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Abstract: We investigate the structural stability of solutions to boundary value problems for the
variable exponent p(x)-Laplacian. Stability questions for such problems under perturbations of the
boundary operator, the differential operator, boundary data, or the domain have a long history and
play a central role in the analysis of nonlinear partial differential equations (PDEs). In this work, we
consider the Poisson boundary value problem with nonhomogeneous boundary conditions and study
the behavior of its solutions under variations of the exponent functions p(x). Our results extend the
classical stability theorem of Lindqvist (1987), originally formulated for constant p, to the variable
exponent setting. Moreover, our approach sharpens and generalizes the framework developed by
Zhikov (2011), allowing for nonhomogeneous boundary data and providing stronger convergence
results for the associated family of solutions. Specifically, it is shown that if the sequence (p j(x))
increases uniformly to p(x) in a bounded, smooth domain Ω, then the sequence (ui) of solutions to
the Dirichlet problem for the pi(x)-Laplacian with fixed boundary datum ϕ converges (in a sense to
be made precise) to the solution up of the Dirichlet problem for the p(x)-Laplacian with boundary
datum ϕ. A similar result is proved for a decreasing sequence p j ↘ p.

Keywords: Luxemburg norm; structural stability; modular vector space; p(x)-Laplacian; variable
exponent spaces
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1. Introduction

Stability results are of paramount importance in the study of boundary value problems because
they address the dependence of the solutions on the data. In the particular case of boundary value
problems involving the p-Laplacian, there is special interest in the behavior of the solutions up with
respect to variations of the parameter p. For p independent of the space variable, a stability result
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for the Poisson’s problem with vanishing boundary value was studied in [16]. The corresponding
generalization to variable p was carried out in [15]. This article is devoted to the discussion of stability
for the solutions of the Poisson problem with Dirichlet boundary condition∆p(·)(w) = div

(
|∇w|p(·)−2∇w

)
= f ∈ W−1,p(·)(Ω) in Ω,

w|∂Ω = ϕ
(1.1)

under perturbations of the parameter p(·). In (1.1), Ω is a bounded, smooth domain whose boundary
and closure are denoted by ∂Ω and Ω, respectively, and p = p(x) is a function on Ω.
The following notation is standard and will be employed throughout:

p− = inf
Ω

p(x), p+ = sup
Ω

p(x). (1.2)

The central results presented in this work are Theorems 1.1 and 1.2.

Theorem 1.1. Let Ω ⊆ Rn, n ≥ 2, be a bounded, smooth ( at least C1) domain with boundary ∂Ω and
closure Ω. Consider a non-decreasing sequence of functions pi : Ω → [1,∞), pi ∈ C(Ω) such that
pi → p uniformly in Ω, 1 < (p1)− and p+ < ∞. Fix ϕ ∈ W1,p(·)(Ω) and f ∈

(
W1,(p1)−

0 (Ω)
)∗

. For each
i ∈ N let wi ∈ W1,pi(·)(Ω) be the solution to the Poisson’s problem (1.1) corresponding to p = pi. Then

(i) there exists w ∈ W1,p(·)(Ω) such that the sequence (wi)i≥k converges weakly to w in W1,pk(·)(Ω), for
each k,

(ii) for each I, ‖wi − w‖pI (·) → 0 as i→ ∞,
(iii) ‖|∇(w − wi)|‖pi(·) → 0 as i→ ∞.

Moreover if the limit function p satisfies the log-Hölder condition (2.8), then the limit w belongs
to W1,p(·)(Ω) and it is the unique solution of the problem (1.1).

Theorem 1.2. Let Ω be as in Theorem 1.1 and let the sequence (pi) ∈ C(Ω) decrease uniformly to p.
Let ϕ ∈ W1,p1(·)(Ω) and f ∈

(
W1,p(·)

0 (Ω)
)∗

. Denote by w and wi the unique solution of the problem (1.1)
with exponent p(·) and pi(·), respectively. Assume 1 < p−, p+ < ∞, and that for some J ∈ N, it holds
that

∫
Ω

|∇w|pJ(·)dx < ∞. Then,

∫
Ω

|∇(wi − w)|p(·)dx→ 0 as i→ ∞. (1.3)

Theorem 1.1 should be compared to a related result in [17], in which the behavior of the solution up

of (1.1) with f = 0, as p→ ∞ is characterized.

Variable exponent spaces can be traced back to Orlicz’ 1931 paper [18] and since then, especially in
the last few decades, they found their way into a variety of applications, such as the mathematical
description of the hydrodynamics of electrorheological fluids [11], image restoration and super
resolution [3–5], elasticity theory [21] and the mathematical setting of Lavrentiev’s phenomenon [20].
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2. Notation, terminology and known auxiliary results

The main results and definitions in this section have been dealt with in [7, 14]. In the sequel,
Ω ⊂ Rn will stand for a bounded, smooth domain with boundary ∂Ω and p : Ω → (1,∞) denotes a
Borel-measurable function subject to the constraints

1 < p− = inf
Ω

p(x) ≤ sup
Ω

p(x) = p+ < ∞. (2.1)

The next definition concerns the variable exponent Lebesgue and Sobolev spaces and their
corresponding Luxemburg norm.

Definition 2.1. [7, 14]

Lp(·)(Ω) =

 f :
∫
Ω

|λ f (x)|p(·) dx < ∞, for some λ > 0


and the Luxemburg norm is defined by

‖ f ‖p(·) = inf

λ > 0 :
∫
Ω

(| f (x)|/λ))p(·) dx ≤ 1

 .
It is a routine exercise to show that when p is constant on Ω, the above defined spaces coincide with

the usual Lebesgue spaces.
If p ≤ q are measurable functions in Ω, the embedding Lq(·)(Ω) ↪→ Lp(·)(Ω) is continuous, that is there
exists a positive constant C(p, q) such that ‖u‖p(·) ≤ C(p, q)‖u‖q(·) for any u ∈ Lq(·)(Ω); see [14].
The following lemma is elementary, so its proof will be omitted; the reader is referred to [14] for
the details.

Lemma 2.1. For p satisfying (2.1) and u ∈ Lp(·)(Ω), it holds that

min



∫
Ω

|u(x)|p(x)dx


1

p+

,


∫
Ω

|u(x)|p(x)dx


1

p−
 ≤ ‖u‖p(·) ≤ max



∫
Ω

|u(x)|p(x)dx


1

p+

,


∫
Ω

|u(x)|p(x)dx


1

p−
 .

(2.2)

The following is the variable exponent version of Hölder’s inequality and will be used in the sequel.
We refer the reader to [14] for the standard proof.

Lemma 2.2. Let p and q be variable exponents satisfying (2.1) and p(x)
−1

+ q(x)−1 = 1 in Ω. Then, for
u ∈ Lp(·)(Ω) and v ∈ Lq(·)(Ω), it holds that∫

Ω

|uv|dx ≤ 2‖u‖p(·)‖v‖q(·). (2.3)

As is expected, the generalized Sobolev spaces W1,p(·)(Ω) introduced next are the natural habitat for
the solutions of second order partial differential equations with non-standard growth. Specifically,
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Definition 2.2. [7, 14]

W1,p(·)(Ω) =
{
f : f ∈ Lp(·)(Ω) and |∇ f | ∈ Lp(·)(Ω)

}
,

where |∇ f | stands for the Euclidean norm of ∇ f and the Sobolev norm is defined as

‖ f ‖1,p(·) = ‖ f ‖p(·) + ‖|∇ f |‖p(·). (2.4)

The Luxemburg norm closure of C∞0 (Ω) in W1,p(·)(Ω) will be denoted as W1,p(·)
0 (Ω).

The following theorem is well known; see [14] for an elementary proof.

Theorem 2.1. [9, Proposition 2.5,(ii)], [14, Theorem 3.10 (vi)] Let p ∈ C(Ω) satisfy p− > 1. Then
the functional

W1,p(·)
0 (Ω) 3 u→ ‖|∇u|‖p(·) (2.5)

is a norm on W1,p(·)
0 (Ω) , equivalent to the Sobolev norm (2.4).

Remark 2.1. Notice that under the assumption p ∈ C(Ω) one has, for any x ∈ Ω

lim
Ω3y→x

p(y) = p(x). (2.6)

Hence, p is ∗-continuous on Ω ( [14, p. 605]). In conjunction with [14, Theorem 3.10, (iv)], this
observation yields the proof of Theorem 2.1.

In the sequel, it will be understood that any space W1,q(·)
0 (Ω) is equipped with the norm u→ ‖|∇u|‖q(·).

Theorem 2.2. If Ω ⊆ Rn is bounded, and p ∈ C(Ω) satisfies the bounds (2.1), then the embedding

W1,p(·)
0 (Ω) ↪→ Lp(·)(Ω) (2.7)

is compact, and the space W1,p(·)(Ω) is uniformly convex (hence reflexive).

Proof. See [1, 14, 15]. �

The next theorem will play a pivotal role in the proof of Theorem 1.1.

Theorem 2.3. Assume there exists M > 0 such that for all x, y ∈ Ω it holds that

|p(x) − p(y)| ≤ M| log |x − y||−1. (2.8)

Then W1,p(·)
0 (Ω) = W1,p(·)(Ω) ∩W1,1

0 (Ω).

Proof. See [10, Theorem 2.6]; see also [12]. �

As is customary, the dual space of a Banach space X will be denoted by X∗, and 〈 f , x〉 will stand for
the action of f ∈ X∗ on x ∈ X.
It is well known [14], that if Ω ⊂ Rn is bounded, and p ≤ q in Ω, then W1,q(·)(Ω) ↪→ W1,p(·)(Ω) with
continuous embedding, and thus (

W1,p(·)(Ω)
)∗
↪→

(
W1,q(·)(Ω)

)∗
(2.9)

continuously.
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Remark 2.2. Notice that as a consequence of the preceding discussion, if f ∈
(
W1,p(·)

0 (Ω)
)∗

, and
(u j) ⊂ W1,q(·)

0 (Ω) converges weakly to u ∈ W1,q(·)
0 (Ω), then 〈 f , u j − u〉 → 0.

The following theorems are particular cases of [13, Theorems 3.2 and 3.3].

Theorem 2.4. Let Ω ⊂ Rn be a bounded, smooth domain, p : Ω→ R be a continuous function subject
to the constraints (2.1). Then, for any ϕ ∈ W1,p(·)(Ω) and f ∈

(
W1,p(·)

0 (Ω)
)∗

, there exists a unique
minimizer up ∈ W1,p(·)

0 (Ω) to the Dirichlet integral

W1,p(·)
0 (Ω) 3 u→

∫
Ω

|∇(u − ϕ)(x)|p(x)

p(x)
dx − 〈 f , u〉. (2.10)

Setting w = ϕ − u, the following immediate consequence of Theorem 2.4 is obtained.

Theorem 2.5. Let Ω ⊂ Rn be a bounded, smooth domain, p : Ω→ R be a continuous function subject
to the constraints (2.1). Then, for any f ∈

(
W1,p(·)

0 (Ω)
)∗

and any ϕ ∈ W1,p(·)(Ω), there exists a unique
weak solution w ∈ W1,p(·)(Ω) to the Dirichlet problem∆p(·)w = div

(
|∇w|p(·)−2∇w

)
= f in Ω,

w|∂Ω = ϕ.
(2.11)

Specifically, w satisfies the identity

−

∫
Ω

|∇w|p(x)−2
∇w(x)∇h(x) dx = 〈 f , h〉 for any h ∈ C∞0 (Ω),

and w − ϕ ∈ W1,p(·)
0 (Ω).

Remark 2.3. As Ω is assumed to be of class C1, this definition is consistent with the classical pointwise
definition; see [2, Théorème IX.17, p. 171].

Remark 2.4. As is apparent from theorems 2.4 and 2.5, the null function 0 is a solution of
problem (2.11) if and only if ϕ ∈ W1,p(·)

0 (Ω) and f = 0.

The following lemma will be used in the sequel.

Lemma 2.3. [8] Let Ω ⊂ Rn be a bounded domain and p and q be real-valued-measurable functions
on Ω with p ≤ q ≤ p + ε in Ω, with 0 < ε < 1. Then, for a measurable function f : Ω → [−∞,∞]
it holds ∫

Ω

| f (x)|p(x)dx ≤ ε |Ω| + ε−ε
∫
Ω

| f (x)|q(x)dx. (2.12)

Proof. ∫
Ω

| f (x)|p(x)dx =

∫
{| f |<ε}

| f (x)|p(x)dx +

∫
{ε<| f |<1}

| f (x)|p(x)dx +

∫
{| f |>1}

| f (x)|p(x)dx

= I1 + I2 + I3.
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The first integral, I1, is clearly bounded by
∫
Ω

ε p(x)dx ≤ ε |Ω|. As to I2, observe that

I2 =

∫
ε<| f |<1

| f (x)|p(x)−q(x)| f (x)|q(x)dx ≤ ε−ε
∫

ε<| f |<1

| f (x)|q(x)dx.

In conclusion, ∫
Ω

| f (x)|p(x)dx ≤ ε |Ω| + ε−ε
∫

ε<| f |<1

| f (x)|q(x)dx +

∫
| f |≥1

| f (x)|q(x)dx

≤ ε |Ω| + ε−ε
∫
Ω

| f (x)|q(x)dx.

�

Corollary 2.1. Under the assumptions of the preceding theorem, for any f ∈ Lq(Ω), it holds that

‖g‖p(·) ≤
(
ε |Ω| + ε−ε

)
‖g‖q(·). (2.13)

Proof. Let λ > 0 be chosen so that
∫
Ω

∣∣∣g(x)
λ

∣∣∣q(x)
dx ≤ 1. Estimate 2.12 holds that for g

λ
in the place of f ,

yielding (
ε |Ω| + ε−ε

)−1
∫
Ω

∣∣∣∣∣g(x)
λ

∣∣∣∣∣p(x)

dx ≤ 1. (2.14)

Because (ε|Ω| + ε−ε)−1 < 1,∫
Ω

∣∣∣∣∣ g(x)
(ε |Ω| + ε−ε) λ

∣∣∣∣∣p(x)

dx ≤
(
ε |Ω| + ε−ε

)−1
∫
Ω

∣∣∣∣∣g(x)
λ

∣∣∣∣∣p(x)

dx ≤ 1. (2.15)

Thus, (ε |Ω| + ε−ε) λ ≥ ‖g‖p(·), and (2.13) follows immediately. �

In particular, for p ≤ q ≤ p + ε in Ω and f ∈ W1,q(·)(Ω), it holds that

‖ f ‖1,p(·) ≤
(
ε |Ω| + ε−ε

)
‖ f ‖1,q(·), (2.16)

and it follows that the norm of the embedding (2.9) is at most (ε |Ω| + ε−ε) .

Corollary 2.2. Under the assumptions of Theorem 2.3,it holds that∫
Ω

| f (x)|p(x)

p(x)
dx ≤ ε |Ω| + ε−ε(1 + ε)

∫
Ω

| f (x)|q(x)

q(x)
dx. (2.17)

Proof. The proof follows from applying estimate (2.12) to the function p−
1
p | f |, defined on Ω and

observing that q(x)p(x)−
q(x)
p(x) < (1 + ε) on Ω. �

The following elementary, technical lemma will be singled out for use in the sequel.
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Lemma 2.4. Let (pi) pi ∈ C(Ω), pi → p uniformly in Ω, and f ∈ Lp(·)(Ω), fi ∈ Lpi(·)(Ω) for each i ∈ N.
Assume that

∫
Ω

| fi(x)|pi(x)

pi(x) dx→
∫
Ω

| f (x)|p(x)

p(x) dx as i→ ∞. Then
∫
Ω

| fi(x)|pi(x)dx→
∫
Ω

| f (x)|p(x)dx as i→ ∞.

Proof.∫
Ω

| fi(x)|pi(x)dx =

∫
Ω

| fi|
pi(x) pi(x)

pi(x)
dx =

∫
Ω

| fi(x)|pi(x) (pi − p)(x)
pi(x)

dx +

∫
Ω

| fi(x)|pi(x) p(x)
pi(x)

dx (2.18)

=

∫
Ω

| fi(x)|pi(x) pi(x) − p(x)
pi(x)

dx +

∫
Ω

(
| fi(x)|pi(x)

pi(x)
−
| f (x)|p(x)

p(x)

)
p(x) dx +

∫
Ω

| f (x)|p(x) dx.

�

The next theorem describes a fundamental geometric property of the functional

W1,p(·)
0 (Ω) 3 w→ F(u) = ρp(·)(w) =

∫
Ω

|∇w(x)|p(x)

p(x)
dx, (2.19)

where |∇u| stands for the Euclidean norm of ∇u.

Theorem 2.6. Given a domain Ω ⊂ Rn and a function p : Ω→ Rwith p ∈ C(Ω) and p− = inf
Ω

p(x) > 1,
the functional (2.19) is uniformly convex; this means that for any ε : 0 < ε there exists δ : 0 < δ < 1
such that for any pair u, v ∈ W1,p(·)(Ω)

ρp(·)

(u − v
2

)
> ε

ρp(·)(u) + ρp(·)(v)
2

⇒ ρp(·)

(u + v
2

)
< (1 − δ)

ρp(·)(u) + ρp(·)(v)
2

. (2.20)

Proof. The proof is rather involved; the interested reader can find it in [1]. Notice that the boundedness
of p is not needed here. �

3. Proof of Theorem 1.1

Consider a non-decreasing sequence (pi) with pi ∈ C(Ω) and 1 < pi → p uniformly in Ω. Fix
ϕ ∈ W1,p(Ω) and f ∈

(
W1,(p1)−(Ω)

)∗
; it is assumed that 1 < (p1)− = inf

Ω
p1.

For each i, let ui be the unique minimizer in W1,pi
0 (Ω) of the functional

Fi(u) =

∫
Ω

|∇(u − ϕ)(x)|pi(x)

pi(x)
dx − 〈 f , u〉, (3.1)

whose existence is guaranteed by Theorem 2.4. It has been shown in [13] that wi = ϕ− ui is the unique
solution of the Dirichlet problem (2.11) with p = pi.
To facilitate the flow of ideas, the proof of Theorem 1.1 will be split into several lemmas.

Lemma 3.1. Let (ui) be the sequence of minimizers introduced above. Then, for any J ∈ N, the
sequence (ui)i≥J is bounded in W1,pJ(·)

0 (Ω).
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Proof. Fix ε : 0 < ε < e−1 and a natural number J such that i ≥ J ⇒ ‖pi − p‖∞ < ε
2 . Then, for i ≥ J,

one has ui ∈ W1,pJ(·)
0 (Ω). Assume first that

∫
Ω

|∇ui(x)|pJ(x)dx ≥ 1. Then, on account of Lemma 2.1,

‖|∇ui|‖pJ(·) ≤


∫
Ω

|∇ui(x)|pJ(x)dx


1

(pJ )−

(3.2)

by virtue of Lemma 2.3. It follows that∫
Ω

|∇ui(x)|pJ(x)dx ≤ ‖pi − pJ‖∞|Ω| + ‖pi − pJ‖
−‖pi−pJ‖∞
∞

∫
Ω

|∇ui(x)|pi(x)dx (3.3)

≤ ε|Ω| + ε−ε
∫
Ω

2pi(x)
∣∣∣∣∣∇ (ui − ϕ

2
+
ϕ

2

)
(x)

∣∣∣∣∣pi(x)

dx

≤ ε|Ω| + ε−ε2p+−1


∫
Ω

pi(x)
|∇(ui − ϕ)(x)|pi(x)

pi(x)
dx +

∫
Ω

|∇ϕ(x)|pi(x)dx


≤ ε|Ω| + ε−ε2p+−1 p+


∫
Ω

|∇(ui − ϕ)(x)|pi(x)

pi(x)
dx − 〈 f , ui〉


+ ε−ε2p+−1

p+〈 f , ui〉 +

∫
Ω

|∇ϕ(x)|pi(x)dx

 .
Due to the minimal character of ui, one has

∫
Ω

|∇(ui − ϕ)(x)|pi(x)

pi(x)
dx − 〈 f , ui〉

 ≤
∫
Ω

|∇ϕ(x)|pi(x)

pi(x)
dx (3.4)

≤

∫
Ω

|∇ϕ(x)|pi(x)dx

and by virtue of Lemmas 2.3 and 2.1 and the choice of j, the latter is bounded above byε |Ω| + ε−ε
∫
Ω

|∇ϕ(x)|p(x)dx

 ≤ (
ε |Ω| + ε−ε‖∇ϕ‖αp

)
, (3.5)

where α = p− if
∫
Ω

|∇ϕ(x)|p(x)dx ≤ 1 and α = p+ otherwise.

On the other hand, f ∈
(
W1,(p1)−

0 (Ω)
)∗
⊂

(
W1,pJ

0 (Ω)
)∗

; also

‖|∇ui|‖(p1)− ≤ C(J)‖|∇ui|‖pJ , (3.6)

for a certain positive constant C(J) independent of i. Thus,

ε−ε2p+−1 p+|〈 f , ui〉| ≤ ε
−ε2p+−1 p+‖ f ‖(W1,(p1)−

0 (Ω)
)∗‖|∇ui|‖(p1)− (3.7)
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≤ ε−ε2p+−1 p+‖ f ‖(W1,(p1)−
0 (Ω)

)∗C(J)‖|∇ui|‖pJ(·) (3.8)

≤

(
δ−1ε−ε2p+−1 p+‖ f ‖(W1,(p1)−

0 (Ω)
)∗
) (pJ )−

(pJ )−−1 (pJ)− − 1
(pJ)−

+
1

(pJ)−

(
δC(J)‖|∇ui|‖pJ(·)

)(pJ)−
.

In particular, for δ =
(

(pJ)−
2

) 1
(pJ )− (C(J))−1, it follows that

ε−ε2p+−1 p+|〈 f , ui〉| ≤ A +
1
2
‖|∇ui|‖

(pJ)−
pJ(·) , (3.9)

where

A =

(
δ−1ε−ε2p+−1 p+‖ f ‖(W1,(p1)−

0 (Ω)
)∗
) (pJ )−

(pJ )−−1 (pJ)− − 1
(pJ)−

.

Thus, (3.2), (3.3) and the estimates thereafter yield

1
2
‖|∇ui|‖

(pJ)−
pJ(·) ≤ ε |Ω| + ε−ε2p+−1 p+

(
ε |Ω| + ε−ε‖∇ϕ‖αp(·)

)
(3.10)

+ A + ε−ε2p+−1
(
ε |Ω| + ε−ε‖∇ϕ‖αp(·)

)
.

In conclusion, for any j ≥ J,
‖|∇ui|‖pJ(·) ≤ max {1, 2B}

1
(pJ )− , (3.11)

where B is the right hand side of (3.10), which does not depend on i.
It follows that the sequence (ui) is uniformly bounded in W1,pJ(·)

0 (Ω), as claimed. �

Lemma 3.2. In the preceding notation, there is a subsequence of the sequence (ui) that converges

weakly in each W1,p j(·)
0 (Ω), to a function u ∈

∞⋂
j=1

W1,p j(·)
0 (Ω).

Proof. Fix J ∈ N. Theorem 2.2 in conjunction with the theorem of Banach-Alaoglu yields the existence
of a function vJ ∈ W1,pJ(·)

0 (Ω) and a subsequence (uJ+k j) j≥1 that converges to vJ weakly in W1,pJ(·)
0 (Ω).

Applying the preceding reasoning to the sequence (uJ+k j) j≥m ⊂ W1,pJ+km (·)
0 (Ω) for any m > 1 and

denoting its weak limit by vJ+m it is immediate that vJ+m = vJ. Hence, the weak limit does not depend
on J and it can be written vJ = u. One quickly obtains

u ∈
∞⋂

i=1

W1,pi(·)
0 . (3.12)

�

Remark 3.1. In the sequel, as is customary, the subsequence (uJ+k j) j≥1 will be denoted by (u j) and the
subsequence (pJ+k j) of the sequence (pi) will be relabeled (p j).

The next order of business is to prove that u ∈ W1,p(·)(Ω). To that effect, we start with the
following assertion.
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Lemma 3.3. The weak limit function u whose existence is proved in Lemma 3.2 satisfies∫
Ω

|∇u(x)|p(x)dx < ∞.

Proof. Let η > 0 be arbitrary and fix v ∈ W1,p(·)
0 (Ω). Choose 0 < ε < e−1 and 0 < δ < 1 such that

ε−ε(1 + ε) < (1 + δ) and

max

3δ
∫
Ω

|∇(v − ϕ)(x)|p(x)

p(x)
dx, ε|Ω|

(
1 + ε−ε(1 + ε)

)
, δ|〈 f , v〉|, δ|〈 f , u〉|

 < η

5
, (3.13)

and k ∈ N large enough so that j ≥ k ⇒ (1+δ)|〈 f , u j−u〉| < η

5 and ‖p j−p||∞ < ε
2 . Because the functional

W1,pk(·)
0 (Ω) 3 w→

∫
Ω

|∇(w − ϕ)(x)|pk(x)

pk(x)
dx (3.14)

is weakly lower semicontinuous, it follows that∫
Ω

|∇(u − ϕ)(x)|pk(x)

pk(x)
dx ≤ lim inf

j≥k

∫
Ω

|∇(u j − ϕ)(x)|pk(x)

pk(x)
dx. (3.15)

In what follows, let r(ε) = ε−ε(1 + ε). Corollary 2.2 yields, for j ≥ k,∫
Ω

|∇(u j − ϕ)(x)|pk(x)

pk(x)
dx ≤ ε |Ω| + r(ε)

∫
Ω

|∇(u j − ϕ)(x)|p j(x)

p j(x)
dx. (3.16)

Because v ∈ W1,p(·)
0 (Ω) ↪→ W1,p j(·)

0 (Ω), one has, by virtue of the minimizing property of u j,∫
Ω

|∇(u j − ϕ)(x)|p j(x)

p j(x)
dx − 〈 f , u j〉 ≤

∫
Ω

|∇(v − ϕ)(x)|p j(x)

p j(x)
dx − 〈 f , v〉 (3.17)

and invoking Lemma 2.3 again, one obtains∫
Ω

|∇(v − ϕ)(x)|p j(x)

p(x)
dx ≤ ε |Ω| + r(ε)

∫
Ω

|∇(v − ϕ)(x)|p(x)

p(x)
dx. (3.18)

In conclusion, for fixed k as above and j ≥ k, on account of inequality (3.16), one has

∫
Ω

|∇(u j − ϕ)(x)|pk(x)

pk(x)
dx ≤ ε |Ω| + r(ε)


∫
Ω

|∇(u j − ϕ)(x)|p j(x)

p j(x)
dx − 〈 f , u j〉

 (3.19)

+ r(ε)〈 f , u j〉

≤ ε |Ω| + r(ε)


∫
Ω

|
∇(v − ϕ)(x)|p j(x)

p j(x)
dx − 〈 f , v〉


+ r(ε)〈 f , u j〉
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≤ ε |Ω| + r(ε)

ε |Ω| + r(ε)
∫
Ω

|∇(v − ϕ)(x)|p(x)

p(x)
dx − 〈 f , v〉


+ r(ε)〈 f , u j〉

≤ ε |Ω|(1 + r(ε)) + r(ε)

r(ε)
∫
Ω

|∇(v − ϕ)(x)|p(x)

p(x)
dx − 〈 f , v〉


+ r(ε)〈 f , u j〉

≤
η

5
+ (1 + δ)2

∫
Ω

|∇(v − ϕ)(x)|p(x)

p(x)
dx − 〈 f , v〉 − (r(ε) − 1)〈 f , v〉

+ r(ε)〈 f , u j − u〉 + r(ε)〈 f , u〉

≤
η

5
+ 3δ

∫
Ω

|∇(v − ϕ)(x)|p(x)

p(x)
dx +

∫
Ω

|∇(v − ϕ)(x)|p(x)

p(x)
dx − 〈 f , v〉

+ δ|〈 f , v〉| + (1 + δ)|〈 f , u j − u〉| + (r(ε) − 1)〈 f , u〉 + 〈 f , u〉

≤

∫
Ω

|∇(v − ϕ)(x)|p(x)

p(x)
dx − 〈 f , v〉 + 〈 f , u〉 + η.

In all,

lim inf
j≥k

∫
Ω

|∇(u j − ϕ)(x)|pk(x)

pk(x)
dx ≤

∫
Ω

p−1|∇(v − ϕ)(x)|p(x)dx − 〈 f , v〉 + 〈 f , u〉 + η, (3.20)

that is, according to (3.15), for any η > 0,∫
Ω

|∇(u − ϕ)(x)|pk(x)

pk(x)
dx ≤

∫
Ω

|∇(v − ϕ)(x)|p(x)

p(x)
dx − 〈 f , v〉 + 〈 f , u〉 + η. (3.21)

Consequently, ∫
Ω

|∇(u − ϕ)(x)|p(x)

p(x)
dx ≤ lim inf

n≥k

∫
Ω

|∇(u − ϕ)(x)|pn(x)

pn(x)
dx (3.22)

≤

∫
Ω

|∇(v − ϕ)(x)|p(x)

p(x)
dx − 〈 f , v〉 + 〈 f , u〉 + η. (3.23)

In particular, the preceding inequality yields

∫
Ω

|∇u|p(x)

p(x)
dx ≤ 2p+−1


∫
Ω

|∇(u − ϕ)(x)|p(x)

p(x)
dx +

∫
Ω

|∇ϕ(x)|p(x)

p(x)
dx

 < ∞. (3.24)

That is |∇u| ∈ Lp(·)(Ω), as claimed. �
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Remark 3.2. Because p j → p pointwise, Lebesgue’s dominated convergence yields∫
Ω

|∇(u − ϕ)(x)|p j(x)

p j(x)
dx→

∫
Ω

|∇(u − ϕ)(x)|p(x)

p(x)
dx as j→ ∞ (3.25)

and on account of Lemma 2.4,∫
Ω

|∇(u − ϕ)(x)|p j(x)dx→
∫
Ω

|∇(u − ϕ)(x)|p(x)dx as j→ ∞. (3.26)

The next series of lemmas aims to improve the weak convergence statement u j ⇀ u as j→ ∞.

Lemma 3.4. If (u j) is the sequence of minimizers defined in Lemma 3.2, then∫
Ω

|∇(u j − ϕ)(x)|p j(x)dx→
∫
Ω

|∇(u − ϕ)(x)|p(x)dx as j→ ∞. (3.27)

Proof. Fix ε, δ, η, and k as in the proof of Lemma 3.3. Observe that due to the minimal character of uk,∫
Ω

|∇(uk − ϕ)(x)|pk(x)

pk(x)
dx − 〈 f , uk〉 ≤

∫
Ω

|∇(u − ϕ)(x)|pk(x)

pk(x)
dx − 〈 f , u〉. (3.28)

Taking into consideration the fact that uk → u weakly, it follows from the above that

lim sup
k

∫
Ω

∇(uk − ϕ)(x)|pk(x)

pk(x)
dx ≤ lim sup

k

∫
Ω

|∇(u − ϕ)(x)|pk(x)

pk(x)
dx, (3.29)

whereas the fact that |∇u| ∈ Lp(Ω) coupled with a straightforward application of Lebesgue’s dominated
convergence theorem, yields

lim
k→∞

∫
Ω

|∇(u − ϕ)(x)|pk(x)

pk(x)
dx =

∫
Ω

|∇(u − ϕ)(x)|p(x)

p(x)
dx. (3.30)

On the other hand, ∫
Ω

|∇(u − ϕ)(x)|pk(x)

pk(x)
dx ≤ lim inf

j≥k

∫
Ω

|∇(u j − ϕ)(x)|pk(x)

pk(x)
dx. (3.31)

In turn, for j ≥ k, one has, owing to Corollary 2.2,∫
Ω

|∇(u j − ϕ)(x)|pk(x)

pk(x)
dx ≤ ε |Ω| + ε−ε(1 + ε)

∫
Ω

|∇(u j − ϕ)(x)|p j(x)

p j(x)
dx (3.32)

≤ η + (1 + δ)
∫
Ω

|∇(u j − ϕ)(x)|p j(x)

p j(x)
dx.
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Thus,

lim inf
j≥k

∫
Ω

|∇(u j − ϕ)(x)|pk(x)

pk(x)
dx ≤ η + (1 + δ) lim inf

j≥k

∫
Ω

|∇(u j − ϕ)(x)|p j(x)

p j(x)
dx, (3.33)

and it follows from (3.31) that

lim
k→∞

∫
Ω

|∇(u − ϕ)(x)|pk(x)

pk(x)
dx =

∫
Ω

|∇(u − ϕ)(x)|p(x)

p(x)
dx (3.34)

≤ η + (1 + δ) lim inf
j

∫
Ω

|∇(u j − ϕ)(x)|p j(x)

p j(x)
dx.

In all, from (3.29), (3.30), and (3.34), one deduces

lim sup
k

∫
Ω

∇(uk − ϕ)(x)|pk(x)

pk(x)
dx ≤

∫
Ω

|∇(u − ϕ)(x)|p(x)

p(x)
dx (3.35)

≤ η + (1 + δ) lim inf
j

∫
Ω

|∇(u j − ϕ)(x)|p j(x)

p j(x)
dx,

which in conjunction with Lemma 2.4 yields (3.27). �

The following, similar result can be proved along the same lines:

Lemma 3.5. ∫
Ω

∣∣∣∣∣∇ (u + u j

2
− ϕ

)
(x)

∣∣∣∣∣p j(x)

dx→
∫
Ω

|∇(u − ϕ)(x)|p(x)dx as j→ ∞. (3.36)

Proof. Because u+uk
2 ∈ W1,pk(·)0(Ω), the minimality of uk yields the inequality

∫
Ω

|∇(uk − ϕ)(x)|pk(x)

pk(x)
dx − 〈 f , uk〉 ≤

∫
Ω

∣∣∣∣∇ (
u+uk

2 − ϕ
)

(x)
∣∣∣∣pk(x)

pk(x)
dx − 〈 f , u〉. (3.37)

Thus, owing to (3.35),

∫
Ω

|∇(u − ϕ)(x)|p(x)

p(x)
dx = lim sup

k

∫
Ω

|∇(uk − ϕ)(x)|pk(x)

pk(x)
dx ≤ lim sup

k

∫
Ω

∣∣∣∣∇ (
u+uk

2 − ϕ
)

(x)
∣∣∣∣pk(x)

pk(x)
dx (3.38)

≤ lim sup
k

1
2


∫
Ω

|∇(u − ϕ)(x)|pk(x)

pk(x)
dx +

∫
Ω

|∇(uk − ϕ)(x)|pk(x)

pk(x)
dx


=

∫
Ω

|∇(u − ϕ)(x)|p(x)

p(x)
dx.
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The latter yields

lim sup
k

∫
Ω

∣∣∣∣∇ (
u+uk

2 − ϕ
)

(x)
∣∣∣∣pk(x)

pk(x)
dx =

∫
Ω

|∇(u − ϕ)(x)|p(x)

p(x)
dx. (3.39)

It has been shown in the first part of the lemma that it holds∫
Ω

|∇(u − ϕ)(x)|p(x)

p(x)
dx = lim

k→∞

∫
Ω

|∇(u − ϕ)(x)|pk(x)

pk(x)
dx; (3.40)

also

∫
Ω

|∇(u − ϕ)(x)|pk(x)

pk(x)
dx ≤ lim inf

j≥k

∫
Ω

∣∣∣∣∇ (u j+u
2 − ϕ

)
(x)

∣∣∣∣pk(x)

pk(x)
dx (3.41)

≤ η + (1 + δ) lim inf
j

∫
Ω

∣∣∣∣∇ (u j+u
2 − ϕ

)
(x)

∣∣∣∣p j(x)

p j(x)
dx.

From (3.30) and (3.41) one concludes

∫
Ω

∣∣∣∣∇ (u j+u
2 − ϕ

)
(x)

∣∣∣∣p j(x)

p j(x)
dx→

∫
Ω

|∇(u − ϕ)(x)|p(x)

p(x)
dx as k → ∞, (3.42)

which yields Lemma 3.5 via Lemma 2.4. �

The following result yields a stronger convergence result for the sequence of minimizers.

Theorem 3.1. Let (u j) denote the subsequence introduced in Remark 3.1. Then it holds that

lim
j→∞

∫
Ω

∣∣∣∇(u − u j)(x)
∣∣∣p j(x)

dx = 0. (3.43)

Proof. The proof of (3.43) uses the two preceding statements in conjunction with the uniform convexity
property stated in Theorem 2.6.

First, observe that by Remark 3.2, one has∫
Ω

|∇(u − ϕ)(x)|pi(x)

pi(x)
dx→

∫
Ω

|∇(u − ϕ)(x)|p(x)

p(x)
dx. (3.44)

On account of (3.35) and (3.44), it follows that there exists a constant C(u, ϕ), depending only on u, ϕ,
for which ∫

Ω

|∇(u − ϕ)(x)|pi(x)

pi(x)
dx +

∫
Ω

|∇(ui − ϕ)(x)|pi

pi(x)
dx ≤ C(u, ϕ) = C. (3.45)
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Let δ > 0 and assume that for a subsequence (pik
), it holds that

∫
Ω

∣∣∣∇(u jk − u)(x)
∣∣∣p jk (x)

dx > δ. Then,

2p+

∫
Ω

∣∣∣∣∣∣∇(u jk − u)(x)
2

∣∣∣∣∣∣p jk (x)

dx > δ (3.46)

and ∫
Ω

∣∣∣∣∣∣∇(u jk − u)(x)
2

∣∣∣∣∣∣p jk (x)

dx > 2−p+δ = 2−p+
δ

C
C (3.47)

≥ 2−p+
δ

C


∫
Ω

|∇(u − ϕ)(x)|pi(x)

pi(x)
dx +

∫
Ω

|∇(ui − ϕ)(x)|pi(x)

pi(x)
dx


= 21−p+

δ

C

∫
Ω

|∇(u−ϕ)(x)|pi(x)

pi(x) dx +
∫
Ω

|∇(ui−ϕ)(x)|pi(x)

pi(x) dx


2
.

On account of Theorem 2.6, it follows that there exists η : 0 < η < 1 for which

∫
Ω

∣∣∣∣∇ ( u+u j

2 − ϕ
)

(x)
∣∣∣∣pi(x)

pi(x)
dx ≤ (1 − η)

∫
Ω

|∇(u−ϕ)(x)|pi(x)

pi(x) dx +
∫
Ω

|∇(ui−ϕ)(x)|pi(x)

pi(x) dx

2
. (3.48)

Letting i→ ∞ in the last inequality leads to a contradiction. �

The final step is to verify that u ∈ W1,p(·)
0 (Ω). To this end, it remains to show that u ∈ Lp(·)(Ω)

and that u can be approximated by C∞0 (Ω) functions in the norm ‖ · ‖1,p(·). This is proved in the
ensuing proposition:

Proposition 3.1. The limit function u obtained in lemma 3.2 belongs to W1,p(·)
0 (Ω).

Proof. Observe that because p j ↗ p, for any x ∈ Ω with p(x) < n, one has

np j(x)
n − p j(x)

↗
np(x)

n − p(x)
,

also,
np(x)

n − p(x)
− p(x) =

p2(x)
n − p(x)

≥
p2
−

n − p−
>

1
n − 1

.

Consequently, for large enough j,

np j(x)
n − p j(x)

>
np(x)

n − p(x)
−

1
n − 1

> p(x). (3.49)

Let 0 < r < n2

p++n . Set Ω1 = {x : 1 < p(x) < n}; Ω2 = {x : n − r < p(x) < p+ + r}. Then, Ω1 and Ω2 are
open, and Ω = Ω1∪Ω2; let {χ1, χ2} be a partition of unity subordinated to the cover {Ω1,Ω2}. It follows
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that uχk ∈ W1,p j(·)
0 (Ωk) for k = 1, 2 and all j ∈ N, whence uχ1 ∈ W1,p j(·)

0 (Ω1) ⊆ L
np j

n−p j
(·)(Ω1) ⊆ Lp(Ω) for j

chosen so that (3.49) holds. Similarly, the choice of r yields n2 − r(p + n) > n2 − r(p+ + n) > 0. Thus,
n2 − rn > rp, and

uχ2 ∈ W1,p j(·)
0 (Ω2) ⊆ W1,n−r

0 (Ω2) ⊆ L
n(n−r)

r (Ω2) ⊆ Lp(·)(Ω). (3.50)

In conclusion, u = uχ1 + uχ2 ∈ Lp(·)(Ω), and it follows that

u ∈ W1,p(·)(Ω)
⋂ ∞⋂

j=1

W1,p j(·)
0 (Ω)

 .
On account of Theorem 2.3, it must hold that u ∈ W1,p(·)

0 (Ω), as claimed. �

Corollary 3.1. The original sequence of minimizers alluded to in Lemma 3.1 converges weakly to
u ∈ W1,p(·)

0 (Ω) in every W1,pJ(·)
0 (Ω), and Theorem 3.1 holds for the original sequence (ui).

Proof of Theorem 1.1. The proof of Theorem 1.1 follows by observing that for each i, wi = ϕ − ui and
w = ϕ − u .
Proof of Theorem 1.2. In this case, the sequence of minimizers (ui) of the functionals

W1,pi(·)
0 (Ω) 3→ Fi(v) =

∫
Ω

|∇(v − ϕ)(x)|pi(x)

pi(x)
dx − 〈 f , v〉 (3.51)

is in fact bounded in W1,p(·)
0 (Ω). The proof will be sketched, because it follows along the same lines as

that of the boundedness of (ui) in Theorem 1.1. Due to the assumption on ϕ and on the sequence (pi) it
is immediate from Lemma 2.3 that for i as large as necessary for ‖p − pi‖∞ < 1,∫

Ω

|∇ϕ(x)|pi(x)dx ≤ ‖pi − p1‖∞|Ω| + ‖pi − p1‖
−‖pi−p1‖∞
∞

∫
Ω

|∇ϕ(x)|p1(x)dx. (3.52)

Also, ∫
Ω

|∇ui(x)|p(x)dx ≤ ‖pi − p‖∞|Ω| + ‖pi − p‖−‖pi−p‖∞
∞

∫
Ω

|∇ui(x)|pi(x)dx. (3.53)

Using the same ideas as in Lemma 3.1, it can be shown that the sequence
∫
Ω

|∇ui(x)|pi(x)dx
 is bounded.

Hence (ui) is bounded in W1,p(·)
0 (Ω) and therefore that there exists u ∈ W1,p(·)

0 (Ω) and a subsequence (u j)
of the sequence of minimizers (see Remark 3.1) such that u j ⇀ u in W1,p(·)

0 (Ω).
In this setting, one has∫

Ω

|∇(u j − ϕ)(x)|p(x)dx→
∫
Ω

|∇(u − ϕ)(x)|p(x)dx as j→ ∞. (3.54)

Indeed, owing to the weak lower semicontinuity of the minimal character of u j and the integrability
assumption on u, one has∫

Ω

|∇(u − ϕ)(x)|p(x)

p(x)
dx ≤ lim inf

j≥J

∫
Ω

|∇(u j − ϕ)(x)|p(x)

p(x)
dx, (3.55)
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and for any fixed 0 < ε < e−1 and J so large that j ≥ J implies ‖p j − p‖∞ < ε
2 , one has (Corollary 2.2)∫

Ω

|∇(u j − ϕ)(x)|p(x)

p(x)
dx ≤ ε|Ω| + ε−ε(1 + ε)

∫
Ω

|∇(u j − ϕ)(x)|p j(x)

p j(x)
dx (3.56)

= ε|Ω| + ε−ε(1 + ε)F j(u j) + ε−ε(1 + ε)〈 f , u j〉

≤ ε |Ω| + ε−ε(1 + ε)F j(u) + ε−ε(1 + ε)〈 f , u j〉.

Taking lim sup in (3.56) and observing that because |∇u| ∈ LpN (Ω) for some pN ,

lim sup
j

F j(u) = lim sup
j


∫
Ω

|∇(u − ϕ)(x)|p j(x)

p j(x)
dx − 〈 f , u〉

 =

∫
Ω

|∇(u − ϕ)(x)|p(x)

p(x)
dx − 〈 f , u〉, (3.57)

and that lim sup j〈 f , u j〉 = 〈 f , u〉, it follows that

lim sup
j

∫
Ω

|∇(u j − ϕ)(x)|p(x)

p(x)
dx ≤

∫
Ω

|∇(u − ϕ)(x)|p(x)

p(x)
dx; (3.58)

coupled with (3.55) and using lemma 2.4, the latter yields (3.54), because p is bounded in Ω.
Statement (1.3) in Theorem 1.2 follows from uniform convexity along the same lines as in the proof of
Theorem 3.1.

4. Conclusions

In this article we have proved stability of the Poisson’s problem for the p(x)-Laplacian with
nonhomogeneous boundary conditions with respect to the variation of the exponent p(x). Our result
relies solely on modular uniform convexity, the variational structure of problem (2.11), and the high-
precision embedding (2.1). This opens a promising line of work in the application of our techniques to
study structural stability of other problems, such as the Neumann problem for Poisson’s equation,
the Poisson’s problem for Kirchoff’s operator, and the Poisson’s problem for double-phase type
operators [6].

Our work improves some of the results obtained by Zhikov in [19]. Specifically, in [19,
Theorem 3.1] a sequence of exponent pε → p a.e. is considered, subject to the condition

1 < α ≤ pε(x) ≤ β (4.1)

and it is shown that the sequence of solutions of problem (2.11) with variable exponent pε(·) and ϕ = 0
converges weakly in W1,α

0 (Ω) to the solution u of (2.11) with ϕ = 0. This result is to be contrasted with
our Theorem 1.1, which, though under stronger assumptions, includes arbitrary boundary datum and
yields much stronger convergence results, because W1,p(·)

0 (Ω) ( W1,α
0 (Ω).

On a final note, we point out that in principle there seems to be no obstacle for the application of
our techniques to the [19, Thermistor problem (17.1)] to obtain stability with respect to the exponent
of the Dirichlet problem with non-vanishing boundary value.
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18. W. Orlicz, Über konjugierte Exponentenfolgen, Stud. Math., 3 (1931), 200–211.
https://doi.org/10.4064/sm-3-1-200-211

19. V. V. Zhikov, On variational problems and nonlinear elliptic equations with nonstandard growth
conditions, J. Math. Sci., 173 (2011), 463–570. https://doi.org/10.1007/s10958-011-0260-7

20. V. V. Zhikov, On Lavrentiev’s phenomenon, Russ. J. Math. Phy., 3 (1995), 249–269.

21. V. V. Zhikov, Averaging of functionals in the calculus of variations and elasticity theory, Izvestiya
Rossiiskoy Akademii Nauk., 50 (1986), 675–710.

© 2026 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 11, Issue 1, 192–210.

https://dx.doi.org/https://doi.org/10.1016/S0362-546X(02)00150-5
https://dx.doi.org/https://doi.org/10.1006/jmaa.2000.7617
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2009.12.039
https://dx.doi.org/https://doi.org/10.7146/math.scand.a-18274
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2024.128203
https://dx.doi.org/https://dml.cz/handle/10338.dmlcz/102493
https://dx.doi.org/https://doi.org/10.1007/s11854-018-0018-y
https://dx.doi.org/https://doi.org/10.1016/0022-247X(87)90142-9
https://dx.doi.org/https://doi.org/10.1016/j.na.2009.06.054
https://dx.doi.org/https://doi.org/10.4064/sm-3-1-200-211
https://dx.doi.org/https://doi.org/10.1007/s10958-011-0260-7
https://creativecommons.org/licenses/by/4.0

	Introduction
	Notation, terminology and known auxiliary results
	Proof of Theorem 1.1
	Conclusions

