thb(x)| + |b(x)|)(M(∆th f ,∆thg)(x) +M(∆th f , g)(x) +M( f ,∆thg)(x))
+M(b∆th f ,∆thg)(x) +M(∆thb∆th f ,∆thg)(x) +M(b∆th f , g)(x)
+M(∆thb∆th f , g)(x) +M(b f ,∆thg)(x) +M(∆thb f ,∆thg)(x).

We also note that
I2 ≤ |∆thb(x)|M( f , g)(x) +M(∆thb f , g)(x).

It follows that

|Ab, f ,g,x+th(r1) − Ab, f ,g,x(r1)|
≤ (|∆thb(x)| + |b(x)|)(M(∆th f ,∆thg)(x) +M(∆th f , g)(x) +M( f ,∆thg)(x))

+M(b∆th f ,∆thg)(x) +M(∆thb∆th f ,∆thg)(x) +M(b∆th f , g)(x)
+M(∆thb∆th f , g)(x) +M(b f ,∆thg)(x) +M(∆thb f ,∆thg)(x)
+|∆thb(x)|M( f , g)(x) +M(∆thb f , g)(x).

(2.10)

It remains to estimate |Ab, f ,g,x(r1) − Ab, f ,g,x(r2)|. By some change of variables,

Ab, f ,g,x(r2) =
1

|B(O, r1)|

∫
B(O,r1)

∣∣∣∣(b(x) − b
(
x +

r2

r1
y
))

f
(
x +

r2

r1
y
)
g
(
x −

r2

r1
y
)∣∣∣∣dy.

Write
|Ab, f ,g,x(r1) − Ab, f ,g,x(r2)| ≤ I2,1 + I2,2 + I2,3,

where
I2,1 :=

1
|B(O, r1)|

∫
B(O,r1)

∣∣∣∣(b(x +
r2

r1
y
)
− b(x + y)

)
f (x + y)g(x − y)

∣∣∣∣dy,

I2,2 :=
1

|B(O, r1)|

∫
B(O,r1)

∣∣∣∣(b(x) − b
(
x +

r2

r1
y
))

f (x + y)
(
g(x − y) − g

(
x −

r2

r1
y
))∣∣∣∣dy,

I2,3 :=
1

|B(O, r1)|

∫
B(O,r1)

∣∣∣∣(b(x) − b
(
x +

r2

r1
y
))(

f (x + y) − f
(
x +

r2

r1
y
))

g
(
x −

r2

r1
y
)∣∣∣∣dy.
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It is not difficult to verify that when |x − y| < t,

| f (y) − f (x)| ≤ 2n(ρt f (y) + ρt f (x)).

It follows that

I2,1 ≤
2n

|B(O, r1)|

∫
B(O,r1)

(
ρtb

(
x +

r2

r1
y
)

+ ρtb(x + y)
)
| f (x + y)g(x − y)|dy

≤ 2n
M(ρtb f , g)(x) +

2n

|B(O, r1)|

∫
B(O,r1)

ρtb
(
x +

r2

r1
y
)
| f (x + y)g(x − y)|dy.

Let δi ∈ (1,∞), i = 1, 2, 3, and
∑3

i=1
1
δi

= 1. By a change of variable, one gets( 1
|B(O, r1)|

∫
B(O,r1)

(
ρtb

(
x +

r2

r1
y
))δ3

dy
)1/δ3

≤
( 1
|B(O, r2)|

∫
B(O,r2)

(ρtb(x + z))δ3dz
)1/δ3
≤ Mδ3ρtb(x).

This together with Hölder’s inequality implies that

1
|B(O, r1)|

∫
B(O,r1)

ρtb
(
x +

r2

r1
y
)
| f (x + y)g(x − y)|dy

≤
( 1
|B(O, r1)|

∫
B(O,r1)

(
ρtb

(
x +

r2

r1
y
))δ3

dy
)1/δ3( 1

|B(O, r1)|

∫
B(O,r1)

| f (x + y)|δ1dy
)1/δ1

×
( 1
|B(O, r1)|

∫
B(O,r1)

|g(x − y)|δ2dy
)1/δ2

≤ Mδ1 f (x)Mδ2g(x)Mδ3ρtb(x).

This together with (2.5) and the fact that Mδ′2
ρtb f ≤ Mδ1 f Mδ3ρtb implies that

I2,1 ≤ 2n+1Mδ1 f (x)Mδ2g(x)Mδ3ρtb(x).

Next we estimate I2,2. We have

I2,2 ≤
2n

|B(O, r1)|

∫
B(O,r1)

(
ρtb(x) + ρtb

(
x +

r2

r1
y
))
| f (x + y)|

(
ρtg(x − y) + ρtg

(
x −

r2

r1
y
))

dy

≤
2nρtb(x)
|B(O, r1)|

∫
B(O,r1)

| f (x + y)|
(
ρtg(x − y) + ρtg

(
x −

r2

r1
y
))

dy

+
2n

|B(O, r1)|

∫
B(O,r1)

ρtb
(
x +

r2

r1
y
)
| f (x + y)|

(
ρtg(x − y) + ρtg

(
x −

r2

r1
y
))

dy.

By Hölder’s inequality, Minkowski’s inequality, and some changes of variables, we have that for any
δ4 ∈ (1,∞),

1
|B(O, r1)|

∫
B(O,r1)

| f (x + y)|
(
ρtg(x − y) + ρtg

(
x −

r2

r1
y
))

dy

≤
( 1
|B(O, r1)|

∫
B(O,r1)

| f (x + y)|δ4dy
)1/δ4( 1

|B(O, r1)|

∫
B(O,r1)

(
ρtg(x − y) + ρtg

(
x −

r2

r1
y
))δ′4dy

)1/δ′4

≤ Mδ4 f (x)
( 1
|B(O, r1)|

∫
B(O,r1)

(ρtg(x − y))δ
′
4dy

)1/δ′4

+Mδ4 f (x)
( 1
|B(O, r1)|

∫
B(O,r1)

(
ρtg

(
x −

r2

r1
y
))δ′4dy

)1/δ′4

≤ 2Mδ4 f (x)Mδ′4
ρtg(x).
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Let δi ∈ (1,∞), i = 5, 6, 7, and
∑7

i=5
1
δi

= 1. By Hölder’s inequality, Minkowski’s inequality, and some
changes of variables again,

1
|B(O, r1)|

∫
B(O,r1)

ρtb
(
x +

r2

r1
y
)
| f (x + y)|

(
ρtg(x − y) + ρtg

(
x −

r2

r1
y
))

dy ≤ 2Mδ5 f (x)Mδ6ρtg(x)Mδ7ρtb(x).

It follows that

I2,2 ≤ 2n+1(Mδ4 f (x)Mδ′4
ρtg(x)ρtb(x) + Mδ5 f (x)Mδ6ρtg(x)Mδ7ρtb(x)).

Similarly we get

I2,3 ≤ 2n+1(Mδ8ρt f (x)Mδ′8
g(x)ρtb(x) + Mδ9ρt f (x)Mδ10g(x)Mδ11ρtb(x)),

where δi ∈ (1,∞), i = 8, 9, 10, 11, and
∑11

i=9
1
δi

= 1. Hence, we have

|Ab, f ,g,x(r1) − Ab, f ,g,x(r2)| ≤ 2n+1Mδ1 f (x)Mδ2g(x)Mδ3ρtb(x)
+2n+1(Mδ4 f (x)Mδ′4

ρtg(x)ρtb(x) + Mδ5 f (x)Mδ6ρtg(x)Mδ7ρtb(x))
+2n+1(Mδ8 f (x)Mδ′8

ρtg(x)ρtb(x) + Mδ9ρt f (x)Mδ10g(x)Mδ11ρtb(x)).

This together with (2.9) and (2.10) yields (2.8). Then Lemma 6 is proved. �

3. Proof of Theorem 1

In this section we present the proofs of Theorems 1 and 2.

Proof of Theorem 1. We divide the proof of Theorem 1 into two steps.
Step 1. Proof of the boundedness part. Let hi ∈ F pi,q

s (Ω) for i = 1, 2, 3. We want to show that

‖MΩ,h3(h1, h2)‖F p,q
s (Ω) . ‖h3‖F p3 ,q

s (Ω)‖h1‖F p1 ,q
s (Ω)‖h2‖F p2 ,q

s (Ω). (3.1)

Let f ∈ F p1,q
s (Rn), g ∈ F p2,q

s (Rn), and b ∈ F p3,q
s (Rn) satisfy f |Ω = h1, g|Ω = h2, and b|Ω = h3. Let

TΩ,b( f , g) be defined as in (2.6). SinceMΩ,h3(h1, h2) = TΩ,b( f , g)|Ω, for (3.1) it is enough to prove that

‖TΩ,b( f , g)‖F p,q
s (Rn) . ‖b‖F p3 ,q

s (Rn)‖ f ‖F p1 ,q
s (Rn)‖g‖F p2 ,q

s (Rn). (3.2)

By Remark 2, we have

‖TΩ,b( f , g)‖Lp(Rn) . ‖MΩ,b( f , g)‖Lp(Ω) . ‖b‖Lp3 (Ω)‖ f ‖Lp1 (Ω)‖g‖Lp2 (Ω) . ‖b‖Lp3 (Rn)‖ f ‖Lp1 (Rn)‖g‖Lp2 (Rn). (3.3)

In view of (2.2) and (3.3), for (3.2) it is enough to prove that

‖S s(TΩ,b( f , g))‖Fp,q,r . ‖b‖F p3 ,q
s (Rn)‖ f ‖F p1 ,q

s (Rn)‖g‖F p2 ,q
s (Rn). (3.4)

By Lemma 6 and the definitions of S s and S t,s, we have that for a.e. x ∈ Rn and x + th ∈ Rn with
t ∈ (0, 1) and h ∈ B(O, 1),

S s(TΩ,b( f , g))(x, t, h) ≤ 2n+1
6∑

i=1

Ti( f , g)(x, t, h), (3.5)
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where
T1( f , g) = |S sb|M( f , g),

T2( f , g) = |b|(M(S s f , S sg) +M(S s f , g) +M( f , S sg)),

T3( f , g) = |S sb|(M(S s f , S sg) +M(S s f , g) +M( f , S sg)),

T4( f , g) = M(bS s f , S sg) +M(S sbS s f , S sg) +M(bS s f , g) +M(S sbS s f , g)
+M(b f , S sg) +M(S sb f , S sg) +M(S sb f , g),

T5( f , g) = Mδ1 f Mδ′1
S t,sgS t,sb + Mδ2S t,s f Mδ′2

gS t,sb,

T6( f , g) = Mδ3 f Mδ4gMδ5S t,sb + Mδ6 f Mδ7S t,sgMδ8S t,sb + Mδ9S t,s f Mδ10gMδ11S t,sb.

Here 1 < δi < ∞, 1 ≤ i ≤ 11,
∑5

i=3
1
δi

= 1,
∑8

i=6
1
δi

= 1, and
∑11

i=9
1
δi

= 1. Hence, by Minkowski’s
inequality and (3.5), one gets

‖S s(TΩ,b( f , g))‖Fp,q,r ≤ 2n+1
6∑

i=1

‖Ti( f , g)‖Fp,q,r . (3.6)

In what follows, we set

1
q1

=
1
p2

+
1
p3
,

1
q2

=
1
p1

+
1
p3
,

1
q3

=
1
p1

+
1
p2
, max{p′1, p′2} < r < min{p, q}.

It is clear that
1
p

=
1
p1

+
1
q1

=
1
p2

+
1
q2

=
1
p3

+
1
q3
, p1 > q′1, p2 > q′2, p3 > q′3.

Next we estimate ‖Ti( f , g)‖Fp,q,r , i = 1, 2, 3, 4, 5, 6, respectively.
Estimate for ‖T1( f , g)‖Fp,q,r .
By Hölder’s inequality, (2.2), and the Lp bounds ofM, we have

‖T1( f , g)‖Fp,q,r ≤ ‖S sb‖Fp3 ,q,r
‖M( f , g)‖Lq3 (Rn) . ‖b‖F p3 ,q

s (Rn)‖ f ‖Lp1 (Rn)‖g‖Lp2 (Rn). (3.7)

Estimate for ‖T2( f , g)‖Fp,q,r .
By Hölder’s inequality and Minkowski’s inequality, one gets

‖T2( f , g)‖Fp,q,r ≤ ‖b‖Lp3 (Rn)(‖M(S s f , S sg)‖Fq3 ,q,r
+ ‖M(S s f , g)‖Fq3 ,q,r

+ ‖M( f , S sg)‖Fq3 ,q,r
).

Let p2
q3
< τ′1 <

rp2
q3

. Clearly, τ1 <
p1
q3

. By (2.5), (2.1), (2.2), and Lemma 3, we have

‖M(S s f , S sg)‖Fq3 ,q,r
≤ ‖Mτ1S s f Mτ′1

S sg‖Fq3 ,q,r

≤ ‖Mτ1S s f ‖F
p1 ,

qp1
q3

,
rp1
q3

‖Mτ′1
S sg‖F

p2 ,
qp2
q3

,
rp2
q3

. ‖S s f ‖F
p1 ,

qp1
q3

,
rp1
q3

‖S sg‖F
p2 ,

qp2
q3

,
rp2
q3

. ‖ f ‖
F

p1 ,
qp1
q3

s (Rn)
‖g‖

F
p2 ,

qp2
q3

s (Rn)
. ‖ f ‖F p1 ,q

s (Rn)‖g‖F p2 ,q
s (Rn).

Let τ2 ∈ (p′2, r). Then τ′2 < p2. By (2.5), (2.2), and Lemma 3, we have

‖M(S s f , g)‖Fq3 ,q,r
≤ ‖Mτ2S s f Mτ′2

g‖Fq3 ,q,r

≤ ‖Mτ2S s f ‖Fp1 ,q,r
‖Mτ′2

g‖Lp2 (Rn)

. ‖S s f ‖Fp1 ,q,r
‖g‖Lp2 (Rn) . ‖ f ‖F p1 ,q

s (Rn)‖g‖Lp2 (Rn).

AIMS Mathematics Volume 11, Issue 1, 167–191.



181

Similarly one gets
‖M( f , S sg)‖Fq3 ,q,r

. ‖ f ‖Lp1 (Rn)‖g‖F p2 ,q
s (Rn).

Thus, we obtain
‖T2( f , g)‖Fp,q,r ≤ ‖b‖Lp3 (Rn)‖ f ‖F p1 ,q

s (Rn)‖g‖F p2 ,q
s (Rn). (3.8)

Estimate for ‖T3( f , g)‖Fp,q,r .
By Hölder’s inequality and Minkowski’s inequality, one gets

‖|S sb|(M(S s f , S sg)‖Fp,q,r ≤ ‖S sb‖F
p3 ,

qp3
p ,

rp3
p
‖M(S s f , S sg)‖F

q3 ,
qq3

p ,
rq3

p
.

In view of (2.1) and (2.2), we get

‖S sb‖F
p3 ,

qp3
p ,

rp3
p
. ‖b‖

F
p3 ,

qp3
p

s (Rn)
. ‖b‖F p3 ,q

s (Rn).

Let τ′3 ∈ ( rp2
p ,min{p2,

qp2
p }) and α ∈ (τ′3,min{p2,

qp2
p }). Clearly, τ3 < p1

p . By (2.5) and Hölder’s
inequality, one gets

‖M(S s f , S sg)‖F
q3 ,

qq3
p ,

rq3
p
≤ ‖Mτ3S s f Mτ′3

S sg‖F
q3 ,

qq3
p ,

rq3
p
≤ ‖Mτ3S s f ‖F

p1 ,
qp1

p ,
rp1

p
‖Mτ′3

S sg‖F
p2 ,

qp2
p ,

rp2
p
.

By (2.1), (2.2), Lemma 3, and Hölder’s inequality, one gets

‖Mτ3S s f ‖F
p1 ,

qp1
p ,

rp1
p
. ‖S s f ‖F

p1 ,
qp1

p ,
rp1

p
. ‖ f ‖

F
p1 ,

qp1
p

s (Rn)
. ‖ f ‖F p1 ,q

s (Rn),

‖Mτ′3
S sg‖F

p2 ,
qp2

p ,
rp2

p
. ‖Mτ′3

S sg‖F
p2 ,

qp2
p ,α
. ‖S sg‖F

p2 ,
qp2

p ,
rp2

p
. ‖g‖F p2 ,q

s (Rn).

It follows that
‖|S sb|M(S s f , S sg)‖Fp,q,r . ‖b‖F p3 ,q

s (Rn)‖ f ‖F p1 ,q
s (Rn)‖g‖F p2 ,q

s (Rn).

Let τ4 ∈ (p′2, r). Clearly, τ′4 < p2. By (2.5), Hölder’s inequality and Lemma 3, one gets

‖|S sb|(M(S s f , g)‖Fp,q,r ≤ ‖|S sb|Mτ4S s f Mτ′4
g‖Fp,q,r

≤ ‖Mτ′4
g‖Lp2 (Rn)‖S sb‖F

p3 ,
qp3
q2

,
rp3
q2

‖Mτ4S s f ‖F
p1 ,

qp1
q2

,
rp1
q2

. ‖g‖Lp2 (Rn)‖b‖
F

p3 ,
qp3
q2

s (Rn)
‖ f ‖

F
p1 ,

qp1
q2

s (Rn)

. ‖b‖F p3 ,q
s (Rn)‖ f ‖F p1 ,q

s (Rn)‖g‖F p2 ,q
s (Rn).

Similarly one gets
‖|S sb|M(S s f , g)‖Fp,q,r . ‖b‖F p3 ,q

s (Rn)‖ f ‖F p1 ,q
s (Rn)‖g‖F p2 ,q

s (Rn).

Thus, we have
‖T3( f , g)‖Fp,q,r . ‖b‖F p3 ,q

s (Rn)‖ f ‖F p1 ,q
s (Rn)‖g‖F p2 ,q

s (Rn). (3.9)

Estimate for ‖T4( f , g)‖Fp,q,r .
Let τ′5 ∈ ( p2

p ,
rp2
p ) and τ5 <

q2
p . By (2.5) and Hölder’s inequality, one gets

‖M(bS s f , S sg)‖Fp,q,r ≤ ‖Mτ5(bS s f )Mτ′5
S sg‖Fp,q,r ≤ ‖Mτ5(bS s f )‖F

q2 ,
qq2

p ,
rq2

p
‖Mτ′5

S sg‖F
p,

qp2
p ,

rp2
p
.
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In view of (2.1), (2.2), Lemma 3, and Hölder’s inequality, we have

‖Mτ5(bS s f )‖F
q2 ,

qq2
p ,

rq2
p
. ‖bS s f ‖F

q2 ,
qq2

p ,
rq2

p
. ‖b‖Lp3 (Rn)‖ f ‖

F
p1 ,

qq2
p

s (Rn)
. ‖b‖Lp3 (Rn)‖ f ‖F p1 ,q

s (Rn),

‖Mτ′5
S sg‖F

p,
qp2

p ,
rp2

p
. ‖S sg‖F

p,
qp2

p ,
rp2

p
. ‖g‖

F
p,

qp2
p

s (Rn)
. ‖g‖F p2 ,q

s (Rn).

It follows that
‖M(bS s f , S sg)‖Fp,q,r . ‖b‖Lp3 (Rn)‖ f ‖F p1 ,q

s (Rn)‖g‖F p2 ,q
s (Rn).

Similarly one gets
‖M(S sb f , S sg)‖Fp,q,r . ‖ f ‖Lp1 (Rn)‖b‖F p3 ,q

s (Rn)‖g‖F p2 ,q
s (Rn).

By (2.5) and Hölder’s inequality again,

‖M(S sbS s f , S sg)‖Fp,q,r ≤ ‖Mτ5(S sbS s f )Mτ′5
S sg‖Fp,q,r ≤ ‖Mτ5(S sbS s f )‖F

q2 ,
qq2

p ,
rq2

p
‖Mτ′5

S sg‖F
p,

qp2
p ,

rp2
p
.

By (2.1), (2.2), Lemma 3, and Hölder’s inequality again,

‖Mτ5(S sbS s f )‖F
q2 ,

qq2
p ,

rq2
p
. ‖S sbS s f ‖F

q2 ,
qq2

p ,
rq2

p
. ‖S sb‖F

p3 ,
qp3

p ,
rp3

p
‖S s f ‖F

p1 ,
qp1

p ,
rp1

p

. ‖b‖
F

p3 ,
qp3

p
s (Rn)

‖ f ‖
F

p1 ,
qq2

p
s (Rn)

. ‖b‖F p3 ,q
s (Rn)‖ f ‖F p1 ,q

s (Rn).

Hence, we obtain
‖M(S sbS s f , S sg)‖Fp,q,r . ‖b‖F p3 ,q

s (Rn)‖ f ‖F p1 ,q
s (Rn)‖g‖F p2 ,q

s (Rn).

By (2.5) and Hölder’s inequality again,

‖M(S sbS s f , g)‖Fp,q,r ≤ ‖Mτ2(S sbS s f )Mτ′2
g‖Fp,q,r ≤ ‖Mτ2(S sbS s f )‖Fq2 ,q,r

‖Mτ′2
g‖Lp2 (Rn),

‖M(bS s f , g)‖Fp,q,r ≤ ‖Mτ2(bS s f )Mτ′2
g‖Fp,q,r ≤ ‖Mτ2(bS s f )‖Fq2 ,q,r

‖Mτ′2
g‖Lp2 (Rn).

By (2.1), (2.2), Lemma 3, and Hölder’s inequality again,

‖Mτ2(S sbS s f )‖Fq2 ,q,r
. ‖S sbS s f ‖Fq2 ,q,r

. ‖S sb‖F
p3 ,

qp3
q2

,
rp3
q2

‖S s f ‖F
p1 ,

qp1
q2

,
rp1
q2

. ‖b‖
F

p3 ,
qp3

p
s (Rn)

‖ f ‖
F

p1 ,
qq2

p
s (Rn)

. ‖b‖F p3 ,q
s (Rn)‖ f ‖F p1 ,q

s (Rn),

‖Mτ2(bS s f )‖Fq2 ,q,r
. ‖bS s f ‖Fq2 ,q,r

. ‖b‖Lp3 (Rn)‖S s f ‖Fp1 ,q,r
. ‖b‖Lp3 (Rn)‖ f ‖F p1 ,q

s (Rn).

The above estimates together with the trivial estimate ‖Mτ′2
g‖Lp2 (Rn) . ‖g‖Lp2 (Rn) imply that

‖M(S sbS s f , g)‖Fp,q,r . ‖b‖F p3 ,q
s (Rn)‖ f ‖F p1 ,q

s (Rn)‖g‖Lp2 (Rn),

‖M(bS s f , g)‖Fp,q,r . ‖b‖Lp3 (Rn)‖ f ‖F p1 ,q
s (Rn)‖g‖Lp2 (Rn).

Similarly we obtain
‖M(S sb f , g)‖Fp,q,r . ‖b‖F p3 ,q

s (Rn)‖ f ‖Lp1 (Rn)‖g‖Lp2 (Rn).
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Let q′2 < τ′6 < min{p2, q}. Then τ6 < q2. Let α ∈ (max{τ′6, r},min{p2, q}). By (2.5), (2.1), (2.2),
Lemma 3, and Hölder’s inequality,

‖M(b f , S sg)‖Fp,q,r ≤ ‖Mτ6(b f )Mτ′6
S sg‖Fp,q,r

≤ ‖Mτ6(b f )‖Lq2 (Rn)‖Mτ′6
S sg‖Fp2 ,q,r

. ‖b f ‖Lq2 (Rn)‖Mτ′6
S sg‖Fp2 ,q,α

. ‖ f ‖Lp1 (Rn)‖b‖Lp3 (Rn)‖S sg‖Fp2 ,q,α

. ‖ f ‖Lp1 (Rn)‖b‖Lp3 (Rn)‖g‖F p2 ,q
s (Rn).

Therefore, we obtain
‖T4( f , g)‖Fp,q,r . ‖b‖F p3 ,q

s (Rn)‖ f ‖F p1 ,q
s (Rn)‖g‖F p2 ,q

s (Rn). (3.10)

Estimate for ‖T5( f , g)‖Fp,q,r .
Let δ′1 ∈ (p′1, r). Clearly, δ1 < p1. By (2.1), Lemma 3, and Hölder’s inequality,

‖Mδ1 f Mδ′1
S t,sgS t,sb‖Fp,q,r . ‖S t,sb‖

Lp3 (Rn,L
qp3

p ((0,1),t−1dt))
‖Mδ1 f ‖Lp1 (Rn)‖Mδ′1

S t,sg‖F
p2 ,

qq3
p ,

rq3
p

. ‖b‖
F

p3 ,
qp3

p
s (Rn)

‖ f ‖Lp1 (Rn)‖S t,sg‖
Lp2 (Rn,L

qq3
p ((0,1),t−1dt))

. ‖b‖F p3 ,q
s (Rn)‖ f ‖Lp1 (Rn)‖g‖

F
p2 ,

qq3
p

s (Rn)

. ‖b‖F p3 ,q
s (Rn)‖ f ‖Lp1 (Rn)‖g‖F p2 ,q

s (Rn).

Similarly we obtain

‖Mδ2S t,s f Mδ′2
gS t,sb‖Fp,q,r . ‖b‖F p3 ,q

s (Rn)‖ f ‖F p1 ,q
s (Rn)‖g‖Lp2 (Rn).

Thus, we have
‖T5( f , g)‖Fp,q,r . ‖b‖F p3 ,q

s (Rn)‖ f ‖F p1 ,q
s (Rn)‖g‖F p2 ,q

s (Rn). (3.11)

Estimate for ‖T6( f , g)‖Fp,q,r .
There exist δ3 ∈ (1, p1), δ4 ∈ (1, p2), and q′3 < δ5 < min{p3, q} such that

∑5
i=3

1
δi

= 1. There exist
δ6 ∈ (1, p1), δ7 ∈ (1, rp2

q1
), and δ8 ∈ (1, rp3

q1
) such that

∑8
i=6

1
δi

= 1. Let β ∈ (max{δ5, r},min{p3, q}).
By (2.1), Lemmas 3 and 4, and Hölder’s inequality,

‖Mδ3 f Mδ4gMδ5S t,sb‖Fp,q,r ≤ ‖Mδ3 f Mδ4g‖Lq3 (Rn)‖Mδ5S t,sb‖Fp3 ,q,r

. ‖Mδ3 f ‖Lp1 (Rn)‖Mδ4g‖Lp2 (Rn)‖Mδ5S t,sb‖Fp3 ,q,β

. ‖ f ‖Lp1 (Rn)‖g‖Lp2 (Rn)‖S t,sb‖Lp3 (Rn,Lq((0,1),t−1dt))

. ‖ f ‖Lp1 (Rn)‖g‖Lp2 (Rn)‖b‖F p3 ,q
s (Rn),

‖Mδ6 f Mδ7S t,sgMδ8S t,sb‖Fp,q,r ≤ ‖Mδ6 f ‖Lp1 (Rn)‖Mδ7S t,sg‖F
p2 ,

qp2
q1

,
rp2
q1

‖Mδ8S t,sb‖F
p3 ,

qp3
q1

,
rp3
q1

. ‖ f ‖Lp1 (Rn)‖S t,sg‖
Lp2 (Rn,L

qp2
q1 ((0,1),t−1dt))

‖S t,sb‖
Lp3 (Rn,L

qp3
q1 ((0,1),t−1dt))

. ‖ f ‖Lp1 (Rn)‖g‖
F

p2 ,
qp2
q1

s (Rn)
‖b‖

F
p3 ,

qp3
q1

s (Rn)

. ‖ f ‖Lp1 (Rn)‖g‖F p2 ,q
s (Rn)‖b‖F p3 ,q

s (Rn).

Similarly we get

‖Mδ9S t,s f Mδ10gMδ11S t,sb‖Fp,q,r . ‖ f ‖F p1 ,q
s (Rn)‖g‖Lp2 (Rn)‖b‖F p3 ,q

s (Rn).
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It follows that
‖T6( f , g)‖Fp,q,r . ‖b‖F p3 ,q

s (Rn)‖ f ‖F p1 ,q
s (Rn)‖g‖F p2 ,q

s (Rn). (3.12)

Combining (3.12) with (3.6)–(3.11) implies (3.4).

Step 2. Proof of the continuity part. Let hi ∈ F pi,q
s (Ω) for i = 1, 2, 3. For i = 1, 2, let {hi, j} j≥1 ⊂

F pi,q
s (Ω) satisfy hi, j → hi in F pi,q

s (Ω) as j→ ∞. It suffices to show that

‖MΩ,h3(h1, j, h2, j) −MΩ,h3(h1, h2)‖F p,q
s (Ω) → 0 as j→ ∞. (3.13)

Let f ∈ F p1,q
s (Rn), g ∈ F p2,q

s (Rn), and b ∈ F p3,q
s (Rn) satisfy f |Ω = h1, g|Ω = h2, and b|Ω = h3. Let h̃1, j be

the extensions of the functions h1 − h1, j with ‖h̃1, j‖F p1 ,q
s (Rn) → 0 as j→ ∞. Let h̃2, j be the extensions of

the functions h2 − h2, j with ‖h̃2, j‖F p2 ,q
s (Rn) → 0 as j → ∞. It is clear that f j (resp., g j) is an extension of

h1, j (resp., h2, j) and f − f j = h̃1, j, g−g j = h̃2, j. Thus, we have ‖ f j− f ‖F p1 ,q
s (Rn) → 0 and ‖g j−g‖F p2 ,q

s (Rn) → 0
as j→ ∞. Observe that

TΩ,b( f j, g j)|Ω = MΩ,h3(h1, j, h2, j), TΩ,b( f , g)|Ω = MΩ,h3(h1, h2).

It follows that
(TΩ,b( f j, g j) − TΩ,b( f , g))|Ω = MΩ,h3(h1, j, h2, j) −MΩ,h3(h1, h2).

Thus, for (3.13) it suffices to prove that

‖TΩ,b( f j, g j) − TΩ,b( f , g)‖F p,q
s (Rn) → 0 as j→ ∞. (3.14)

It is not difficult to see that

|TΩ,b( f j, g j)(x) − TΩ,b( f , g)(x)| ≤ |MΩ,h3(h1, j, h2, j)(x) −MΩ,h3(h1, h2)(x)|χΩ(x).

This together with Remark 2 implies that

‖TΩ,b( f j, g j) − TΩ,b( f , g)‖Lp(Rn) → 0 as j→ ∞. (3.15)

In view of (2.2) and (3.15), for (3.14) it is enough to show that

‖S s(TΩ,b( f j, g j) − TΩ,b( f , g))‖Fp,q,r → 0 as i→ ∞. (3.16)

Next we prove (3.16) by contradiction. Without loss of generality we may assume that there exists
a constant c > 0 such that

‖S s(TΩ,b( f j, g j) − TΩ,b( f , g))‖Fp,q,r > c, ∀ j ≥ 1. (3.17)

From the definitions of S s and S t,s, we have

|S s( f j) − S s( f )| ≤ S s( f j − f ), |S t,s( f j) − S t,s( f )| ≤ S t,s( f j − f ). (3.18)

Moreover, by the definition of Mτ, one can easily check that

Mτ f j ≤ 2(Mτ( f j − f ) + Mτ f ), ∀τ ∈ (1,∞). (3.19)
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We get from (3.5) that for a.e. x ∈ Rn and x + th ∈ Rn with t ∈ (0, 1) and h ∈ B(O, 1),

S s(TΩ,b( f j, g j))(x, t, h) ≤ 2n+1
6∑

i=1

Ti( f j, g j)(x, t, h). (3.20)

By (3.5) and (3.20), we have that for a.e. x ∈ Rn and x + th ∈ Rn with t ∈ (0, 1) and h ∈ B(O, 1),

|S s(TΩ,b( f j, g j))(x, t, h) − S s(TΩ,b( f,g))(x, t, h)| ≤ Φ j(x, t, h) + Ψ(x, t, h), (3.21)

where

Φ j(x, t, h) = 2n+3
6∑

i=1

(Ti( f j − f , g)(x, t, h) + Ti( f j − f , g j − g)(x, t, h) + Ti( f , g j − g)(x, t, h)),

Ψ(x, t, h) = 2n+4
6∑

i=1

Ti( f , g)(x, t, h).

By Minkowski’s inequality and (3.7)–(3.12), we have

‖Φ j‖Fp,q,r → 0 as j→ ∞, ‖Ψ‖Fp,q,r < ∞. (3.22)

Let λ > 0 and (x, t) ∈ Rn × (0, 1). It is clear that

S s(TΩ,b( f j, g j) − TΩ,b( f , g))(x, t, h)
≤ t−s(|TΩ,b( f j, g j)(x + th) − TΩ,b( f , g)(x + th)| + |TΩ,b( f j, g j)(x) − TΩ,b( f , g)(x)|).

This together with (3.15) and Fubini’s theorem implies that for any t ∈ (0, 1),∫
Rn

∫
B(O,1)

|S s(TΩ,b( f j, g j) − TΩ,b( f , g))(x, t, h)|pdhdx

. t−sp‖TΩ,b( f j, g j) − TΩ,b( f , g)‖p
Lp(Rn) → 0 as j→ ∞.

Hence, for any t ∈ (0, 1), there exists a subsequence { jk}k≥1 such that for a.e. x ∈ Rn,∫
B(O,1)

|S s(TΩ,b( f jk , g jk) − TΩ,b( f , g))(x, t, h)|pdh→ 0 as k → ∞.

This together with Chebyshev’s inequality implies that for any t ∈ (0, 1) and a.e. x ∈ Rn,

|{h ∈ B(O, 1) : S s(TΩ,b( f jk , g jk) − TΩ,b( f , g))(x, t, h) > λ}| → 0 as k → ∞. (3.23)

By (3.21)–(3.23) and Lemma 4,

‖S s(TΩ,b( f jk , g jk) − TΩ,b( f , g))‖Fp,q,r → 0 as k → ∞.

This leads to a contradiction with (3.17). The proof of Theorem 1 is now proved. �
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Proof of Theorem 2. The proof of Theorem 2 will be divided into two parts.
Step 1. Proof of the boundedness part. Let hi ∈ Bpi,q

s (Ω) for i = 1, 2, 3. It suffices to show that

‖MΩ,h3(h1, h2)‖Bp,q
s (Ω) . ‖h3‖Bp3 ,q

s (Ω)‖h1‖Bp1 ,q
s (Ω)‖h2‖Bp2 ,q

s (Ω). (3.24)

Let f ∈ Bp1,q
s (Rn), g ∈ Bp2,q

s (Rn), and b ∈ Bp3,q
s (Rn) satisfy f |Ω = h1, g|Ω = h2, and b|Ω = h3. Clearly,

TΩ,b( f , g)|Ω = MΩ,h3(h1, h2). Hence, for (3.24) it is enough to show that

‖TΩ,b( f , g)‖Bp,q
s (Rn) . ‖b‖Bp3 ,q

s (Rn)‖ f ‖Bp1 ,q
s (Rn)‖g‖Bp2 ,q

s (Rn). (3.25)

By (3.3) and (2.4), for (3.25) it is enough to prove that

‖S s(TΩ,b( f , g))‖Ep,q . ‖b‖Bp3 ,q
s (Rn)‖ f ‖Bp1 ,q

s (Rn)‖g‖Bp2 ,q
s (Rn). (3.26)

By Lemma 6 and the definitions of S s and S t,s, we have that for a.e. x ∈ Rn and x + th ∈ Rn with
t ∈ (0, 1) and h ∈ B(O, 1),

S s(TΩ,b( f , g))(x, t, h) ≤ 2n+1
5∑

i=1

Ii( f , g)(x, t, h), (3.27)

where
I1( f , g) = |S sb|M( f , g),

I2( f , g) = (|∆thb| + |b|)(M(S s f ,∆thg) +M(S s f , g) +M( f , S sg)),

I3( f , g) = M(b∆th f , S sg) +M(∆thb∆th f , S sg) +M(bS s f , g)
+M(∆thbS s f , g) +M(b f , S sg) +M(∆thb f , S sg),

I4( f , g) = Mδ1 f Mδ′1
ρtgS t,sb + Mδ1ρt f Mδ′1

gS t,sb,

I5( f , g) = Mδ2 f Mδ3gMδ4S t,sb + Mδ2 f Mδ3ρtgMδ4S t,sb + Mδ2ρt f Mδ3gMδ4S t,sb.

Here 1 < δi < ∞, 1 ≤ i ≤ 4,
∑4

i=2
1
δi

= 1.
By (3.27) and Minkowski’s inequality,

‖S s(TΩ,b( f , g))‖Ep,q ≤ 2n+1
5∑

i=1

‖Ii( f , g)‖Ep,q . (3.28)

Let q1, q2, q3 be given in the proof of Theorem 1. We now estimate ‖Ii( f , g)‖Ep,q , respectively.
Estimate for ‖I1( f , g)‖Ep,q .
By (2.4), Hölder’s inequality and the bounds forM, we have

‖I1( f , g)‖Ep,q . ‖S sb‖Ep3 ,q
‖M( f , g)‖Lq3 (Rn) . ‖ f ‖Lp1 (Rn)‖g‖Lp2 (Rn)‖b‖F p3 ,q

s (Rn). (3.29)

Estimate for ‖I2( f , g)‖Ep,q .
By Minkowski’s inequality and the boundedness forM, we have

‖M(S s f ,∆thg) +M(S s f , g) +M( f , S sg)‖Lq3 (Rn)

≤ ‖M(S s f ,∆thg)‖Lq3 (Rn) + ‖M(S s f , g)‖Lq3 (Rn) + ‖M( f , S sg)‖Lq3 (Rn)

. ‖S s f ‖Lp1 (Rn)‖∆thg‖Lp2 (Rn) + ‖S s f ‖Lp1 (Rn)‖g‖Lp2 (Rn) + ‖ f ‖Lp1 (Rn)‖S sg‖Lp2 (Rn)

. ‖S s f ‖Lp1 (Rn)‖g‖Lp2 (Rn) + ‖ f ‖Lp1 (Rn)‖S sg‖Lp2 (Rn).
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This together with (2.4), Hölder’s inequality, and Minkowski’s inequality implies that

‖I2( f , g)‖Ep,q . (‖∆thb‖Lp3 (Rn) + ‖b‖Lp3 (Rn))‖M(S s f ,∆thg) +M(S s f , g) +M( f , S sg)‖Eq3 ,q

. ‖b‖Lp3 (Rn)(‖S s f ‖Ep1 ,q
‖g‖Lp2 (Rn) + ‖ f ‖Lp1 (Rn)‖S sg‖Ep2 ,q

)
. ‖ f ‖Bp1 ,q

s (Rn)‖g‖Bp2 ,q
s (Rn)‖b‖Lp3 (Rn).

(3.30)

Estimate for ‖I3( f , g)‖Ep,q .
By the boundedness forM, Minkowski’s inequality, and Hölder’s inequality,

‖I3( f , g)‖Lp(Rn) ≤ ‖M(b∆th f , S sg)‖Lp(Rn) + ‖M(∆thb∆th f , S sg)‖Lp(Rn) + ‖M(bS s f , g)‖Lp(Rn)

+‖M(∆thbS s f , g)‖Lp(Rn) + ‖M(b f , S sg)‖Lp(Rn) + ‖M(∆thb f , S sg)‖Lp(Rn)

. (‖b∆th f ‖Lq2 (Rn) + ‖∆thb∆th f ‖Lq2 (Rn) + ‖b f ‖Lq2 (Rn) + ‖∆thb f ‖Lq2 (Rn))
×‖S sg‖Lp2 (Rn) + (‖bS s f ‖Lq2 (Rn) + ‖∆thbS s f ‖Lq2 (Rn))‖g‖Lp2 (Rn).

Observe that

‖b∆th f ‖Lq2 (Rn) + ‖∆thb∆th f ‖Lq2 (Rn) + ‖b f ‖Lq2 (Rn) + ‖∆thb f ‖Lq2 (Rn)

≤ (‖b‖Lp3 (Rn) + ‖∆thb‖Lp3 (Rn))(‖∆th f ‖Lp1 (Rn) + ‖ f ‖Lp1 (Rn)) . ‖b‖Lp3 (Rn)‖ f ‖Lp1 (Rn),

‖bS s f ‖Lq2 (Rn) + ‖∆thbS s f ‖Lq2 (Rn)

≤ (‖b‖Lp3 (Rn) + ‖∆thb‖Lp3 (Rn))‖S s f ‖Lp1 (Rn) . ‖b‖Lp3 (Rn)‖S s f ‖Lp1 (Rn).

It follows that

‖I3( f , g)‖Lp(Rn) . ‖b‖Lp3 (Rn)(‖S s f ‖Lp1 (Rn)‖g‖Lp2 (Rn) + ‖ f ‖Lp1 (Rn)‖S sg‖Lp2 (Rn)).

This together with (2.4) implies that

‖I3( f , g)‖Ep,q . ‖b‖Lp3 (Rn)(‖S s f ‖Ep1 ,q
‖g‖Lp2 (Rn) + ‖ f ‖Lp1 (Rn)‖S sg‖Ep2 ,q

)
. ‖b‖Lp3 (Rn)‖ f ‖F p1 ,q

s (Rn)‖g‖F p2 ,q
s (Rn).

(3.31)

Estimate for ‖I4( f , g)‖Ep,q .
Since 1

p1
+ 1

p2
= 1

q3
< 1, then p′2 < p1. We also note that ρtu ≤ |u|+ Mu for any function u ∈ L1

loc(R
n).

Let p′2 < δ1 < p1. By Hölder’s inequality, one gets

‖Mδ1 f Mδ′1
ρtgS t,sb‖Lp(Rn) ≤ ‖Mδ1 f ‖Lp1 (Rn)‖Mδ′1

ρtg‖Lp2 (Rn)‖S t,sb‖Lp3 (Rn)

. ‖ f ‖Lp1 (Rn)‖ρtg‖Lp2 (Rn)‖S t,sb‖Lp3 (Rn) . ‖ f ‖Lp1 (Rn)‖g‖Lp2 (Rn)‖S t,sb‖Lp3 (Rn).

Similarly one gets

‖Mδ2ρt f Mδ′2
gS t,sb‖Lp(Rn) . ‖ f ‖Lp1 (Rn)‖g‖Lp2 (Rn)‖S t,sb‖Lp3 (Rn).

It follows that

‖I4( f , g)‖Ep,q . ‖ f ‖Lp1 (Rn)‖g‖Lp2 (Rn)‖S t,sb‖Lp3 (Rn,Lq((0,1),t−1dt)) . ‖ f ‖Lp1 (Rn)‖g‖Lp2 (Rn)‖b‖Bp3 ,q
s (Rn). (3.32)

Estimate for ‖I5( f , g)‖Ep,q .
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Since
∑3

i=1
1
pi

= 1
p < 1, there exist δ2 ∈ (1, p1), δ3 ∈ (1, p2), and δ4 ∈ (1, p3) such that

∑4
i=2

1
δi

= 1.
By Hölder’s inequality, one gets

‖Mδ2 f Mδ3gMδ4S t,sb‖Lp(Rn) ≤ ‖Mδ2 f ‖Lp1 (Rn)‖Mδ3g‖Lp2 (Rn)‖Mδ4S t,sb‖Lp3 (Rn)

. ‖ f ‖Lp1 (Rn)‖g‖Lp2 (Rn)‖S t,sb‖Lp3 (Rn).

Similarly we obtain

‖Mδ2 f Mδ3ρtgMδ4S t,sb‖Lp(Rn) . ‖ f ‖Lp1 (Rn)‖g‖Lp2 (Rn)‖S t,sb‖Lp3 (Rn),

‖Mδ2ρt f Mδ3gMδ4S t,sb‖Lp(Rn) . ‖ f ‖Lp1 (Rn)‖g‖Lp2 (Rn)‖S t,sb‖Lp3 (Rn).

These estimates together with (2.4) and Minkowski’s inequality imply that

‖I5( f , g)‖Ep,q . ‖ f ‖Lp1 (Rn)‖g‖Lp2 (Rn)‖S t,sb‖Lp3 (Rn,Lq((0,1),t−1dt)) . ‖ f ‖Lp1 (Rn)‖g‖Lp2 (Rn)‖b‖Bp3 ,q
s (Rn). (3.33)

Then (3.26) follows from (3.28)–(3.33).

Step 2. Proof of the continuity part. Let hi ∈ Bpi,q
s (Ω) for i = 1, 2, 3. For i = 1, 2, let {hi, j} j≥1 ⊂

Bpi,q
s (Ω) satisfy hi, j → hi in Bpi,q

s (Ω) as j→ ∞. It suffices to show that

‖MΩ,b(h1, j, h2, j) −MΩ,b(h1, h2)‖Bp,q
s (Ω) → 0 as j→ ∞. (3.34)

Let f ∈ Bp1,q
s (Rn), g ∈ Bp2,q

s (Rn), and b ∈ Bp3,q
s (Rn) satisfy f |Ω = h1, g|Ω = h2, and b|Ω = h3. By (3.3)

and (2.4), for (3.34) it is enough to show that

‖S s(TΩ,b( f j, g j) − TΩ,b( f , g))‖Ep,q → 0 as j→ ∞. (3.35)

Now we prove (3.35) by contradiction. We may assume without loss of generality that there exists
a constant c > 0 such that

‖S s(TΩ,b( f j, g j) − TΩ,b( f , g))‖Ep,q > c, ∀ j ≥ 1. (3.36)

By Lemma 6, we have that for almost every x ∈ Rn and x + th ∈ Rn with t ∈ (0, 1) and h ∈ B(O, 1),

S s(TΩ,b( f j, g j))(x, t, h) ≤ 2n+1
5∑

i=1

Ii( f j, g j)(x, t, h). (3.37)

In view of (3.27) and (3.37), we have that for almost every x ∈ Rn and x + th ∈ Rn with t ∈ (0, 1) and
h ∈ B(O, 1),

|S s(TΩ,b( f j, g j))(x, t, h) − S s(TΩ,b( f , g))(x, t, h)| ≤ Γ j(x, t, h) + Θ(x, t, h), (3.38)

where

Γ j(x, t, h) = 2n+3
5∑

i=1

(Ii( f j − f , g j − g)(x, t, h) + Ii( f j − f , g)(x, t, h) + Ii( f , g j − g)(x, t, h)),

AIMS Mathematics Volume 11, Issue 1, 167–191.



189

Θ(x, t, h) = 2n+5
5∑

i=1

Ii( f , g)(x, t, h).

By Minkowski’s inequality and (3.29)–(3.33), we have

‖Γ j‖Ep,q → 0 as j→ ∞, ‖Θ‖Ep,q < ∞.

On the other hand, it was proved in the proof of Theorem 1 that for any t ∈ (0, 1),

‖S s(TΩ,b( f j, g j) − TΩ,b( f , g))‖Lp(Rn×B(O,1)) → 0 as j→ ∞. (3.39)

Hence, there exists a subsequence { jk}k≥1 such that for any t ∈ (0, 1) and almost every (x, h) ∈ Rn ×

B(O, 1),
S s(TΩ,b( f jk , g jk) − TΩ,b( f , g))(x, t, h)→ 0 as k → ∞. (3.40)

By (3.38)–(3.40) and Lemma 4, we have

‖S s(TΩ,b( f jk , g jk) − TΩ,b( f , g))‖Ep,q → 0 as k → ∞.

This contradicts with (3.36). So (3.35) holds. This completes the proof of Theorem 2. �

4. Conclusions

In the present paper we investigate the mapping properties of bilinear maximal commutator in the
domain setting. We establish some new boundedness and continuity for the above operator on the
Triebel–Lizorkin spaces and Besov spaces under suitable symbol function condition. The main results
we obtain essentially extend some known ones to local setting.
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