The beta regression model (BRM) is designed to model continuous response variables constrained to the open interval (0, 1). It is particularly suitable for analyzing proportions, rates, and other fractional data. Maximum likelihood estimation (MLE) is the most common way to estimate parameters in the BRM. However, when multicollinearity is present, i.e., when explanatory variables exhibit high intercorrelation, the MLE may produce unstable and biased parameter estimates, inflated variance, and increased scalar mean squared error (MSE), ultimately undermining the model's statistical reliability. To address the effects of multicollinearity, some biased estimators have been proposed for the BRM. In this study, we introduce a new almost unbiased estimator for the BRM. A theoretical comparison of the proposed estimator with existing estimators is derived using the matrix mean squared error (MMSE) and MSE. The performance of the proposed estimator is subsequently assessed and contrasted with existing estimators via a comprehensive Monte Carlo simulation study and applied to two real-world datasets. The simulation and applications consistently show that the proposed estimator is better than other existing estimators, providing more accurate and stable parameter estimates for the BRM under multicollinearity.
Citation: Randa Alharbi, Abdulaziz S. Alghamdi. A new almost unbiased estimator for beta regression model under multicollinearity[J]. AIMS Mathematics, 2026, 11(1): 85-126. doi: 10.3934/math.2026005
The beta regression model (BRM) is designed to model continuous response variables constrained to the open interval (0, 1). It is particularly suitable for analyzing proportions, rates, and other fractional data. Maximum likelihood estimation (MLE) is the most common way to estimate parameters in the BRM. However, when multicollinearity is present, i.e., when explanatory variables exhibit high intercorrelation, the MLE may produce unstable and biased parameter estimates, inflated variance, and increased scalar mean squared error (MSE), ultimately undermining the model's statistical reliability. To address the effects of multicollinearity, some biased estimators have been proposed for the BRM. In this study, we introduce a new almost unbiased estimator for the BRM. A theoretical comparison of the proposed estimator with existing estimators is derived using the matrix mean squared error (MMSE) and MSE. The performance of the proposed estimator is subsequently assessed and contrasted with existing estimators via a comprehensive Monte Carlo simulation study and applied to two real-world datasets. The simulation and applications consistently show that the proposed estimator is better than other existing estimators, providing more accurate and stable parameter estimates for the BRM under multicollinearity.
| [1] |
S. Ferrari, F. Cribari-Neto, Beta regression for modelling rates and proportions, J. Appl. Stat., 31 (2004), 799–815. https://doi.org/10.1080/0266476042000214501 doi: 10.1080/0266476042000214501
|
| [2] |
M. A. Eltehiwy, N. A. T. AbuEl-magd, A new transformation to reduce skewness in data with bounded support, Mod. J. Stat., 2 (2026), 100–111. https://doi.org/10.64389/mjs.2026.02117 doi: 10.64389/mjs.2026.02117
|
| [3] |
A. Saboor, F. Jamal, S. Shafq, R. Mumtaz, On the versatility of the unit logistic exponential distribution: capturing bathtub, upside-down bathtub, and monotonic hazard rates, Innovation Stat. Probab., 1 (2025), 28–46. https://doi.org/10.64389/isp.2025.01102 doi: 10.64389/isp.2025.01102
|
| [4] |
S. Stein, R. Feng, C. Leng, A sparse beta regression model for network analysis, J. Amer. Stat. Assoc., 120 (2025), 1281–1293. https://doi.org/10.1080/01621459.2024.2411073 doi: 10.1080/01621459.2024.2411073
|
| [5] |
M. Amin, A. Noor, T. Mahmood, Beta regression residuals-based control charts with different link functions: an application to the thermal power plants data, Int. J. Data Sci. Anal., 20 (2025), 955–967. https://doi.org/10.1007/s41060-023-00501-w doi: 10.1007/s41060-023-00501-w
|
| [6] |
E. E. Tannous, S. Selitzky, S. Vinker, D. Stepensky, E. Schwarzberg, Predictive modelling of medication adherence in post-myocardial infarction patients: a bayesian approach using beta-regression, Eur. J. Prev. Cardiol., 32 (2025), 649–658. https://doi.org/10.1093/eurjpc/zwae327 doi: 10.1093/eurjpc/zwae327
|
| [7] |
A. R. El-Alosey, A. T. Hammad, A. M. Gemeay, A novel zero-inflated regression model for overdispersed count data with enhancing its estimation for multicollinearity in medical data, Statistics, 59 (2025), 1463–1494. https://doi.org/10.1080/02331888.2025.2531131 doi: 10.1080/02331888.2025.2531131
|
| [8] |
A. T. Hammad, E. H. Hafez, U. Shahzad, E. Yıldırım, E. M. Almetwally, B. M. G. Kibria, New modified Liu estimators to handle the multicollinearity in the beta regression model: simulation and applications, Mod. J. Stat., 1 (2025), 58–79. https://doi.org/10.64389/mjs.2025.01111 doi: 10.64389/mjs.2025.01111
|
| [9] |
R. Frisch, Statistical confluence analysis by means of complete regression systems, Found. Econometric Anal., 45 (1935), 741–742. https://doi.org/10.2307/2225583 doi: 10.2307/2225583
|
| [10] |
A. E. Hoerl, R. W. Kennard, Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12 (1970), 55–67. https://doi.org/10.1080/00401706.1970.10488634 doi: 10.1080/00401706.1970.10488634
|
| [11] |
K. Liu, A new class of biased estimate in linear regression, Commun. Stat., 22 (1993), 393–402. https://doi.org/10.1080/03610929308831027 doi: 10.1080/03610929308831027
|
| [12] |
A. F. Lukman, K. Ayinde, S. Binuomote, O. A. Clement, Modified ridge-type estimator to combat multicollinearity: application to chemical data, J. Chemom., 33 (2019), e3125. https://doi.org/10.1002/cem.3125 doi: 10.1002/cem.3125
|
| [13] |
N. Akhtar, M. F. Alharthi, A comparative study of the performance of new ridge estimators for multicollinearity: insights from simulation and real data application, AIP Adv., 14 (2024), 115311. https://doi.org/10.1063/5.0236631 doi: 10.1063/5.0236631
|
| [14] |
M. S. Khan, A. Ali, M. Suhail, F. A. Awwad, E. A. A. Ismail, H. Ahmad, On the performance of two-parameter ridge estimators for handling multicollinearity problem in linear regression: simulation and application, AIP Adv., 13 (2023), 115208. https://doi.org/10.1063/5.0175494 doi: 10.1063/5.0175494
|
| [15] |
M. R. Abonazel, A new biased estimation class to combat the multicollinearity in regression models: modified two-parameter Liu estimator, Comput. J. Math. Stat. Sci., 4 (2025), 316–347. https://doi.org/10.21608/cjmss.2025.347818.1096 doi: 10.21608/cjmss.2025.347818.1096
|
| [16] |
S. L. Jegede, A. F. Lukman, O. A. Alqasem, M. E. A. Elwahab, K. Ayinde, B. M. G. Kibria, et al., Handling linear dependency in linear regression models: almost unbiased modified ridge-type estimator, Sci. Afr., 25 (2024), e02324. https://doi.org/10.1016/j.sciaf.2024.e02324 doi: 10.1016/j.sciaf.2024.e02324
|
| [17] | F. M. Alghamdi, A. T. Hammad, G. A. Abd-Elmougod, M. M. Abd El-Raouf, A. M. Gemeay, A new almost unbiased general ridge-type estimator for fitting poisson regression model with multicollinearity, Statistics, 2025. https://doi.org/10.1080/02331888.2025.2581835 |
| [18] |
F. Erdugan, An almost unbiased Liu-type estimator in the linear regression model, Commun. Stat., 53 (2024), 3081–3093. https://doi.org/10.1080/03610918.2022.2098329 doi: 10.1080/03610918.2022.2098329
|
| [19] |
M. R. Abonazel, I. M. Taha, Beta ridge regression estimators: simulation and application, Commun. Stat., 52 (2023), 4280–4292. https://doi.org/10.1080/03610918.2021.1960373 doi: 10.1080/03610918.2021.1960373
|
| [20] |
M. Qasim, K. Månsson, B. M. G. Kibria, On some beta ridge regression estimators: method, simulation and application, J. Stat. Comput. Simul., 91 (2021), 1699–1712. https://doi.org/10.1080/00949655.2020.1867549 doi: 10.1080/00949655.2020.1867549
|
| [21] |
P. Karlsson, K. Månsson, B. M. G. Kibria, A Liu estimator for the beta regression model and its application to chemical data, J. Chemom., 34 (2020), e3300. https://doi.org/10.1002/cem.3300 doi: 10.1002/cem.3300
|
| [22] |
M. Amin, H. Ashraf, H. S. Bakouch, N. Qarmalah, James stein estimator for the beta regression model with application to heat-treating test and body fat datasets, Axioms, 12 (2023), 526. https://doi.org/10.3390/axioms12060526 doi: 10.3390/axioms12060526
|
| [23] |
A. Erkoç, E. Ertan, Z. Y. Algamal, K. U. Akay, The beta liu-type estimator: simulation and application, Hacettepe J. Math. Stat., 52 (2023), 828–840. https://doi.org/10.15672/hujms.1145607 doi: 10.15672/hujms.1145607
|
| [24] |
A. F. Lukman, K. Ayinde, B. M. G. Kibria, E. T. Adewuyi, Modified ridge-type estimator for the gamma regression model, Commun. Stat., 51 (2022), 5009–5023. https://doi.org/10.1080/03610918.2020.1752720 doi: 10.1080/03610918.2020.1752720
|
| [25] |
T. Koç, E. Dünder, Jackknife kibria-lukman estimator for the beta regression model, Commun. Stat., 53 (2024), 7789–7805. https://doi.org/10.1080/03610926.2023.2273206 doi: 10.1080/03610926.2023.2273206
|
| [26] |
R. A. Farghali, The jackknifed beta ridge regression estimator: mathematical programming approach, Adv. Appl. Stat., 84 (2023), 91–112. https://doi.org/10.17654/0972361723007 doi: 10.17654/0972361723007
|
| [27] |
P. L. Espinheira, L. C. M. da Silva, A. O. Silva, R. Ospina, Model selection criteria on beta regression for machine learning, Mach. Learn. Knowl. Extr., 1 (2019), 427–449. https://doi.org/10.3390/make1010026 doi: 10.3390/make1010026
|
| [28] | L. Espinheira, L. C. M. da Silva, A. O. Silva, Prediction measures in beta regression models, arXiv, 2015. https://doi.org/10.48550/arXiv.1501.04830 |
| [29] |
Z. Y. Algamal, M. R. Abonazel, Developing a Liu-type estimator in beta regression model, Concurrency Comput., 34 (2022), e6685. https://doi.org/10.1002/cpe.6685 doi: 10.1002/cpe.6685
|
| [30] |
M. R. Abonazel, Z. Y. Algamal, F. A. Awwad, I. M. Taha, A new two-parameter estimator for beta regression model: method, simulation, and application, Front. Appl. Math. Stat., 7 (2022), 780322. https://doi.org/10.3389/fams.2021.780322 doi: 10.3389/fams.2021.780322
|
| [31] |
M. R. Abonazel, I. Dawoud, F. A. Awwad, A. F. Lukman, Dawoud-kibria estimator for beta regression model: simulation and application, Front. Appl. Math. Stat., 8 (2022), 775068. https://doi.org/10.3389/fams.2022.775068 doi: 10.3389/fams.2022.775068
|
| [32] |
M. N. Akram, M. Amin, A. Elhassanein, M. A. Ullah, A new modified ridge-type estimator for the beta regression model: simulation and application, AIMS Math., 7 (2022), 1035–1057. https://doi.org/10.3934/math.2022062 doi: 10.3934/math.2022062
|
| [33] | X. Chang, On the almost unbiased ridge and liu estimator in the logistic regression model, Proceedings of the 2015 International Conference on Social Science, Education Management and Sports Education, 1658–1660, 2015. https://doi.org/10.2991/ssemse-15.2015.424 |
| [34] |
J. Wu, Y. Asar, M. Arashiv, On the restricted almost unbiased Liu estimator in the logistic regression model, Commun. Stat., 47 (2018), 4389–4401. https://doi.org/10.1080/03610926.2017.1376082 doi: 10.1080/03610926.2017.1376082
|
| [35] |
J. Xu, H. Yang, More on the bias and variance comparisons of the restricted almost unbiased estimators, Commun. Stat., 40 (2011), 4053–4064. https://doi.org/10.1080/03610926.2010.505693 doi: 10.1080/03610926.2010.505693
|
| [36] |
T. M. Omara, Almost unbiased modified ridge-type estimator: an application to tourism sector data in Egypt, Heliyon, 8 (2022), e10684. https://doi.org/10.1016/j.heliyon.2022.e10684 doi: 10.1016/j.heliyon.2022.e10684
|
| [37] |
R. W. Farebrother, Further results on the mean square error of ridge regression, J. R. Stat. Soc., 38 (1976), 248–250. https://doi.org/10.1111/j.2517-6161.1976.tb01588.x doi: 10.1111/j.2517-6161.1976.tb01588.x
|
| [38] |
F. N. Abdulahad, Z. Y. Algamal, Almost unbiased ridge estimator in the count data regression models, Electron. J. Appl. Stat. Anal., 14 (2021), 44–57. https://doi.org/10.1285/i20705948v14n1p44 doi: 10.1285/i20705948v14n1p44
|
| [39] |
N. A. Noori, M. A. Khaleel, T. M. Alharigy, E. M. Almetwally, M. Elgarhy, The neutrosophic gompertz-g family: analytical properties, simulation studies, and applications to real data, Mod. J. Stat., 2 (2026), 75–99. https://doi.org/10.64389/mjs.2026.02137 doi: 10.64389/mjs.2026.02137
|
| [40] | J. C. Sosa, Case study of bayesian multiple linear regression using the boston housing dataset, Comun. Estadíst., 17 (2024), 1–13. |
| [41] |
K. W. Penrose, A. G. Nelson, A. G. Fisher, Generalized body composition prediction equation for men using simple measurement techniques, Med. Sci. Sports Exercise, 17 (1985), 189. https://doi.org/10.1249/00005768-198504000-00037 doi: 10.1249/00005768-198504000-00037
|
| [42] | O. A. Alqasem, A. T. Hammad, M. M. Abd El-Raouf, A. M. Gemeay, New class of kibria-lukman estimator for addressing multicollinearity in poisson regression model, Chiang Mai J. Sci., 2025. https://doi.org/10.12982/CMJS.2025.064 |
| [43] | F. M. Alghamdi, G. A. Abd-Elmougod, M. A. El-Qurashi, E. M. Almetwally, A. M. Gemeay, A. T. Hammad, A bias-reduced estimator for negative binomial regression with an application to CO2 emissions data, Chiang Mai J. Sci., 2025. https://doi.org/10.12982/CMJS.2025.085 |
| [44] |
A. T. Hammad, I. Elbatal, E. M. Almetwally, M. A. El-Raouf, M. El-Qurashi, A. M. Gemeay, A novel robust estimator for addressing multicollinearity and outliers in beta regression: simulation and application, AIMS Math., 10 (2025), 21549–21580. https://doi.org/10.3934/math.2025958 doi: 10.3934/math.2025958
|