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Abstract: The beta regression model (BRM) is designed to model continuous response variables
constrained to the open interval (0, 1). It is particularly suitable for analyzing proportions, rates,
and other fractional data. Maximum likelihood estimation (MLE) is the most common way to
estimate parameters in the BRM. However, when multicollinearity is present, i.e., when explanatory
variables exhibit high intercorrelation, the MLE may produce unstable and biased parameter estimates,
inflated variance, and increased scalar mean squared error (MSE), ultimately undermining the model’s
statistical reliability. To address the effects of multicollinearity, some biased estimators have been
proposed for the BRM. In this study, we introduce a new almost unbiased estimator for the BRM. A
theoretical comparison of the proposed estimator with existing estimators is derived using the matrix
mean squared error (MMSE) and MSE. The performance of the proposed estimator is subsequently
assessed and contrasted with existing estimators via a comprehensive Monte Carlo simulation study
and applied to two real-world datasets. The simulation and applications consistently show that
the proposed estimator is better than other existing estimators, providing more accurate and stable
parameter estimates for the BRM under multicollinearity.
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estimator; multicollinearity
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1. Introduction

The beta regression model (BRM) constitutes a specialized subclass of generalized linear models
explicitly to model a continuous response variable within the open unit interval (0, 1) with one or


https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2026005

86

more explanatory covariates. The BRM is widely used for model proportions, rates, and percentages.
The BRM has been widely utilized across multiple disciplines, including economics, medicine,
environmental studies, and the social sciences. Traditional modeling strategies, such as Gaussian
linear regression, binary logistic regression, and Poisson or negative-binomial count regression,
exhibit limitations when applied to bounded data within the interval (0, 1). To handle these
methodological issues, Ferrari and Cribari-Neto [1] formulated the BRM as a specialized model for
continuously distributed outcomes constrained to the unit interval. By assuming the response follows
a beta distribution, the BRM makes the regression coeflicients straightforward to interpret and
naturally handles skewed data and heteroskedasticity [2, 3].

Recently, the BRM has been widely used, such as in the following papers: Stein et al. [4] used the
BRM for network analysis, Amin et al. [S] developed the BRM to model the thermal power plants
data, and Tannous et al. [6] applied the BRM to predictive modelling of medication adherence in
post-myocardial infarction patients. Although the standard assumption assumes that predictors are not
linearly correlated, empirical data sets routinely violate this requirement, a phenomenon known as
multicollinearity [7, 8]. This problem was first introduced by Frisch [9]. When multicollinearity is
present, this makes the beta maximum likelihood estimator inefficient, as it affects the accuracy and
stability of parameter estimates, inflated variance, and increased scalar mean squared error (MSE),
ultimately undermining the model’s statistical reliability. Uncommon strategies for addressing
multicollinearity involve increasing the sample size, altering the model specification, or excluding
highly correlated predictors. Nevertheless, these approaches are frequently impractical or offer
limited effectiveness in applied settings.

To overcome this problem, biased estimation techniques have become popular alternatives. One of
the most widely used methods is the ridge regression estimator, introduced by Hoerl and
Kennard [10]. This method adds a biasing parameter k to the variance-covariance matrix to stabilize
the estimates and reduce variance. Although ridge regression is effective, its performance depends on
choosing an appropriate k value. Additionally, Liu [11] introduced the Liu estimator, which combines
features of ridge regression and the Stein estimator. The Liu estimator applies a linear shrinkage
technique defined as a linear function of the Liu parameter d to handle problems of multicollinearity,
offering better performance in models with both independent and correlated predictors. In addition to
linear regression models, several biased estimation methods have been proposed in the literature.
These include the modified ridge-type estimator [12], the new ridge estimator [13], the new
two-parameter ridge estimator [14], the modified two-parameter Liu estimator [15], the almost
unbiased modified ridge-type estimator [16], the almost unbiased general ridge-type estimator [17],
and the almost unbiased Liu-type estimator [18], among others.

For BRM, various estimators have been introduced and extended by several researchers. Abonazel
and Taha [19] and Qasim et al. [20] proposed the ridge estimator, while Karlsson et al. [21] extended
the Liu estimator. Amin et al. [22] developed the James-Stein estimator, Hammad et al. [8] proposed
modified Liu estimators, and Erkog et al. [23] proposed the Ozkale-Kaciranlar estimator. Additionally,
Lukman et al. [24] introduced the modified ridge-type estimator, Ko¢ and Diinder [25] developed the
Kibria-Lukman estimator and its jackknifed version, and Farghali [26] defined the jackknifed beta
ridge regression estimator.

Although many works have presented biased estimators for addressing multicollinearity in a BRM,
there is no limit to the value of bias, and large shrinkage parameter values can lead to large biases.
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Therefore, almost unbiased estimators have recently emerged, offering a greater balance between bias
and variance in estimation under multicollinearity. Due to the limited application and study of this
type of estimator in BRM. This study proposes a new effective estimator called the almost unbiased
modified ridge-type regression estimator to address multicollinearity in the BRM. This type of
estimator provides a greater balance between bias and variance than existing biased estimators. The
effectiveness of this estimator is evaluated through a comprehensive study of the biased estimators in
the literature and by comparing our proposed estimator with existing estimators through theoretical
comparisons and simulation studies. The simulation study confirms the superiority of the proposed
estimator under different scenarios. The applications also support the simulation results using real
data and confirm the superiority of the proposed estimator in reducing MSE and providing more
stable coefficients, which result in more robust solutions than current estimators in the presence of
multicollinearity.

The remainder of this article is organized as follows: Section 2 provides a literature review on the
BRM and existing estimators. In Section 3, we introduce the proposed estimator, followed by a
discussion of its statistical properties, a comparison with existing estimators, and shrinkage parameter
selection for proposed and existing estimators. Section 4 details the simulation study, considering
various factors. Section 5 evaluates the proposed estimators using real-world datasets. Finally,
Section 6 presents the concluding and future works.

2. Methodology

Let Y be a continuous random variable following a beta distribution with parameters a and b. The
probability density function of the variable Y is given by

L(a + by '(1 - y)*!
T(a)[(b)

f(v;a,b) = , O<y<l, 2.1

where I'(.) denotes the gamma function and a, b > 0. The expected value and variance of the variable
Y are

E(Y)= —2— Vaxy) = ab
W= VW= T

Ferrari and Cribari-Neto [1] proposed a reparameterization of the beta distribution by setting

_a

K= a+b
and

O=a+b
in Eq (2.1). This leads to

a=ub
and
b=6(1—-p).
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The reparameterized probability density function is as follows:

T(B)y-1(1 — y)f1--1
M1, 0) =
JOR0) = T area — )

where u is the mean of Y, and 6 is the precision parameter. The expected value and variance under this
parameterization are

, O<y<l, (2.2)

Var(u)
E(Y)=pu, Var(Y)= .
) =p, Varl) = —
Ferrari and Cribari-Neto [1] introduced the BRM by the linear predictor
gu) = X B = n;,
where
xf = (L xi, Xis 5 Xip)

is the vector of covariates for the i-th observation from the design matrix

T T
n]

X =11, xlT, e X

b

and
IB = (ﬁ()’ﬁl’ ""IBP)T

is the vector of regression coefficients, and g(.) is called the link function. The BRM commonly
employs the logit link defined as follows:

i o &xp (x/B)
1 — =17 exp (xIB)

ni = g(u;) = log

Then, the log-likelihood function for Eq (2.2) using the link function to estimate the parameters via the
beta maximum likelihood estimator (BMLE) is

n

1(B) = Z [log ['(6) — log I'(1;0) — log I'((1 — p;)6) (2.3)
i=1 ’

+ (uif = Dlogy; + (61 — ) — 1) log(1 = y)|

Differentiating the log-likelihood in Eq (2.3) for g yields the score function for 3, expressed as:

UB) =0X"T(y" — i), (2.4)
where
1 1
T = di Upp—
‘ag(g'ml) g'wn))

Y= 00l = )

. log(lf_iy_), W= @)~ (1 - )6).
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and y(.) represent the digamma function. The iterative reweighted least-squares algorithm, also known
as the Fisher scoring algorithm, is used to estimate 5 [27,28]. This algorithm can be written as:

-1
U =B+ (L) U6, @5)

where U[(gl) is the score function as defined in Eq (2.4), and I[g[); is the information matrix for 5. For

further details, refer to [27]. The iterations, indexed by [ = 0, 1,2,..., continue until the difference
between successive estimates is smaller than a specified threshold. At convergence, the BMLE of S is

Bemie = AT XTW3, (2.6)
where
A=X"WX, W =diag,...,W,),
. . 1
w = 04y (0) + ¥ (1 - )8)} ——,
v (#0) + " (4 - 0)} s

Here, W and 7" are the matrices W and T, respectively, evaluated at the BMLE. The covariance, matrix
mean squared error (MMSE), and MSE of ﬁBMLE are

Cov(Bemig) = A", 2.7)
MMSEBewie) = pEA'E", (2.8)
n 1
MSE = —, 2.
(Bomie) = ¢ ; 1 (2.9)
where
@ = 7', a= ftBBMLE
and

A = diag(dy, A, ..., 4),

which correspond to £A¢". Here, ¢ represents the orthogonal matrix whose columns contain the
eigenvectors of A; that is,

é::é:lv---’gr-

The values
L>hL>...>4,>0

are the eigenvalues of the matrix A.

The design matrix becomes ill-conditioned when the highly correlated explanatory variables lead
to very small eigenvalues. As a result, the BMLE for the BRM becomes unstable and inflated.
Multicollinearity affects the reliability of the results by increasing the variances and confidence
intervals of the parameter estimates, which may lead to incorrect inferences. To address this issue,
several biased estimators have been introduced in the literature.
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Qasim et al. [20] proposed the beta ridge regression estimator (BRRE), defined as
Berei = (A + kI)™ ABpe, k>0, (2.10)

where k is the ridge parameter, and 7, is the identity matrix of order r X r. If kK = 0, then BBRRE reduces

to BemLE-
Karlsson et al. [21] introduced the beta Liu estimator (BLE), given by

Boie = A+ 1) "(A+dlL)Bpig, 0<d<l, (2.11)

where d is a Liu shrinkage parameter in the range (0, 1). When d = 1, the estimator simplifies to ﬁBMLE.
Amin et al. [22] developed a James-Stein estimator, known as the beta James-Stein estimator
(BJSE), which is defined as follows:

Brise = Pomie, 0<c<1, (2.12)

where A A
(ﬁgMLEﬂBMLE)
(ﬁgMLEﬁBMLE + trace(A)” 1)~

If ¢ = 1, the estimator reduces to ﬁBMLE.
Algamal and Abonazel [29] proposed the beta Liu-type estimator (BLTE), which is given by

Beire = (A + kL) " (A - dI)Bsmig, -0 <d<oo, k>0, (2.13)

where d and k are Liu-type shrinkage parameters. When d = 0, the estimator simplifies to Bggrge, and
when both d = k = 0, it reduces to ﬁBMLE.
Abonazel et al. [30] introduced the beta Ozkale-Kaciranlar estimator (BOKE) as follows:

Beoke = (A + kL) YA + kdI,)Bewmie, 0<d<1, k>0, (2.14)
where d and k are shrinkage parameters. If £k = 1, then
BBOKE = IBBLE;

if d = 0, then

:éBOKE = ,éBRRE;
and if both d = k = 0, then

:éBOKE = :éBMLE-

Abonazel et al. [31] proposed the beta Dawoud-Kibria estimator (BDKE) to address severe
multicollinearity, defined as

Bepke = (A + k(1 + L) " (A - k(1 + )L)Bgye, 0<d<1, k>0, (2.15)
where d and k are the Dawoud-Kibria shrinkage parameters. If k = 0, then
BBDKE = BBMLE-
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Akram et al. [32] introduced the beta-modified ridge-type estimator (BMRTE), given by
Bemrre = (A + k(1 +d)) ' ABpmie, 0<d <1, k>0, (2.16)

where d and k are modified ridge-type shrinkage parameters. If k£ = 0, then

PBMRTE = BBMLE>

and if d = 0, then

ﬁBMRTE = ﬁBRRE-

Kog¢ and Diinder [25] proposed the beta Kibria-Lukman estimator (BKLE), which is given by
Pexie = (A + kL) (A = kI)Bpwi, (2.17)
where k is the Kibria-Lukman shrinkage parameter. If k = 0, then
ﬁBKLE = BBMLE-
Farghali [26] presented the jackknifed beta ridge regression estimator (BJRRE) as follows:
Pewee = (I = (A + kL) )Bawie. k>0, (2.18)

where k is the jackknifed ridge parameter. If k = 0, then ,@BJRRE reduces to EBMLE.
Ko¢ and Diinder [25] developed a beta jackknife Kibria-Lukman estimator (BJKLE) to handle
multicollinearity, defined as

Beixie = (I, + 2k(A + k1)) (I, — Qk(A + k1) ))Bame. k>0, (2.19)

where k is the Jackknife Kibria-Lukman parameter. If &k = 0, then BB jkLg reduces to ﬁBMLE.
The MMSE and MSE for the previously mentioned estimators are defined as follows:

MMSE(Berre) = A AN ET + KPEA aa” AL'ET, (2.20)
X ST L@
MSE = L A 2.21
(Barre) so; R ; R (2.21)
MMSEBgLe) = AT AGAT AGAT'ET + (d — 126N aa” AT'ET, (2.22)
. "\ (4 + d)? r o>
MSE = — 4t d-1)7?Y —L 2.23
(Bor) w;/lj(/lj+l)2+( );%H)z (2.23)
. . Al r Al
MMSE(ﬁBJSE) = (,DCA c + (-mf&) (—mfa . (224)
r a*a; r a>
MSE(3 - I U 2.25
(Bise) so; @17 ; @ (2.25)
MMSE@Bgi1e) = A Agy A Ay AL ET + (d + k)N aa” A'ET, (2.26)
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MSE(BpLrE) =
MMSE(Bgoke)
MSE(Bsok) =
MMSE(ﬁBDKE)
MSE(Bgpke) =

MMSE(Bsmrre)
MSE(BpmrTE) =
MMSE(Bsk1x)

MSE(Bskie) =

MMSE(Bsre)
MSE(Bgrre)

MMSE(Bsix.)

MSE( ABJKLE)

where

AIMS Mathematics

=

"Dzﬂ(ﬁ +h° Z(a nyse)

= QEA; A lAde £+ 12 - 16N aa ALE,

A +kd)* a;
"DZM—> k(d_l)z(ﬂ R

= QEAT AT AT AT A ET + 4P (d + 126N aa A ET,

— k(d + 1))? L AK(d + 1)’
('DZ/I(A +kd+ 1)) Z(a kd+ )2

= 0ENFANGET + I2(d + 12N aa” AGET,

/1 r (d+1)2 2
"”Zu +kd+ D)) Zu +k(d+1))2’

= QEN Ay A~ lAkOA &r +4k2§A laa AT,

(’DZ/I(/I +k)2 Z(a PFAVE

= €AV I, — (A + kL) K ET + KA + k1)

x aa’ (A + k)T,

/12+2/lk) PRI
T g :
"DZ A + kA, ;(aj+k)4

= gof(l, — k(A + kL) ")V A, — k(A + k1) H)ET

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)
(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

+ [(1, + 2k(A + kL)Y Y1, — QK(A + kL)) - I]ﬁﬁT[(I, + 2k(A + k1))

X (I, = (2k(A + k1)) - 1,
, ((/1 j+k) - 4k2)2 (A, — kP
(A + k)oa;

J=1

(= B2+ 3k) - (4 +k)3)

Zl (A; + k)° ’

Ay = diag(A; + k, A2 +k, ..., A, + k),
Ay = diag(d, +d, A, +d, ..., A, + d),
Ay =diag(l + LA, +1,...,2, + 1),
Ayg = diag(Ay + kd, A, + kd, ..., A, + kd),
Ay, = diag(A; —k, A — k, ..., 4, — k),
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Ap = diag(A; + k(1 +d), 2 + k(1 +d), ..., A, + k(1 + d)),
Ar = diag(A; — k(1 +d), 2 — k(1 +d), ..., 4, — k(1 + d)),
Ado = dlag(/ll - d, /12 - d, ...,/lp - d)

3. Proposed estimators

Although biased estimators have made significant progress in addressing multicollinearity in BRMs,
they introduce bias in exchange for reducing variance through shrinkage parameters. However, large
values of these parameters lead to considerable bias, which can negatively impact their stability and
reliability. Therefore, researchers have proposed an alternative estimator known as the almost-unbiased
estimator. Several researchers, including Chang [33], Wu et al. [34], and Jegede et al. [16], have studied
these estimators. In this study, we introduce the almost unbiased modified ridge-type estimator for the
BRM, using the following definition.

Definition 1. [35] Let 3 be a biased estimator of the parameter 3, with bias given by
Bias(B) = E(B) - B = CB,
which implies that
EB-Cp) =p.
Then, the estimator
B=p-CB=U-0)p
is called the almost unbiased estimator derived from the biased estimator 3.

Following the work of Omara [36], we introduce the beta almost unbiased modified ridge-type
estimator (BAUMRTE) as follows:

= [, - (A + k(1 + 1) A = I,) PBowwre

=[I, - ((A +k(1+d),)"'A - 1,) (A + k(1 +d)) ' ABemie
=21, - A + k(1 + DL A| (A + k(1 + d)1,)" Ay
=

I = (A + k(1 + ) K1 + d)*) Bese = HPsuie,

:8 BAUMRTE

3.1

where
H = [I, - ((A+ k(1 + )L,y k(1 + d)?) ],

k (k > 0), and d (0 < d < 1) are the almost unbiased modified ridge-type parameters. The
BAUMRTE(0,0) reduces to BMLE and the BAUMRTEC(1, k/2) reduces to BJRRE. The bias and the
variance of the BAUMRTE can be found as

Bias(ﬁBAUMRTE) = E(,éBAUMRTE) -B=E (H,éBMLE) -B= [H - Ir],B (3.2)
and

COV(BBAUMRTE) =E ([ﬁBAUMRTE -E (BBAUMRTE)] I:ﬁBAUMRTE -E (BBAUMRTE)]T)

= [H - Ir]COV(ﬁBMLE)[H - Ir]T = [H - Ir]()D(A)_l[H_ Ir]T'

(3.3)
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Using Eqgs (3.2) and (3.3), the MMSE and MSE of BAUMRTE can be simplified as

MMSE(,@BAUMRTE) = COV(BBAUMRTE) + BiaS(BBAUMRTE)BiaS(,éBAUMRTE)T

(3.4)
= ¢[H — Ir](A)_l[H - Ir]T +[H - Ir]ﬁIBT[H - Ir]T

and

MSE(:éBAUMRTE) =Tr (MMSE(,@BAUMRTE))

_ v ! RA+d? & RA+d? Vo, (3.5)
_SDFZlA_J(l_m) +Z((/1J+k(1+d))2) a/j'

J=1

The MSE of the BAUMRTE depends on the choice of k and d. Selecting appropriate values of k
and d helps achieve the minimum MSE for the BAUMRTE. For more details, see [36]. Therefore, in
Subsection 3.2, we propose new methods for estimating parameters.

3.1. Superiority of the proposed estimators

The following lemma and theorem will be used to prove some theorems in this section.

Lemma 3.1. Assuming B is a positive definite (pd) matrix, c is a positive constant, and vy is a vector of
nonzero constants, the expression
cB-vyy" >0

holds true iff yBy" < c [37].
Theorem 3.1. Letk > 0,0 <d < 1, and

A+ k(1 +d) > (2 + 2040 +d))

then ﬁBAUMRTE is superior to BBMLE if and only if (iff)
MMSE(BBMLE) - MMSE(,QBAUMRTE) > 0,

where

R = Bias(Bsaumrre)-
Proof. The difference between MMSE(BBMLE) and MMSE([%BAUMRTE), as computed using Eq (2.8) and
Eq (3.4), s

MMSE(Bpme) — MMSEBsavmrre) = @[ A~ = A7 (I, = (A + k(1 + d)L,) 2 (k(1 + d)*)’|¢" - RR".
(3.6)

Equation (3.6) can be described using the MSE as:

2 2
1 2k + )P

MSE( — MSE( = pédiag| — — — RR”.
SE(BGpmLE) SE(BaumrtE) = pédiag 4 (4 + k(1 + 4))’ 1, '3
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The matrix |A™ = A™/(, = (A + k(1 + d)I,)2(k(1 + d))*)’ ] is pd iff
(A + k(1 +d)* = (2 +20k(1 + d)) >0,

2
which is equivalent to (4; + k(1 + d))* > (/13 +24k(1 + d)) being non-negative. Therefore the matrix
[A‘l - AL = (A + k(1 + A1) (k(1 + d))2)2] is pd, and the proof is completed by Lemma 3.1. O

Theorem 3.2. Letk>0,0<d < 1, and
2
B+ k(1 +d)* > (2 + 24k(1 + d)) (A, + k),

then Bpaymrre is superior to Bprre iff

MMSEBsrre) — MMSE(Bpaunrre) > 0,

where

Rriage = Bias(Burrr)
and

R = Bias(,BBAUMRTEl

Proof. The difference between MMSE(,@BRRE) and MMSE(ﬁBAUMRTE), as computed using Egs (2.20)
and (3.4), is

MMSE (Byrrr) - MMSE(Baaumrre) =¢€[Ac AL = A7 (I = (A + k(1 + d)L) k(1 + d))°)’|¢"

; ’ (3.7)
+ RRidgeRRidge — RR".

Equation (3.7) can be described using the MSE as:

A (A3 +22k(1 + d))?

MSE(f — MSE(3 =pédi —
(BBRRE) (BAumRTE) =@édiag 4 + k)2 (L + k(1 + d)*A;

&' + RpiggeRpyge — RR .

The matrix [A;'AAL' = A7V (L, = (A + k(1 + d)I)(k(1 + d)Y)’| is pd iff
A+ k(1 + d)y* — (2 + 225k(1 + d))2 (4 +k)?* >0,
which is equivalent to
B+ k(1 +d))* > (2 +24k(1 + d))2 (A, + k)?

being non-negative. Therefore the matrix [A;lAA,:1 — AN — (A + k(1 + d)L)2(k(1 + d))2)2] is pd,
and the proof is completed by Lemma 3.1. O
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Theorem 3.3. Letk >0, 0<d < 1, and
(A, +dP(A; + k(1 + d)* > (A3 +22;k(1 + d))2 (4 + 1),

then Beaumrre is superior to Bpre iff

MMSEBs) — MMSEBgavmrre) > 0,

where
Ryi = Bias(Bprr)
and
R = Bias(,BBAUMRTE)-

Proof. The difference between MMSE(f}BLE) and MMSE(BBAUMRTE), as computed using Egs (2.22)
and (3.4), is

MMSE (1) — MMSE(Baaumrre) = €[ AT AN AGAT' = A7 (1, = (A + k(1 + d)1,) k(1 + d))*)’[¢" (3.8)
+RiRL, — RR".

Equation (3.8) can be described using the MSE as:

(4 +d)? (/1§ +22k(1 + d))*

MSE(Bs1r) — MSE(3 = pédi
(ﬁBLE) (ﬁBAUMRTE) Qoé: 1ag /1](/1] + 1)2 (/1] + k(l + d))4/l]

"+ RyuRy, — RR'.

The matrix AT AGA™ AGAT = AT, = (A + k(1 + d)L,)2(k(1 + d))*)’] is pd iff

2 4 2 2 2
(A + P+ k(L + d)* — (2 +22k(1 +d)) (2, + 1) > 0,
which is equivalent to
2 4 2 2 2
(A, + AP+ k(1 +d)* > (22 +20k(1 +d)) (4, + 1)

being non-negative. Therefore, the matrix [AIIAdA‘lAdAl‘1 ~ AL = (A+ k(1 +d)L) 2 (k(1 + d))z)z]
is pd, and the proof is completed by Lemma 3.1. O

Theorem 3.4. Letk >0, 0<d < 1, and
2
AL+ k(1 +d)* > (23 +20k(1 + d)) (@34, + 1),
then ﬁBAUMRTE is superior to ﬁB se U
MMSE(Bpjse) — MMSE(Bpavmrre) > 0,

where

Rysk = Bias(Bgjse)
and

R = Bias(ﬁBAUMRTE)~
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Proof. The difference between MMSE(BBJSE) and MMSE(ﬁBAUMRTE), as computed using Eqs (2.24)
and (3.4), is

MMSE(Bsist) —~ MMSE(Bsavme) = 9&[cA™'c” = A1, = (A + k(1 + d)I,) k(1 + d)*)’J¢"

, ’ (3.9)

Equation (3.9) can be described using the MSE as:

@A (A2 + 22,k(1 + d))?

MSE(Bssse) — MSE(Bpaumrte) = sofdiag( !

T T T
+RyseR . — RR".
@+ 12 (4 + k(1 +d)*, & ¥ RyseRise

The matrix [cA™'cT — AN, = (A + k(1 + d)I,)2(k(1 + d)*)’ | is pd iff

B+ k(1 +d) = (L + 20k +d)) (@24, + 1 >0,
which is equivalent to
QB + k(1 +d) > (2 + 20k +d)) (@2, + 1)
being non-negative. Therefore the matrix [cA™'c” = A7 (I, — (A + k(1 + d)I,)2(k(1 +d))*)’] is pd , and
the proof is completed by Lemma 3.1. O
Theorem 3.5. Letk>0,0<d < 1, and

2
’

(A = )’ + k(1 + d))* > (4 + &) (4 + 24,k(1 + d))

then Bpaymrre is superior to Bprre iff

MMSE(ﬁBLTE) - MMSE(,Z;BAUMRTE) > 0,
where
Rir = Bias(Bpr1E)

and
R = Bias(BpaumrrE)-

Proof. The difference between MMSE(,@BLTE) and MMSE(,@BAUMRTE), as computed using Eqs (2.26)
and (3.4), is

MMSEBgi1e) — MMSE(Bpaumrre) = @& [AZIAdOA_IAdOAzl - A x (I,

s (3.10)
— (A + k(1 + D)2 k(1 + d))?) ]gT +R.7RY, — RR".
Equation (3.10) can be described using the MSE as:

(A —d)? (G +22k(1 +d))
LA +k2 (A + k(1 +d)*A;

MSE(BBLTE) - MSE(BBAUMRTE) =pédiag ]§ T+ RLTRzT —-RR".
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The matrix | A7 Ag A~ Ag,Ap' = A7 = (A + k(1 + d)L,)2(k(1 + d))*)? ] is pd iff

2 4 2( 2 2
(A; = )P + k(1 + d)* = (A, + 0% (43 + 2,k(1 + d)) > 0,
which is equivalent to
2 4 2( 2 2
(A = dP(A; + k(1 + d)* > (4 + ) (45 + 22;k(1 + d))

being non-negative. Therefore the matrix [A,:lAdOA‘IAdOAIZI —AYI - (A+ k(1 + )2 (k(1 + d))z)z]
is pd, and the proof is completed by Lemma 3.1. O
Theorem 3.6. Letk >0,0<d < 1, and

2
’

(A; + kd)*(A; + k(L + d))* > (4; + k) (A? +22k(1 + d))

then Bpaymrre is superior to Boke Uff

MMSEBsoki) — MMSEBgaumrre) > 0,

where
Rok = Bias(Bgoke)
and

R= Bias(BBAUMRTE)-

Proof. The difference between MMSE(BBOKE) and MMSE(BBAUMRTE), as computed using Eqs (2.28)
and (3.4), is

MMSE(Bsoke) — MMSE(Bsaumrre) = @€ [AE "Aa AT Aa A = XA,

3.11
— (A + k(1 + d)L)2(k(1 + d))z)z]gT + RoxRL, — RR”. G-AD

Equation (3.11) can be described using the MSE as

(A +kd)? (4 + 22k + d))?

- T + RoxRL . — RR”.
LA +k2 (A + k(1 +d)*A; ¢ OkTox

MSE(Bgoke) — MSE(Bsaumrre) =¢édiag

The matrix [Ag' Al A™ AgAg' = AT = (A + k(1 + d)L)2(k(1 + d)?)’ | is pd iff

2 4 2( 2 2
(A, + kd)*(A; + k(1 + d))* = (A; + k) (4 + 24,k(1 + d))” > 0,
which is equivalent to
2 4 2( 2 2
(A, + kd)*(4; + k(1 + d))* > (A; + 0)* (4] + 22;k(1 + d))

being non-negative. Therefore the matrix [A,:lAde‘lAde,:1 — AL = (A + k(1 +d)1) 72 (k(1 + d))2)2]
is pd, and the proof is completed by Lemma 3.1. O
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Theorem 3.7. Letk>0,0<d < 1, and
(A; = k(d + D)4 + k(1 + d))* > (A; + k(d + 1)* (A3 + 22;k(1 + d))2 :
then ,éBAUMRTE iS superior to ﬁBDKE lﬁt
MMSEBspxe) — MMSE(Bpavmrre) > 0,

where

Rpk = Bias(Bppke)
and

R = Bias(BpaumrrE)-

Proof. The difference between MMSE(,@BDKE) and MMSE(,@BAUMRTE), as computed using Eqs (2.30)
and (3.4), is

MMSE(Bsprr) — MMSEBpaumrre) = ¢€ [AEIATA_lATAI_rl -A'(I,
— (A + k(1 + ) (k(1 + d)*)*|¢" + RoxRp - RR”.
Equation (3.12) can be described using the MSE as

(A —kd+1)? (4 +22k(1 + d))? ,
LA +k(d+ D)2 (4 +k(1+d))*a;
+ RpkRY . — RR”.

MSE(BBDKE) — MSE(EBAUMRTE) :(pfdlag

The matrix [A;‘ATA“ATA;‘ — AN, = (A + k(1 + D)2k + d))z)z] is pd iff

(A; = k(d + DY) + k(1 + d))* = () + k(d + 1))* (45 + 22,k(1 + d))2 > 0,
which is equivalent to
(A, = k(d + D)4 + k(1 + d))* > (A + k(d + 1)) (A% + 2;k(1 + d))2
being non-negative. Therefore the matrix [A;l ArAT ATAG = AT = (A + k(1 + d)L)2(k(1 + d))z)z]
is pd , and the proof is completed by Lemma 3.1. O
Theorem 3.8. Letk>0,0<d < 1, and
A+ k(1L + d)* > (A + k(d + D) (A5 + 22,k(1 + d))2

JNTT J Jj J ’

then Bpavmrre is superior to Beyrrs iff

MMSE(ﬁBMRTE) - MMSE(,éBAUMRTE) >0,

where
Ruyrr = Bias(Bsmrrr)

and
R = Bias(BpaumrrE)-
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Proof. The difference between MMSE(BBMRTE) and MMSE(BBAUMRTE), as computed using Eqs (2.32)
and (3.4), is
MMSE (Bpvirre) ~ MMSE(Bsavmrre) =0£[Ap' AAZ' = A7(1, = (A + k(1 + d),) ™

3.13
(k(1 +d)*)*|¢" + RurrRiypr — RR”. G

Equation (3.13) can be described using the MSE as:

2 2
Y (/lj+2/ljk(1+d)) ,

MSE(Bgmrre) — MSE(Bpaumre) =¢édiag L+ Kd+ Dy - O+ k(L + ), & (3.14)

+ Ryrr Ry s — RR”.

The matrix |[A;'AAZ! = A7 (I, = (A + k(1 + d)I,) 2 (k(1 + d)Y*)’| is pd iff

2 4 2( 2 2
(A, + k(1 + d))* = (4 + k(d + 1) (1 + 24k(1 + d))” > 0,
which is equivalent to
2 4 2( 2 2
B+ k(L +d)* > (4 + k(d + D) (4 + 24k(1 + d))

being non-negative. Therefore the matrix [A;lAA;I — AL = (A + k(1 + ) 2(k(1 + d))z)z] is pd,
and the proof is completed by Lemma 3.1. O
Theorem 3.9. Letk > 0,0 <d < 1, and

2
H

() = k2 + k(1 + )yt > (A + k) (43 + 22,k(1 + d))

then Bpaumrre is superior to Bekre Uf

MMSE(Bpx1r) — MMSEBpavmrre) > 0, Rxr = Bias(Bpxir)

and
R = Bias(Bsaumrre)-

Proof. The difference between MMSE(Bgkir) and MMSE(Bgaumrre), as computed using Eqs (2.34)
and (3.4), is
MMSE(Bgkir) — MMSE(Bsaumrte) = @& [AZIAkOA_lAkOA; - AT

s (3.15)
— (A + k(1 + )2 (k(1 + )’ |¢" + R Ry, — RR”.
Equation (3.15) can be described using the MSE as:

(A —k? (G +22k(0 + d))
LA +k2 (A + k(1 +d)*A;

MSE(:@BKLE) - MSE@BAUMRTE) =pédiag ]-f Tt RKLR1T<L - RR".
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The matrix |A; A, A A Ayt = A7 (I = (A + k(1 + d)L) 2 (k(1 + d))’ | is pd iff

2 4 2( 2 2
(A = k2 + k(1 + d))* = () + B (45 + 2,k(1 + d))” > 0,
which is equivalent to
2
(A, = KA+ k(1 + d))* > (A + k)% (A3 + 24,k(1 + d))

being non-negative. Therefore the matrix [A;lAkOA‘lAkOAIZl AN — (A + k(1 +d) )2 (k(1 + d))2)2]
is pd, and the proof is completed by Lemma 3.1. O
Theorem 3.10. Let k> 0,0<d < 1, and

2
’

(A = KA+ k(1 + d))* > (A + k)% (2 + 24,k(1 + d))

then Bpaumrre is superior to Bpirre f

MMSE(Bgirre) — MMSE(Bpavmrre) > 0, Ryg = Bias(BeirrE)
and
R = Bias(Bpaumrre)-
Proof. The difference between MMSE(/?BJRRE) and MMSE(,@BAUMRTE), as computed using Eqs (2.36)
and (3.4), is
MMSE(Bsirei) ~ MMSEBaaumrre) = ¢&[ A~ (I, = (A + kL) k)7 = A7 (I, — (A

3.16
+ k(1 +d)L) 7 X (k(1+ )Y’ |€" + RixR, — RR”. (310

Equation (3.16) can be described using the MSE as:

2
(22 +20;%) (@21 + D))

MSE(Bgirre) — MSE(Bpaumrre) =pédiag (/{_ T Lk ) ¢+ RjrRjg — RR'.
J J J J

The matrix [A™ (I, = (A + kL) 2k?)* = A7V (I, = (A + k(1 + d)L) 2 (k(1 + d)?)’ | is pd iff
(A + 262,)°(A; + k(1 + d))* = (4 + k)* (45 + 22;k(1 + d))2 >0,
which is equivalent to
(A5 +2k2)°(A; + k(1 + d))* > (A, + b)* (a? +22k(1 + d))2

being non-negative. Therefore the matrix [A‘I(Ir —(A+KL)2K) 2= AT, = (A + k(1 + d)L)2(k(1 +
d))z)z] is pd, and the proof is completed by Lemma 3.1. O
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Theorem 3.11. Let k> 0,0<d < 1, and
2

(4 + K —4k2) 4y =02, + KL+ ' > (001 (8 + 20001 + )

then BBAUMRTE Is superior to ﬁBJKLE iff
MMSE(Bpjx1e) — MMSEBgaumrre) > 0, Rk = Bias(Bpixir)

and
R = Bias(Bpaumrre)-
Proof. The difference between MMSE(ﬁBJKLE) and MMSE([SBAUMRTE), as computed using Eqs (2.38)
and (3.4), is
MMSEBgikie) —~ MMSE(Bgaumrre) = ¢€I(I — (2k(A + kIr)_l)z)zA(Ir — k(A + kL)) = AU,
— (A + k(1 + ) 2(k(1 + )’ |¢" + RyxR)x, - RR”.
(3.17)

Equation (3.17) can be described using the MSE as:

2
R ) . ((ﬂj + k)2 - 4k2) =K (2 +2k(1 + d)P)
MSE(BsikLe) — MSE(Bpaumrre) = go.fdlag( (A, + K)o, A+ k(1 + d)*A; )

j i i i

+ Rk R, — RR".

The matrix [(I, — (2k(A + kI,)‘l)z)zA(I, — k(A + kI)™)?) = AN — (A + k(1 + d)L) 2 (k(1 + d))z)z]
is pd iff

2
((Aj +E) - 4k2) () = B2 + k(1 +d)* = (A + 0 (2 + 24k(1 + D)) > 0,
which is equivalent to
2
((aj ) - 4k2) (A= 2+ k(L +d)* > (4 +0° (L2 + 20k +d))

being non-negative. Therefore the matrix [(I, — (2k(A + kL)Y DAL — k(A + kL)™H) = AV, -
(A + k(1 + )LL) 2(k(1 + d))z)z] is pd, and the proof is completed by Lemma 3.1. m]

3.2. Selection biasing parameter estimator

Table 1 illustrates three parameter values for the proposed estimator (lAq, cfl), (lAcz, cfz), and (/%3,623)
based on the work of Lukman et al. [24], along with the corresponding parameter estimates for each
estimator introduced in the BRM. The effectiveness and strength of the proposed estimator are
inherently influenced by the choice of these shrinkage parameters. Specifically, the values of k and d
govern the trade-off between bias and variance: larger values may reduce variance but increase bias,
while smaller values may do the opposite. Hence, careful tuning is essential to achieve an optimal
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balance that leads to superior estimation accuracy, particularly under high multicollinearity. These
parameters are essential for both simulation and application purposes. The optimal values for each
estimator were selected based on previous studies referenced in Table 1.

Table 1. Summary of biasing parameters for different estimators in BRM.

Estimator k values d values Author
BRRE k= ;;Tgiiz) - Abonazel and Taha [19]
| ]
BLE - d = max [0, min %, 1]] Karlsson et al. [21]
’ j i
Ers
BJSE : ¢ = min (22 Amin et al. [22]
A
I
BLTE b=y, (f) d = max| L4 Algamal and Abonazel [29]
. Q@ . +Aji

2 1l wr A 51 . /l/-dz,

BOKE k= v ijl (m) d= 5 min (m) Abonazel et al. [30]
1/r s

7 _11vr 1 : &;
BDKE k= (r ZFI —w(1+3)(¢L,+2&§)] min (—(l/ujé)mﬁ)) Abonazel et al. [31]
BMRTE k= min(m) d = min (%) -1 Lukman et al. [24]

i j
BKLE  f=min(525) : Kog and Diinder [25]
el

. ga[l+ 1 ’T{]}

BJRRE k= |max|k; = ~——Il/r - Farghali [26]
\ J
BJKLE k = min (WL}/U) - Kog and Diinder [25]
i+l

Proposed parameters for BAUMRTE

_ re j o _ 1
ki = max((1+d)a?) d =
max| ¢l =
K a2
I
A . ¢ 5o |
k, = median (—(1+ d)‘??) d, =
max| A‘Flz—]
Kas
AR . r 7 _ 1
ky = medlan(m{m?) dy = ———
BAUMRTE max y‘z_
K3a?
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4. Simulation study

This section evaluates the performance of the proposed estimator through a comprehensive
simulation experiment. The study compares the proposed BAUMRTE with other established
estimators, including the BMLE, BRRE, BLE, BJSE, BLTE, BOKE, BDKE, BMRTE, and BKLE.

4.1. Simulation design

The response variable was generated from a beta distribution using the logit link function, defined
as [38]:

exp (,30 +B1Xi + Paxip + -+ +ﬁpxir) ) )
Ui = i=1,....,n; j=1,...,r1,

1 +exp (ﬁoﬁlxil + Boxip + -+ +,3px,-,)

where x;; represents the correlated independent variables and ; denotes the true parameter vector of
the BRM. The parameters were selected such that

iﬁi =1.
j=1

The correlated explanatory variables were generated using the formula [8,39]

1
2\2 . .
x,-j:(l—p) Zij+pZigsny, 1=1,...,n; j=1,...,r,

where p represents the degree of correlation among the regressors and z;; are independent standard
normal pseudo-random variables.

The study investigated the performance of the proposed estimator under various conditions as
described in Table 2.

Table 2. Simulation setup parameters used in the study.

Parameter Values

Correlation levels (p) 0.80, 0.85, 0.90, 0.95, 0.99

Sample sizes (n) 30, 75, 150, 200, 300, 400

Number of covariates (p) 3,6,9

Precision parameter (¢) 0.5, 1.0, 1.5

Number of replications 1000 for each combination of (n, p, p, ¢)

To assess the performance of the proposed estimator, the estimated MSE was used as the evaluation
criterion. The estimated MSE is defined as

MSE(f) =
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where (,B, - ,8) represents the difference between the estimated and true parameter vectors at the i-th
replication, and R denotes the total number of replications. A detailed description of the simulation
procedure and parameter estimation is provided in Algorithm 1. All computational tasks were carried
out using the R programming language version 4.4.1, with the assistance of the “betareg” package for
BRM.

Algorithm 1 Simulation steps for the proposed estimators in the R programming language.

1:
2:

Start
Load the required libraries and set the random seed to ensure reproducibility.

3. Input the simulation factors: sample size (n), number of explanatory variables (p), precision

10:

11:

12:
13:

14:

parameter (¢), correlation coefficient (p), and true parameter vector ().
Generate multicollinear explanatory variables using

1
2\2 . o
xij:(l—p) Zij+PZigeny, 1=1,...,n j=1,...,r

Compute the mean of the beta distribution

exp (Bo + Bixin + Paxip + -+ + BpXiy P
i = ( r ) i=1l...m j=1...r wihy g=1
1 +exp (ﬁoﬁlxil + Baxpp + - +,3pxir) =1

Generate the response variable from the generalized Poisson distribution

yi ~ Beta(/li, QO)

Fit the BRM using the ‘betareg‘ package to obtain
betareg(y ~ X).

Compute the intermediate matrices W and 2.

Compute the biasing parameters for the proposed estimators along with the existing estimator as
described in Table 1.

Determine ,3, representing the selected estimator (BMLE, BRRE, BLE, BJSE, BLTE, BOKE,
BDKE, BMRTE, BKLE, and BAUMRTE).

Compute the squared distance

Repeat Steps 610 for 1000 replications.
Compute the estimated MSE

Stop
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4.2. Simulation results discussion

Tables 3—11 present the estimated MSE values for various biased estimators in a BRM, including
the proposed BAUMRTE with three parameters, along with existing methods.

The tables are organized based on different values of the correlation coefficient (p), sample size
(n), number of explanatory variables p, and dispersion parameter (¢). The estimators compared
include BMLE, BRRE, BLE, BJSE, BLTE, BOKE, BDKE, BMRTE, BKLE, BJRRE, BJKLE, and
the proposed BAUMRTE with three parameters (lAq, c?l), (lAcg, 0?2), and (123, 0?3).

e As the sample size (n) increases, the MSE values for all estimators tend to decrease. This is
expected, as larger sample sizes typically yield more accurate estimates of the parameters.

e The dispersion parameter ¢ also affects the MSE values. Lower values of ¢ (e.g., 0.5) tend to
result in higher MSEs, while higher values (e.g., 1.5) lead to lower MSEs.

e Higher values of p (e.g., 0.95, 0.99) result in higher MSE values for most estimators, indicating
that high correlation among predictors can degrade estimation performance.

e Increasing the number of covariates p generally increases the MSE for all estimators, especially
in small sample sizes and high multicollinearity scenarios.

e The traditional BMLE has higher MSE values in each scenario, indicating the presence of
multicollinearity.

Using existing biased estimators introduces an MSE lower than the BMLE. Furthermore, the
BAUMRTE outperforms these existing methods, particularly in challenging conditions (high p,
low ¢, and small n).

e The proposed BAUMRTE consistently shows lower MSE values compared to other estimators
across different scenarios. This indicates that BAUMRTE is more efficient in estimating the
parameters of the BRM.

Among the three variants of BAUMRTE, the BAUMRTE(k,, d,) generally performs the best in
most scenarios, often yielding the lowest MSE values. This suggests that the second variant of
the proposed estimator is the most effective in reducing bias and variance.

Simulation results show that the proposed BAUMRTE, particularly the variable BAUMRTE(/AQ, c?z),
is highly effective at reducing the MSE across a wide range of scenarios.

This estimator outperforms existing ones, especially under conditions of high multicollinearity and
low dispersion, making it the best choice for coefficient estimation in BRM under multicollinearity.
BAUMRTE’s performance indicates that it is a valuable addition to the range of feature estimation
tools, as it offers the lowest MSE, meaning it achieves the greatest balance between bias and variance,
especially in cases where traditional methods might fail to provide accurate estimates.
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Table 3. Estimated MSE values when p = 3 and ¢ = 0.5.

BMLE BRRE BLE BJSE BLTE BOKE BDKE BMRTE BKLE BJRRE BJKLE BAUMRTE
n
g - k d ¢ kd kd kd kd k k k k,di knd ks ds
0.80 30 1.0788 0.8022 0.5213 0.7982 0.4311 0.8358 0.6460 0.9295 0.7931 0.3848 0.3790 0.3013 0.2830 0.3129
75 0.4907 04270 0.3626 0.4135 0.2651 0.4351 0.3791 0.4635  0.4255 0.2195 0.2187 0.1800 0.1695 0.1866
150 0.1847 0.1740 0.1590 0.1775 0.1332 0.1754 0.1639 0.1812  0.1739 0.1018 0.1017 0.0879 0.0844 0.0902
200 0.1281  0.1229 0.1173 0.1258 0.1018 0.1234 0.1174 0.1266 ~ 0.1229 0.0755 0.0755 0.0667 0.0642 0.0683
300 0.1387  0.1340 0.1271 0.1360 0.1138 0.1346 0.1292 0.1372  0.1339 0.0864 0.0864 0.0744 0.0708 0.0766
400 0.0826 0.0807 0.0778 0.0831 0.0718 0.0809 0.0786 0.0821  0.0806 0.0564 0.0564 0.0499 0.0478 0.0511
0.85 30 1.2482 0.9698 0.6299 0.9843 0.6106 1.0036 0.8336 1.0820 0.9611 0.5119 0.5050 0.4086 0.3835 0.4266
75 05978  0.5046 0.4074 0.5093 0.2807 0.5169 0.4299 0.5609  0.5012 0.2383 0.2372 0.1936 0.1829 0.2006
150 0.2386  0.2190 0.1955 0.2260 0.1508 0.2214 0.1998 0.2324 02186 0.1170 0.1169 0.0987 0.0940 0.1016
200 0.1771  0.1669 0.1539 0.1720 0.1248 0.1682 0.1558 0.1743  0.1668 0.0865 0.0864 0.0724 0.0686 0.0748
300 0.1384  0.1323 0.1243 0.1324 0.1072 0.1329 0.1265 0.1365  0.1323 0.0754 0.0753 0.0644 0.0605 0.0666
400 0.0931  0.0900 0.0860 0.0907 0.0760 0.0903 0.0866 0.0922  0.0899 0.0537 0.0537 0.0457 0.0429 0.0473
090 30 22226 1.5509 0.6456 1.5264 09684 1.6169 1.2713 1.8181  1.5315 0.7455 0.7167 0.5623 0.5301 0.5993
75 09208 0.7357 0.4809 0.7333 0.3522 0.7539 0.5949 0.8495 0.7278 0.3537 0.3510 0.2813 0.2607 0.2941
150 0.3948 0.3389 0.2738 0.3543 0.1622 0.3436 0.2866 0.3774  0.3370 0.1369 0.1367 0.1092 0.1004 0.1145
200 0.2819  0.2622 0.2323 0.2648 0.1849 0.2649 0.2407 0.2762  0.2618 0.1371 0.1370 0.1128 0.1059 0.1168
300 0.1909  0.1782 0.1643 0.1779 0.1283 0.1796 0.1648 0.1873  0.1780 0.0812 0.0812 0.0641 0.0589 0.0672
400 0.1631 0.1528 0.1418 0.1567 0.1108 0.1538 0.1414 0.1603  0.1526 0.0717 0.0717 0.0580 0.0536 0.0606
095 30 23864 1.6519 0.5491 1.5407 0.6983 1.7195 1.2203 2.0587  1.6296 0.7719 0.7491 0.5856 0.5409 0.6190
75 24742 1.7168 0.6157 1.6361 0.8177 1.7861 1.3040 2.1352 1.6970 0.8533 0.8271 0.6406 0.5917 0.6653
150 0.6825 0.5449 0.4040 0.5625 0.2342 0.5579 0.4327 0.6354  0.5398 0.2371 0.2363 0.1862 0.1700 0.1957
200 0.6107  0.5312 0.3924 0.5355 0.2798 0.5385 0.4545 0.5869  0.5286 0.2655 0.2649 0.2226 0.2071 0.2315
300 0.3857 0.3456 0.2825 0.3628 0.2104 0.3494 0.3028 0.3746  0.3443 0.1814 0.1812 0.1546 0.1455 0.1597
400 0.2627 0.2380 0.2074 0.2444 0.1437 0.2403 0.2125 0.2558  0.2374 0.0979 0.0979 0.0780 0.0713 0.0819
099 30 12.0145 79712 04312 6.0239 3.6898 8.3107 6.1247 10.0219 7.9767 3.9536 2.6399 22860 2.6979 2.6679
75 87413  5.7251 0.3805 4.4730 2.6077 5.9589 4.3266 7.3354  5.7138 2.7507 2.5115 1.9789 1.8839 2.1044
150 3.6023  2.3597 0.4729 2.0484 0.8154 24614 1.6773 3.1126 23436 1.0703 1.0468 0.7947 0.7163 0.8414
200 2.7489 19133 0.5570 1.7554 0.6981 1.9898 1.3680 2.4510 1.8955 0.9019 0.8943 0.6685 0.5987 0.7091
300 1.4617  0.9922 0.4523 1.0198 0.3230 1.0340 0.6675 1.2953  0.9711 0.3948 0.3933 0.2884 0.2558 0.3075
400 1.4752 1.0642 0.5194 1.0664 0.3624 1.1062 0.7450 1.3432  1.0490 0.4780 0.4766 0.3635 0.3269 0.3846
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Table 4. Estimated MSE values when p =3 and ¢ = 1.

BMLE BRRE BLE BISE BLTE BOKE BDKE BMRTE BKLE BJRRE BJKLE BAUMRTE

- k d e kd k d kd kd k k k ki,di ko, d ks, dy

0.80 30 0.8812 0.4796 0.4283 0.5796 0.4087 0.5211 0.4784 0.3930 0.4638 0.2109 0.2100 0.1804 0.1802 0.1824

75 0.4458 0.3539 0.3407 0.3869 0.2993 0.3685 0.3493 0.3272  0.3493 0.1618 0.1615 0.1424 0.1415 0.1442

150 0.1832  0.1653 0.1601 0.1724 0.1466 0.1681 0.1645 0.1602  0.1648 0.0855 0.0854 0.0754 0.0748 0.0763

200 0.0971  0.0914 0.0904 0.0967 0.0852 0.0921 0.0908 0.0910 0.0913 0.0520 0.0520 0.0501 0.0512 0.0499

300 0.1032  0.0966 0.0960 0.1004 0.0901 0.0976 0.0959 0.0958  0.0964 0.0516 0.0516 0.0452 0.0444 0.0460

400 0.0833  0.0794 0.0790 0.0831 0.0754 0.0802 0.0789 0.0790  0.0793 0.0469 0.0469 0.0412 0.0405 0.0417

0.85 30 09914 0.6201 0.5581 0.7926 0.6160 0.6812 0.6582 0.4165 0.6003 0.2740 0.2725 0.2243 0.2204 0.2295

75 04917 03697 0.3573 0.4238 0.3015 0.3878 0.3639 0.3366  0.3627 0.1704 0.1701 0.1562 0.1566 0.1573

150 0.2430 0.2070 0.2045 0.2236 0.1758 0.2138 0.2021 0.2024  0.2056 0.0924 0.0924 0.0806 0.0804 0.0814

200 0.1518  0.1365 0.1342 0.1481 0.1199 0.1384 0.1342 0.1367  0.1361 0.0663 0.0663 0.0595 0.0588 0.0602

300 0.1385  0.1266 0.1258 0.1331 0.1153 0.1288 0.1252 0.1251  0.1264 0.0576 0.0576 0.0480 0.0466 0.0490

400 0.0822 0.0774 0.0771 0.0798 0.0729 0.0782 0.0770 0.0767  0.0773 0.0408 0.0407 0.0349 0.0340 0.0357

0.90 30 1.7463 0.9608 0.6226 1.2599 0.9724 1.0770 0.9749 0.7501  0.9387 0.4107 0.4044 0.3060 0.2932 0.3210

75 0.7629  0.4901 0.4337 0.6156 0.3992 0.5305 0.4771 0.4239 04728 0.1809 0.1804 0.1407 0.1360 0.1448

150 0.3780 0.2853 0.2720 0.3310 0.2138 0.2980 0.2762 0.2727  0.2801 0.0919 0.0918 0.0735 0.0703 0.0759

200 0.2107 0.1816 0.1790 0.1992 0.1538 0.1865 0.1777 0.1794  0.1806 0.0681 0.0681 0.0567 0.0555 0.0579

300 0.1769  0.1573 0.1561 0.1696 0.1391 0.1610 0.1546 0.1558  0.1567 0.0631 0.0631 0.0518 0.0502 0.0530

400 0.1405 0.1257 0.1249 0.1349 0.1116 0.1282 0.1238 0.1244  0.1253 0.0449 0.0449 0.0365 0.0350 0.0376

095 30 47316 2.6877 1.8482 29236 1.0910 1.8300 1.6459 1.4533  1.6492 0.9294 0.9688 0.5072 0.4294 0.4326

75 19818 1.0232 0.6025 1.3430 0.9523 1.1584 0.9979 0.8491  0.9975 0.3890 0.3837 0.2753 0.2543 0.2921

150 0.5639 0.3762 0.3554 0.4603 0.2752 0.4034 0.3556 0.3507 0.3626 0.1202 0.1200 0.0910 0.0847 0.0951

200 0.4283 03161 0.2990 0.3741 0.2372 0.3337 0.3011 0.3060  0.3096 0.0984 0.0983 0.0721 0.0667 0.0755

300 0.2886  0.2301 0.2259 0.2605 0.1809 0.2390 0.2222 0.2266  0.2273 0.0689 0.0688 0.0515 0.0476 0.0540

400 0.2055 0.1711 0.1680 0.1957 0.1386 0.1765 0.1661 0.1692  0.1695 0.0451 0.0451 0.0352 0.0335 0.0364

099 30 109418 55100 0.4468 5.6873 5.4857 6.3302 5.4645 4.5860  5.5208 2.1280 1.7697 1.0788 1.1961 1.3162

75 6.0788 25616 0.3554 2.8455 22180 29175 2.4596 23008 25695 0.8578 0.8215 0.5535 0.5081 0.6070

150 3.0440 1.4396 0.4806 1.8456 1.2332 1.6586 1.3387 1.3052  1.4235 0.5225 0.5162 0.3282 0.2915 0.3539

200 23885 1.2308 0.5470 1.5728 1.0328 1.4056 1.1107 1.1678  1.1995 0.4556 0.4531 0.3006 0.2660 0.3223

300 1.3782  0.7374 0.4857 0.9979 0.5588 0.8214 0.6588 0.7147  0.7065 0.2561 0.2554 0.1745 0.1539 0.1871

400 1.1838 0.6734 0.4668 0.9123 0.4985 0.7506 0.5948 0.6603  0.6430 0.2359 0.2355 0.1547 0.1365 0.1658
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Table S. Estimated MSE values when p =3 and ¢ = 1.5.

BMLE BRRE BLE BJSE BLTE BOKE BDKE BMRTE BKLE BJRRE BJKLE BAUMRTE
oo - k d ¢ kd kd kd kd k k k kodi ko d ks ds
0.80 30 0.8216 0.4542 0.4987 0.6620 0.5400 0.5206 0.5389 0.2358  0.4317 0.1995 0.1990 0.1905 0.1973 0.1888
75 03627 0.2706 0.2902 0.3216 0.2668 0.2914 0.2923 0.1717  0.2656 0.1265 0.1264 0.1243 0.1309 0.1218
150 0.1745 0.1500 0.1546 0.1641 0.1456 0.1548 0.1561 0.1200  0.1491 0.0754 0.0754 0.0744 0.0778 0.0732
200 0.0992 0.0908 0.0926 0.0977 0.0891 0.0923 0.0928 0.0807  0.0906 0.0494 0.0494 0.0505 0.0536 0.0494
300 0.0840 0.0768 0.0786 0.0812 0.0755 0.0783 0.0784 0.0682  0.0767 0.0399 0.0399 0.0368 0.0377 0.0366
400 0.0716 0.0670 0.0681 0.0701 0.0661 0.0680 0.0680 0.0614  0.0669 0.0375 0.0375 0.0342 0.0347 0.0343
0.85 30 09856 0.5573 0.5947 0.7973 0.6980 0.6596 0.6707 0.2614  0.5306 0.2553 0.2546 0.2268 0.2319 0.2266
75 04349 02945 0.3221 03709 0.2901 0.3178 0.3243 0.1791  0.2852 0.1256 0.1255 0.1286 0.1354 0.1261
150 0.2020 0.1635 0.1731 0.1881 0.1596 0.1708 0.1726 0.1213  0.1615 0.0730 0.0730 0.0738 0.0783 0.0721
200 0.1053 0.0914 0.0946 0.1032 0.0889 0.0942 0.0946 0.0756  0.0909 0.0432 0.0432 0.0440 0.0468 0.0429
300 0.1001 0.0894 0.0920 0.0960 0.0873 0.0915 0.0916 0.0776  0.0890 0.0388 0.0388 0.0364 0.0377 0.0361
400 0.0812 0.0744 0.0764 0.0802 0.0735 0.0756 0.0761 0.0656  0.0742 0.0348 0.0348 0.0314 0.0319 0.0314
0.90 30 1.6420 0.7338 0.6442 1.1996 1.0466 0.8936 09141 0.3170 0.7009 0.2907 0.2883 0.2315 0.2300 0.2375
75 0.6665 0.3903 0.4029 0.5631 0.4025 0.4388 0.4319 0.2333  0.3676 0.1585 0.1582 0.1507 0.1557 0.1494
150 0.3727 0.2560 0.2772 0.3285 0.2418 0.2794 0.2720 0.1732  0.2469 0.0789 0.0788 0.0697 0.0715 0.0696
200 0.1876 0.1538 0.1617 0.1780 0.1466 0.1600 0.1605 0.1204  0.1522 0.0508 0.0508 0.0484 0.0505 0.0478
300 0.1637 0.1406 0.1463 0.1547 0.1381 0.1458 0.1454 0.1151  0.1398 0.0504 0.0504 0.0418 0.0417 0.0423
400 0.1271 0.1091 0.1140 0.1225 0.1062 0.1124 0.1130 0.0899  0.1085 0.0330 0.0330 0.0285 0.0289 0.0287
095 30 25522 1.1826 0.7847 1.6984 1.5582 1.4499 1.4045 0.5513 1.1508 0.4361 0.4314 0.2914 0.2745 0.3088
75 22285 0.9727 0.7130 1.5008 1.3612 1.2302 1.1472 0.3936  0.9351 0.3259 0.3226 0.1985 0.1822 0.2121
150 04727 0.2782 03110 0.4029 0.2660 0.3098 0.3024 0.1630  0.2605 0.0803 0.0803 0.0701 0.0703 0.0708
200 0.3488 0.2354 0.2536 0.3130 0.2155 0.2509 0.2530 0.1565  0.2263 0.0638 0.0638 0.0526 0.0515 0.0538
300 0.2179 0.1601 0.1738 0.2048 0.1508 0.1699 0.1690 0.1148  0.1558 0.0409 0.0408 0.0355 0.0357 0.0357
400 0.2256 0.1750 0.1866 0.2083 0.1655 0.1837 0.1839 0.1309  0.1719 0.0422 0.0422 0.0337 0.0328 0.0345
0.99 30 8.8874 3.4092 0.5233 4.4427 5.0327 4.1831 4.3221 13775 3.4327 1.0918 0.9824 0.5782 0.6128 0.7057
75 6.2378 2.3026 0.4255 3.3065 3.4000 2.9007 2.8596 0.9572 23030 0.7218 0.6991 0.4250 0.3936 0.4739
150 2.8047 1.0404 0.4849 1.7019 1.3797 1.3183 1.1773 0.5237  1.0274 0.3291 0.3262 0.1972 0.1749 0.2135
200 1.7176 0.6457 0.4330 1.1470 0.7787 0.7802 0.7279 0.3285  0.6190 0.1904 0.1898 0.1232 0.1089 0.1326
300 1.3369 0.5818 0.5130 0.9662 0.6873 0.7153 0.6338 0.3004  0.5439 0.1747 0.1744 0.1097 0.0966 0.1180
400 0.9814 0.4178 0.4093 0.7325 0.4554 0.4978 0.4567 0.2170  0.3808 0.1112 0.1111 0.0743 0.0653 0.0799
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Table 6. Estimated MSE values when p = 6 and ¢ = 0.5.

BMLE BRRE BLE BJSE BLTE BOKE BDKE BMRTE BKLE BJRRE BIJKLE BAUMRTE

g " - k d ¢ kd k.d k. d k.d k k k ki, d ko, dy ks, ds
0.80 30 29670 2.1730 13108 1.8209 1.3791 2.2349 1.9782 22459 2.1562 0.5814 0.5733 0.4886 0.4693 0.5054
75  1.1348 09683 0.7679 0.8061 0.4901 09732 0.8550 1.0612 0.9635 0.2680 0.2666 0.2426 0.2333 0.2485
150 0.4743 0.4408 0.4029 0.4082 03146 04419 04114 04636 0.4402 0.1552 0.1551 0.1470 0.1447 0.1486
200 03705 03512 0.3269 0.3372  0.2690 03520 03328 0.3649 03510 0.1385 0.1385 0.1275 0.1236 0.1298
300 0.2607 0.2497  0.2374 0.2344  0.2035 0.2500 0.2394 0.2575 0.2496  0.0927 0.0927 0.0853 0.0825 0.0870
400 0.2154 0.2096 0.1998 0.2036  0.1813  0.2097 0.2042 0.2137 0.2095 0.0978 0.0978 0.0908 0.0879 0.0925
0.85 30 42530 3.0135 1.3790 2.3261 1.7211  3.0709 2.6616  3.3601 2.9955 0.7896 0.7708 0.6744 0.6476 0.7028
75 23497 1.8554 1.0922 1.5247 0.9595 1.8834 1.5785 2.1133 1.8416  0.5668 0.5421 0.4763 0.4619 0.4857

150 0.6814 0.6176  0.5474 0.5544 0.3908 0.6197 0.5621 0.6609 0.6163 0.1714 0.1712 0.1559 0.1506 0.1591
200 0.3965 0.3715 0.3412 0.3491 02705 03721 0.3486 0.3892 03711 0.1144 0.1143 0.1067 0.1036 0.1086
300 0.3320 0.3170  0.2967 0.3109 0.2530 0.3182 0.3033 03270 0.3169 0.1172 0.1172 0.1061 0.1030 0.1079
400 0.4966 0.4831 0.3815 04663 04244 04836 04711 04922 04830 0.2760 0.2752 0.2553 0.2477 0.2597
090 30 49709 37110 1.4768 2.7929 2.2004 3.7468 3.3038 4.1461 3.6884  1.0957 1.0595 0.9437 0.9125 0.9842
75 25026 19482 1.1622 1.5370 09378 19748 1.6861 2.1589 1.9328 04903 0.4849 0.4179 0.4006 0.4332
150 1.1218 09694 0.7592 0.8232 0.4922 09758 0.8483  1.0689 0.9649  0.2663 0.2654 0.2323 0.2216 0.2385
200 2.2286 1.7443  0.6623 1.1577 0.6171 1.7955 1.1280 2.1644 1.7425 0.4780 0.3485 0.3514 0.3879 0.3538
300 0.5628  0.5260 0.4477 0.4983 0.3898 0.5268 0.4963 0.5490 0.5255 0.1828 0.1825 0.1671 0.1602 0.1713
400 04376 0.4138 03799 0.3843 03053 04143 0.3906 0.4311 0.4135 0.1218 0.1218 0.1099 0.1046 0.1129
0.95 30 11.2098 7.6255 1.7086 5.2815 4.8911 7.8688 6.8563 85009  7.6506 2.1556 1.9709 1.6719 1.6867 1.7928
75 45551 34717 15166 24152 13457 34918 29256 4.0698 3.4602 09397 0.9251 0.8197 0.7754 0.8503
150 23293  1.8995 1.1573 1.4488 0.6775 19089 1.5847 2.1825 1.8880  0.5398 0.5338 0.4729 0.4462 0.4902
200 1.2322  1.0315 0.7911 0.9087 0.4234 1.0407 0.8568 1.1688 1.0249  0.2514 0.2510 0.2183 0.2066 0.2248
300 1.1592  1.0233  0.8130 0.8967 0.5473 1.0293 09024 1.1069 1.0193  0.3158 0.3154 0.2766 0.2627 0.2843
400 0.7794 0.6938 0.5854 0.6095 0.3745 0.6953 0.6160 0.7536  0.6916 0.1595 0.1594 0.1414 0.1328 0.1462
0.99 30 47.3470 329630 1.1357 20.7060 19.4817 33.5061 29.7588 36.2039 33.0441 8.8560 6.4381 5.7973 7.1081 5.6944
75 27.3408 24.0516 0.8918 17.5186 19.9658 24.0987 22.9284 259883 24.0676 4.1547 3.4578 3.0145 3.5478 2.9874
150 11.0345 7.9775 1.2261 4.5935 24974 8.0554 6.4902 9.7487 79670 19082 1.8585 1.6041 1.5102 1.6595
200 5.9728 4.1633  1.2786 2.8238 1.3494 42237 3.2335 52614 4.1442 09252 09182 0.7672 0.7137 0.7979
300 6.0841 4.8339 14143 3.5761 2.1256 4.8604 4.0712 5.6534 48130 19470 19169 1.7627 1.7003 1.8017
400 3.5227 25810 1.1915 1.8195 0.6369 2.6019 19773  3.2035 2.5557 0.5970 0.5952 0.5128 0.4765 0.5328
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Table 7. Estimated MSE values when p = 6 and ¢ = 1.

BMLE BRRE BLE BISE BLTE BOKE BDKE BMRTE BKLE BJRRE BIKLE BAUMRTE

- k d ¢ k. d k.d k. d k d k k k ki, di ko, db ks, ds

0.80 30 2.6417 1.6188 12868 1.6734 1.6067 1.6891 1.8096 1.0279  1.5999  0.3930 0.3907 0.3502 0.3441 0.3581

75 09045 0.6727 0.6577 0.6657 0.5307 0.6871 0.6851 0.5843  0.6600 0.1548 0.1547 0.1518 0.1540 0.1511

150 0.4567 0.4026 0.3955 0.3826 0.3532 0.4053 0.4044 03873 04012 0.1251 0.1251 0.1245 0.1265 0.1239

200 02652 0.2414  0.2394 0.2421 0.2192 0.2424 0.2414 02375 0.2409 0.0804 0.0804 0.0818 0.0836 0.0811

300 0.1964 0.1827 0.1820 0.1849 0.1703  0.1834  0.1827 0.1807  0.1825 0.0695 0.0695 0.0715 0.0734 0.0707

400 0.1749 0.1661 0.1642 0.1634 0.1561 0.1667 0.1658  0.1653  0.1660 0.0627 0.0627 0.0601 0.0599 0.0604

0.85 30 43190 2.6353 1.6421 2.6307 2.7420 2.7906 29784 1.6094  2.6099 0.5963 0.5893 0.4901 0.4765 0.5102

75 19850 1.2363 09165 13118 1.1477 12948 1.3136 09307 12124 0.2647 0.2605 0.2346 0.2333 0.2393

150 0.5648 0.4712 0.4637 0.4647 0.3935 04768 04705 04519 04677 0.1103 0.1103 0.1096 0.1112 0.1092

200 03413 0.3021 0.2987 0.2987 0.2653 03041 0.3015 0.2957 0.3009 0.0791 0.0791 0.0786 0.0800 0.0782

300 0.2944 0.2703  0.2657 0.2731 0.2433  0.2720 0.2689  0.2687  0.2698  0.0860 0.0860 0.0842 0.0849 0.0841

400 02150 0.2026  0.1985 0.2053 0.1876 0.2034 0.2016  0.2025  0.2024  0.0747 0.0747 0.0710 0.0709 0.0713

090 30 4.4002 25546 15056 2.5816 27104 2.6666 2.8830 1.5700  2.5411 0.5611 0.5520 0.4566 0.4455 0.4797

75 2.0928 13688 1.1164 1.2879 1.0061  1.4075 14229 1.0993 13364 0.2811 0.2803 0.2583 0.2544 0.2619

150 0.8688 0.6515 0.6239 0.6594 0.4819 0.6660 0.6426 0.6118 0.6388 0.1242 0.1242 0.1177 0.1183 0.1178

200 0.6608 0.5415 0.5275 0.5312 04270 0.5467 0.5360 0.5271  0.5362 0.1016 0.1016  0.0949 0.0933 0.0960

300 0.5146  0.4532  0.4284 0.4407 0.3888 0.4569 0.4504 0.4474 04513 0.1094 0.1093 0.0972 0.0946 0.0989

400 03645 0.3285 0.3195 0.3270 0.2896 03298 0.3269 0.3266  0.3277 0.0762 0.0761 0.0712 0.0700 0.0721

095 30 9.5361 4.8702 1.6527 4.6055 5.6494 5.1299 57809 29194 49875 0.9694 0.9194 0.7359 0.7435 0.8057

75 32469 1.8671 12360 1.7471 1.3737 19196 19534 15263 1.8326 0.3331 0.3304 0.2850 0.2702 0.2962

150 1.6243  1.0275 0.9299 1.0421 0.6692 1.0597 1.0198 0.9292 09978 0.1549 0.1546 0.1321 0.1253 0.1363

200 1.7468 1.4190 1.0578 1.3898 1.1260 1.4410 13956 13777 14016 04570 0.4548 0.3794 0.3637 0.3898

300 1.0316 0.8251  0.7501 0.8133  0.6166 0.8347 0.8040 0.8259  0.8160 0.1845 0.1843 0.1620 0.1541 0.1666

400 0.7546 0.6067  0.5865 0.5945 0.4739 0.6146 0.6002 0.5913  0.6007 0.0991 0.0991 0.0842 0.0796 0.0869

099 30 381912 19.9095 1.1040 16.4236 21.5827 21.2035 23.7256 12.0603 20.1210 3.4220 2.9865 2.1619 2.4558 2.3520

75 17.5440 10.0358 1.1270 7.1146 7.6831  10.3084 10.5371 8.4968 10.0732 1.8161 1.7547 1.4401 1.3902 1.5371

150 8.6985 4.6973  1.1318 3.5960 3.1040 4.8252 4.8131 42352 47094 0.7406 0.7302 0.6055 0.5646 0.6353

200 4.7580 2.6511 1.1335 2.1995 1.5442 27045 2.6511 25197 2.6357 04124 04105 0.3444 0.3179 0.3603

300 4.1901 2.4543 12632 2.1289 14840 2.5231 24026 23874 24282 0.4304 0.4290 0.3560 0.3296 0.3716

400 3.2814 19780 1.2306 1.8382 1.2104 2.0353 19129 19397 19447 0.3284 0.3279 0.2648 0.2440 0.2767
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Table 8. Estimated MSE values when p = 6 and ¢ = 1.5.

BMLE BRRE BLE BJSE BLTE BOKE BDKE BMRTE BKLE BJRRE BIJKLE BAUMRTE

g " - k d ¢ kd k.d k. d k.d k k k ki, d ko, dy ks, ds
0.80 30 23450 1.2272 1.2395 1.5200 1.6630 1.2917 1.6502  0.4235 1.2017 03102 0.3195 0.3044 0.3067 0.3058
75 0.7324 0.5077 0.5649 0.5737 0.4939 05165 0.5776 0.2853  0.4909 0.2249 0.2349 0.2001 0.2090 0.1957
150 0.3355 0.2815 0.2946 0.2885 0.2734 0.2854 0.2984  0.2151 0.2795 0.1051 0.1052 0.1008 0.1045 0.1046

200 0.2993 0.2626  0.2724 0.2654 0.2569 0.2651 0.2732 0.2187 0.2616 0.0811 0.0811 0.0768 0.0706 0.0751
300 0.2047 0.1852  0.1910 0.1879 0.1832 0.1864 0.1913  0.1595 0.1848 0.0685 0.0685 0.0649 0.0686 0.0632
400 0.1351 0.1263  0.1283 0.1305 0.1246  0.1268 0.1290 0.1148  0.1261  0.0555 0.0555 0.0594 0.0619 0.0582

0.85 30 3.8135 1.7783 1.6127 23202 2.6853 1.9662 2.5204 0.5119 1.7611  0.3388 0.3374 0.2952 0.2923 0.3013
75 15625 09104 09384 1.0772 09942 09597 1.0701 0.4747 0.8790 0.2355 0.2353 0.2288 0.2305 0.2288

150 0.5621 0.4440 04735 04688 04223 04523 04746 03267 04380 0.1157 0.1157 0.1137 0.1188 0.1113
200 0.2973 0.2521 0.2632 0.2654 0.2445 0.2552 0.2655 0.1987 0.2504 0.0786 0.0786 0.0663 0.0609 0.0642
300 0.2796  0.2492  0.2549 0.2549 0.2414 0.2516  0.2574  0.2151 0.2484  0.0723 0.0723 0.0714 0.0707 0.0719

400 0.1972  0.1813  0.1840 0.1878 0.1780 0.1827 0.1856 0.1633  0.1811  0.0659 0.0659 0.0654 0.0654 0.0655
0.90 30 3.8261 1.9567 14500 23316 2.6978 2.0710 2.5924  0.6519 1.9412  0.4308 0.4264 0.3788 0.3760 0.3937
75 2.0685 1.1309 1.1514 1.3381 1.2645 1.2049 14085 0.4816 1.0839  0.2509 0.2507 0.2488 0.2529 0.2476
150 0.7041 0.4808 0.5317 0.5565 0.4461 0.4922 0.5361  0.2981 0.4628 0.1099 0.1099 0.1006 0.1064 0.1079

200 0.5100 0.3897 0.4164 04201 03710 03974 04215 0.2733 03831 0.0722 0.0721 0.0700 0.0717 0.0713
300 0.4373  0.3586 0.3779 03768 0.3450 0.3644 0.3785 0.2813  0.3552  0.0709 0.0709 0.0696 0.0706 0.0694
400 0.3463 0.2985 0.3096 0.3052 0.2887 0.3014 03119 0.2455 0.2969  0.0533 0.0533 0.0533 0.0544 0.0529
0.95 30 82790 3.7263 1.5840 4.1862 5.5546 4.0239 5.1002 1.4072 39149 0.6908 0.6653 0.5355 0.5395 0.5819
75  3.0689 14222 1.2674 1.7767 1.7304 1.5329 1.8331 0.5503 1.3862  0.2397 0.2387 0.2006 0.1953 0.2056
150 1.4298 0.8196 0.8571 0.9585 0.7318 0.8599 0.9350 0.4601 0.7761  0.1221 0.1220 0.1080 0.1062 0.1094

200 09120 0.5860 0.6377 0.6952 0.5086 0.6025 0.6535 0.3618 0.5600 0.0864 0.0864 0.0855 0.0865 0.0853
300 0.8062 0.5816 0.6154 0.6344 0.5250 0.5943  0.6302 0.4020 0.5651 0.0915 0.0915 0.0824 0.0806 0.0836
400 0.6483 0.4773 05184 0.5130 04397 04872 0.5150 0.3401 0.4659  0.0533 0.0533 0.0481 0.0472 0.0488
0.99 30 35.8401 15.5501 1.3770 16.2436 24.2616 17.3908 23.0194 3.9106 15.9000 2.1494 1.9794 1.3155 1.4759 1.5334
75 16.1869 7.3850 1.1626 6.8037 9.0311  7.9701 9.5649  3.0471 7.4950 1.0361 1.0137 0.7715 0.7367 0.8291
150 8.3322 3.8358 1.2716 3.7389 4.1483 4.1154 4.7473 1.7985 3.8511 0.4929 0.4884 0.3782 0.3514 0.3990
200 4.5578  2.1581 1.2157 2.2927 2.1546 2.2872 2.6087 1.0878  2.1467 0.3135 0.3124 0.2483 0.2296 0.2600
300 3.1966 1.4510 1.0478 1.6457 13335 1.4986 1.7543  0.7661 1.4138 0.1870 0.1866 0.1569 0.1447 0.1642
400 29480 1.4599 1.2207 1.6785 1.3928 1.5426 1.7376  0.7494 1.4259  0.2007 0.2005 0.1562 0.1440 0.1634
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Table 9. Estimated MSE values when p = 9 and ¢ = 0.5.

BMLE BRRE BLE BJSE BLTE BOKE BDKE BMRTE BKLE BJRRE BIJKLE BAUMRTE
rol - k d ¢ kd kd kd kd k k k k,di  knd ks, ds
0.80 30 6.6238 48580 2.4912 3.6714 3.6422 49250 4.7363 4.6370 4.8454 15477 1.5438 0.9785 09592  1.0052

75 20240 16713 13174 12605 09625 1.6786 15202 1.8249 16650 0.6584 0.6582 0.5465 0.5431  0.5490
150 1.0120 09184 0.8077 0.7806 0.6453 0.9203 0.8526 0.9770 09165 0.4469 0.4468 0.4205 0.4222 0.4201
200 0.8332 07892  0.6266 0.7077 0.6369 0.7909 0.7532 0.8168 0.7887 0.4479 04477 04083 04084  0.4091
300 0.4811 0.4638 0.4186 0.4340 04012 04641 0.4497 04750 0.4636 0.3082 0.3082 0.3003 0.3025 0.3014
400 03118 03014 02894 02791 02595 03017 02921 03087 03014 01938 0.1938 0.1791  0.1722  0.1876
0.85 30 9.2185 6.8710 3.0176 49183 47850 6.9619 6.6360 6.7984  6.8647 2.2704 22648 1.4444 14128 1.4815
75 2.5429 2.0614 1.5513 1.5317 1.1486 2.0714 1.8777 2.2464 2.0518 0.7505 0.7501  0.5857 0.5789  0.5907
150 1.0260 0.9261 0.8036 0.7279  0.5935 0.9278 0.8523  0.9905 0.9241 0.3447 0.3447 0.2916  0.2907 0.2924
200 0.6741 0.6258 0.5712 0.5300 0.4543 0.6268 0.5860 0.6585  0.6250 0.2854 0.2853  0.2739 0.2755 0.2732
300 0.5245 04960 04670 04524 03911 04967 04709 05159 04956 02838 02838 02607 0.2634 0.2694
400 0.4219 0.4066 0.3864 0.3759 0.3412 04069 03927 04176 04065 0.2502 0.2502 0.2362 0.2387  0.2351
090 30 10.1124 7.4642 25798 52013 53101 7.5391 7.0623 7.8001  7.4791 2.5477 25351 15904 1.5697  1.6440
75 4.7131 3.6866 2.0644 2.5040 1.8216 3.7050 3.2527 4.1639  3.6746 12349 1.2334 0.8276  0.8066  0.8431
150 17716 1.5514 12263 1.1698 0.8127 15540 13779 1.6965 15450 0.5721 05720 0.4346  0.4269  0.4390
200 0.9631 0.8681 0.7673 0.7023  0.5623  0.8694 0.7926  0.9327 0.8663  0.3827 0.3827 0.3425 0.3418 0.3430
300 0.9274 0.8563 0.7128 0.7323  0.6131 0.8576  0.7955 0.9057 0.8549 0.4400 0.4399 0.3864 0.3844 0.3879
400 0.5993 0.5597 0.5160 0.4974 0.4253 0.5605 0.5266  0.5857 0.5591 0.2903 0.2903  0.2873  0.2890  0.2866
095 30 17.4071 123405 2.5557 7.6540 7.9465 124777 11.7150 12.8132 12.3655 3.6306 3.6078  2.0901 2.0599  2.1787
75 10.6396  8.1689 22085 5.0289 42766 8.1963 7.1534 9.4596  8.1784 28729 2.8595 1.8154 17848  1.8817
150 3.2837 2.6344  1.7328 1.7843  1.0357 2.6436  2.2404 3.0300 2.6189 0.8686 0.8683  0.6067 0.5917 0.6154
200 22699  1.8463 13589 13060 0.7378 1.8542 15542 2.1224 1.8360 0.6011 0.6009 04347 04263 0.4395
300 1.4676 1.2841 1.0447 09800 0.6952 1.2862 1.1348 1.4108 1.2791  0.5197 05196 04211  0.4157 0.4241
400 13093 11712 09560 09425 0.6975 1.1736 1.0518 12685 1.1677 0.5072 05072 04152 04102 0.4181
099 30 113.6662 769805 1.7681 48.4301 57.2785 77.8915 76.9529 723421 77.4805 21.8890 21.0987 10.2108 11.9418 11.7974
75  48.5493  36.3516 1.6967 19.4982 17.7876 36.5367 32.4142 41.1616 36.3615 10.6700 10.4963 5.6897 5.7901  6.0230
150 16.4735 123199 2.0607 6.0582 4.0359 12.3730 10.3378 14.6946 123302 3.4201 3.4109 19444 1.8729 2.0003
200 12.6094  10.0699 2.2765 6.1722 4.4170 10.0955 8.6965 11.6645 10.0713 3.8412  3.8281 2.4902 24388 2.5594
300 92413 74179 22461 4.6712 3.0516 74383 63244 8.6228 74060 3.0576 3.0509 2.1755 2.1289 22149
400 7.0114 5.6136 21055 3.5682 22961 5.6340 4.7660  6.5101 5.5976 19838 19811 1.2432 1.2068 1.2745
AIMS Mathematics Volume 11, Issue 1, 85-126.



114

Table 10. Estimated MSE values whenp =9 and ¢ = 1.

BMLE BRRE BLE BISE BLTE BOKE BDKE BMRTE BKLE BJRRE BJKLE BAUMRTE
n
g - k d e k. d k. d k,d k,d k k k ki, di ks, dy ks, ds
0.80 30 5.5125 3.2282 24053 3.1323 3.7941 33603 39359 1.6454 3.2366 0.8635 0.8626 0.6370 0.6328 0.6454
75 1.6401 1.1809  1.1435 1.0506 0.9892 1.1942 1.2467 0.9619 1.1658 0.4576 04576  0.4269 0.4329 0.4139
150 0.7877 0.6565  0.6552 0.6061 0.5619 0.6616 0.6607 0.6250 0.6519 0.3261 0.3261  0.3052 0.3042 0.3107
200 0.4764 0.4220 0.4239 0.4025 0.3796 0.4241 04216 04136 04204 0.2378 0.2378 0.2307 0.2315 0.2302
300 0.3439 0.3205 03202 0.3086 0.3009 0.3215 0.3204 0.3175 0.3201 0.2335 0.2335 0.2207 0.2276 0.2273
400 0.2736 0.2570  0.2561 0.2449 0.2422  0.2577 0.2570 0.2549  0.2568 0.1773  0.1773  0.1694 0.1659 0.1663
0.85 30 7.3404 4.4194  2.7573 3.8961 47699 45640 5.1949 2.6192 44264 1.2238 1.2226 0.8596 0.8475 0.8733
75 2.2020 1.5254 14223 1.3438 1.2814 1.5482 1.6197 1.2166 1.5064  0.5402 0.5401 0.5122 0.5150 0.5112
150 0.8607 0.7170  0.6939 0.6357 0.5939 0.7209 0.7255 0.6734  0.7119 0.2616 0.2616  0.2598 0.2556 0.2570
200 0.6043 0.5299  0.5239 0.4898 0.4669 0.5329 0.5312 05141 0.5275 0.2572  0.2572  0.2479 0.2504 0.2549
300 0.4217 0.3810  0.3788 0.3686 0.3455 0.3824 03799 0.3775 03800 0.2499  0.2499  0.2305 0.2311 0.2301
400 0.3314 0.3086  0.3059 0.2915 0.2863 0.3093 0.3083 0.3064 0.3082 0.1988 0.1988 0.1807 0.1842 0.1850
090 30 8.9253 5.2196 27308 4.5318 5.9565 53999 6.2588 3.0732  5.3293  1.4493 1.4460 0.9354 0.9236 0.9620
75 4.0449 2.6352 1.9801 22199 2.2374 2.6885 2.8420 2.0190 2.6163 0.7237 0.7233  0.5502 0.5451 0.5546
150 1.5068 1.1775 1.0898 1.0161 0.9034 1.1869 1.1887  1.0925 1.1616  0.3687 0.3687 0.3328 0.3334 0.3328
200 0.8356 0.6962  0.6860 0.6357 0.5797 0.6999 0.6951 0.6786  0.6911 0.3352 0.3352 0.3278 0.3222 0.3257
300 0.6468 0.5516  0.5461 0.5080 0.4712 0.5547 0.5500 0.5411 0.5483  0.2853 0.2853  0.2699 0.2647 0.2675
400 0.5707 0.5035 0.4949 0.4705 0.4484 0.5061 0.5026 0.4954 0.5016 0.2685 0.2685 0.2440 0.2481 0.2420
095 30 17.1095 9.8603 2.7524 8.2089 10.9831 10.1339 11.9021 5.4907 10.0002 22576 22496  1.2923 1.3006 1.3493
75  10.6635 69302 24024 52919 6.1695 7.0294 7.3138 5.8350 6.9880 2.0748 2.0557 1.2648 1.2523 1.3274
150 2.6314 1.7564  1.5337 1.4972 1.2208 1.7760 1.7866  1.5814 1.7239  0.5208 0.5208  0.4333 0.4302 0.4353
200 1.8202 1.2812  1.1899 1.1193 0.8793  1.2921 1.2783  1.2206 1.2611 04171 04171 03709 0.3702 0.3715
300 1.2897 1.0134 09742 0.8932  0.7751 1.0191 1.0082  0.9840 1.0009 0.3875 0.3875 0.3620 0.3622 0.3621
400 1.0553 0.8370  0.8271 0.7439 0.6526 0.8414 0.8299 0.8206  0.8274 0.3101 0.3101  0.3022 0.3034 0.3017
0.99 30 105.3956 57.5323 1.8903 47.9468 70.0062 59.7886 73.4346 27.4129 59.0222 12.4044 12.1492 5.2065 6.1984 6.3389
75 39.1924 233492 1.8098 15.2414 19.9328 23.7928 25.8277 17.4031 23.5598 5.0983 5.0609 2.6181 2.6264 2.7884
150 14.4624 8.9305 2.1867 5.5013 57434 9.0402 9.2077 8.1210 89547 19136 19110 1.0896 1.0516 1.1193
200 9.1147 5.5530 2.1759 3.6316 3.3698 5.6255 5.6486 52216 55625 1.1788 1.1783  0.7293 0.7058 0.7437
300 8.2397 5.6807 2.2553 4.3130 3.9355 57185 57259 54714 5.6729 2.1071  2.1033 1.5098 1.4870 1.5436
400 5.5460 3.6353 2.0652 2.5667 2.1292 3.6774 3.6326 35156 3.6151 0.8877 0.8876 0.5845 0.5683 0.5938
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Table 11. Estimated MSE values when p =9 and ¢ = 1.5.

BMLE BRRE BLE BJSE BLTE BOKE BDKE BMRTE BKLE BJRRE BIJKLE BAUMRTE

g " - k d ¢ kd k.d k. d k.d k k k ki, d ko, dy ks, ds
0.80 30 4.7003 22477 22401 2.7079 3.4892 24578 3.3329 0.8047 2.2947 0.5982 0.5980 0.5335 0.5362 0.5333
75 1.5385 09804 1.1045 1.0128 1.0754 1.0074 1.1790 0.5373  0.9558 0.4622 0.4622 0.5540 0.5647 0.5483
150 0.7462 0.5872 0.6289 0.5852 0.5773 0.5975 0.6352  0.4265 0.5796  0.3391 0.3391 0.4421 0.4535 0.4364
200 0.4390 03730 0.3936 0.3667 0.3678 03768 03926 03012 03707 0.2384 0.2384 0.3368 0.3473 0.3315
300 0.3087 0.2791 0.2891 0.2786 0.2774 0.2806 0.2881  0.2459  0.2784 0.2411 0.2411 0.3274 0.3366 0.3228
400 0.2413 0.2230 0.2283 0.2205 0.2209 0.2240 0.2285 0.2020 0.2227 0.1916 0.1916 0.2672 0.2755 0.2631
0.85 30 6.2976  3.2725 25593 3.4880 4.6073 3.4587 4.5306 1.1506  3.3138 0.9034 0.9030 0.7226 0.7196 0.7285
75 1.8156  1.1327 1.2500 1.1756 12273 1.1595 1.3615 0.6517 1.1090  0.5336 0.5336 0.5100 0.5079 0.5059
150 0.8598 0.6711 0.7062 0.6395 0.6416 0.6787 0.7305 0.4672 0.6619 0.2673 0.2673 0.2339 0.2427 0.2329
200 0.5792 0.4827 0.5051 04668 04686 04861 0.5127 03774 04790 0.2538 0.2538 0.3194 0.3275 0.3154
300 0.4068 0.3531 03700 0.3521  0.3477 0.3559 0.3683  0.2978 0.3514  0.2500 0.2500 0.3284 0.3368 0.3242
400 03157 0.2857 0.2931 0.2786 0.2809 0.2874 0.2946  0.2503  0.2850  0.2052 0.2052 0.2772 0.2851 0.2732
090 30 6.5951 4.6222 42157 4.8315 52147 4.6857 55147 25784  4.2547 1.1457 1.2457 0.9875 0.8547 0.8350
75 3.4552  1.8943 1.8085 1.9105 22114 19682 24064 0.8216 1.8663  0.5338 0.5337 0.4901 0.4925 0.4894
150 1.2718 0.8856 0.9534 0.8656 0.8292 0.9006 0.9943 0.5544  0.8597 0.3901 0.3901 0.3193 0.3248 0.3166
200 0.7981 0.6275 0.6655 0.6057 0.6003 0.6352 0.6736 0.4789 0.6199 03892 0.3892 0.3781 0.3844 0.3749
300 0.6324 0.5104 0.5399 0.5007 0.4915 0.5159 0.5446 0.3950 0.5048 0.3689 0.3686 0.3438 0.3502 0.3405
400 0.4656 03903 04147 03901 03836 03935 04115 0.3169 0.3873  0.2533 0.2533 0.2145 0.2212 0.2112
0.95 30 15.3716 7.1506 29260 7.7953 11.3986 7.6376 10.7395 1.4492  7.4229 14233 1.4207 0.8169 0.8108 0.8499
75 7.8699 39559 2.2923 3.5410 4.8685 4.0776 5.1038 19225 4.1114 1.0315 1.0307 0.7435 0.7325 0.7547
150 2.4303 1.4224 14583 1.4032 1.3383 14491 1.6661 0.8314 1.3856  0.4391 0.4391 0.4055 0.4059 0.4055
200 1.8223  1.1175 1.2344 1.1222  1.0524 1.1389  1.2959 0.6648 1.0910 0.3680 0.3680 0.3605 0.3623 0.3598
300 1.1736  0.8278  0.8889 0.8109 0.7655 0.8398 0.9123  0.5746  0.8093  0.3255 0.3255 0.3159 0.3187 0.3135
400 0.9528 0.7050 0.7646 0.6968 0.6625 0.7143 0.7682 0.5067  0.6915 0.3035 0.3035 0.2923 0.2955 0.2907
0.99 30 89.0642 41.2734 2.1422 38.9094 62.9950 44.4374 61.1816 10.7459 43.0926 7.1514 7.0387 2.8948 3.3283 3.4721
75 36.1971 17.7977 19807 14.0208 21.6102 18.4760 23.4643 7.1655 18.2070 3.2455 3.2319 1.6581 1.6436 1.7534
150 13.2611 6.6965 2.2358 5.2543 69363 6.8810 8.3759 3.2490 6.7594 1.2378 1.2368 0.7540 0.7331 0.7709
200 8.5521 4.5055 2.2344 35782 4.1863 4.6173 54290 25045 45163 0.8693 0.8690 0.5727 0.5585 0.5816
300 6.4692 3.5318 2.1398 2.8727 3.1459 3.6210 4.1728  2.0863 3.5356  0.7587 0.7586 0.5195 0.5081 0.5263
400 5.0095 2.7926 19486 24160 24613 2.8571 3.2582 1.7119 27758 0.7003 0.7001 0.4876 0.4785 0.4934
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5. Application to real-life data

In this section, we assess the performance of the proposed estimator using two real-world datasets.
The MSE serves as the primary metric, allowing for a direct comparison with existing methods and a
practical assessment of the proposed estimator’s accuracy under realistic conditions.

5.1. Boston housing data

To further examine the practicality of our new proposed estimator, we apply the proposed estimator
to the Boston housing data, which contains information on median housing values from 506 census
tracts in the Boston suburbs during the 1970 census. This data was originally compiled by Sosa [40]
and includes 506 observations across 12 variables, whose summary statistics are described in Table 12.

Table 12. Summary statistics for variables in Boston housing data.

Variable Mean Median SD Variance Min Max Range Ql.25% Q3.75%  Skewness Kurtosis
y 0.1265 0.1136 0.0714 0.0051 0.0173 0.3797 0.3624 0.0695 0.1696 0.9038 3.4765
X 3.6135 0.2565 8.6015 73.9866 0.0063 88.9762  88.9699  0.0820 3.6771 5.2077 39.7528
X2 11.3636  0.0000 23.3225  543.9368 0.0000 100.0000 100.0000 0.0000 12.5000  2.2191 6.9799
X3 11.1368  9.6900 6.8604 47.0644 0.4600 27.7400  27.2800  5.1900 18.1000  0.2941 1.7668
X4 0.5547 0.5380 0.1159 0.0134 0.3850 0.8710 0.4860 0.4490 0.6240 0.7271 2.9241
Xs 6.2846 6.2085 0.7026 0.4937 3.5610 8.7800 5.2190 5.8855 6.6235 0.4024 4.8610
X6 68.5749  77.5000  28.1489  792.3584 2.9000 100.0000 97.1000  45.0250  94.0750  -0.5972 2.0300
X7 3.7950 3.2074 2.1057 4.4340 1.1296 12.1265 10.9969  2.1002 5.1884 1.0088 3.4713
X3 408.2372  330.0000 168.5371 28404.7595 187.0000 711.0000 524.0000 279.0000 666.0000 0.6680 1.8570
X9 18.4555  19.0500  2.1649 4.6870 12.6000  22.0000  9.4000 17.4000  20.2000  -0.7999 2.7059
X10 356.6740 391.4400 91.2949  8334.7523  0.3200 396.9000 396.5800 375.3775 396.2250 -2.8818 10.1438
X11 22.5289  21.2000  9.1822 84.3124 5.0000 50.0000  45.0000 17.0250  25.0000 1.1076 4.4900

The response variable is the percentage of the population with lower socioeconomic status (y).
The explanatory variables include: per capita crime rate by town (x;), the proportion of residential
land zoned for lots over 25,000 square feet (x;), the proportion of non-retail business acres per town
(x3), nitric oxide concentration (parts per 10 million) (x4), average number of rooms per dwelling
(xs5), proportion of owner-occupied units built before 1940 (x¢), weighted distances to five Boston
employment centers (x7), full-value property-tax rate per USD 10,000 (xg), pupil-teacher ratio by town
(x9), 1000(B — 0.63)?, where B is the proportion of Black residents by town (x)¢), corrected median
value of owner-occupied homes in USD 1000’s (x;).

This data provides a comprehensive set of variables to evaluate the performance of the proposed
estimator in a real-world context.

The response variable in this data represents a proportion ranging between 0 and 1 as presented in
Figure 1, making it suitable for BRM. Additionally, when fitting this data for different unit regression
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models, the BRM achieves the best performance by achieving the highest log-likelihood (LL) and the
lowest Akaike information criterion (AIC), corrected AIC (AICc), and Bayesian information criterion
(BIC), which makes it the best model for fitting this data as detailed in Table 13.

0.0 0.1 0.2 0.3 0.4

Figure 1. Histogram of response variable y in Boston housing data.
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Table 13. LL, AIC, AICc, and BIC values for the fitted models in Boston housing data.

Criterion BRM UKRM UWRM ULRM
LL 1073.615 1031.931 1070.303 369.6943
AIC -2121.230 -2037.862 -2114.607 -709.3886
AlCc -2120.490 -2035.571 -2112.316 -709.3886
BIC -2066.285 -1982.917 -2059.662 -656.4472

*Note: UKRM = Unit Kumaraswamy regression model, UWRM = Unit Weibull regression model, ULRM = Unit Logistic regression

model.

Additionally, to check multicollinearity in the Boston housing data, we use the condition number,
which is calculated as \/max(/l )/ min(4;) equal to 15215.05. This indicates the presence of severe
multicollinearity among the covariates. This issue is further supported by the correlation matrix
presented in Figure 2, which highlights strong correlation between the covariates. These findings
underscore the importance of addressing multicollinearity when applying the BRM to this data.

The response variable (y;) was modeled using a beta regression as follows:

yi ~ Beta(u;, ¢),
where the mean y; € (0, 1) is linked to the linear predictor via a logistic link function:
logit(u;) = Bo + Bix1i + Boxai + -+ - + BriXi
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Figure 2. Correlation matrix between explanatory variables in Boston housing data.

Table 14 presents the estimates and MSEs for BMLE along with biased estimators, including BRRE,
BLE, BJSE, BLTE, BOKE, BMRTE, BKLE, BJRRE, BJKLE, and BAUMRTE, which are fitted to the
Boston housing data via the BRM. Coeflicients were obtained by evaluating the estimating Eqs (2.6),
(2.10)—(2.17), and (3.1), and the corresponding MSEs were computed with the closed-form expressions
provided in Egs (2.9), (2.21), (2.23), (2.25), (2.27), (2.29), (2.31), (2.33), (2.35), and (3.5).

Table 14. Estimated coefficients and MSEs of the different estimators for the Boston housing

data.

Coeflicient

BMLE

BRRE

BLE

BISE

BLTE

BOKE

BDKE

BMRTE

BKLE

BIJRRE

BIJKLE

BAUMRTE

k

d

¢

kd

kd

kd

k.d

k

k

k

bodi kd ks ds

Intercept  0.243391

X1

X2

X3

Xg

X5

X6

X7

X8

Xog

X10

X11

-0.001019

0.000111

0.003130

-0.331875

-0.199082

0.006953

-0.025262

0.000144

-0.015977

-0.000157

-0.044085

MSE 14.642443

-0.000013

0.000116

-0.000476

0.000030

-0.000004

-0.000100

-0.000191

-0.000094

-0.000977

-0.000208

-0.003491

-0.000532

0.211831

0.212730

-0.000999

0.000113

0.003101

-0.308984

-0.198365

0.006948

-0.024554

0.000139

-0.015409

-0.000155

-0.044002

12.275684

0.121730

-0.000509

0.000056

0.001565

-0.165984

-0.099569

0.003477

-0.012634

0.000072

-0.007991

-0.000078

-0.022049

4.655137

-0.000065

0.000667

-0.002739

0.000429

-0.000018

-0.000552

0.000537

-0.000522

-0.000643

-0.000963

-0.004078

-0.003228

0.211403

0.001006

0.002951

-0.007625

0.002234

-0.002176

-0.005350

0.001211

-0.003470

-0.000625

-0.007501

-0.002784

-0.022571

0.206828

0.125747

-0.000944

0.000120

0.003010

-0.242825

-0.196352

0.006931

-0.022546

0.000127

-0.013803

-0.000148

-0.043767

6.803567

-0.009859

-0.000978

-0.000160

0.001845

-0.016542

-0.153000

0.006152

-0.024499

0.000064

-0.018286

-0.000143

-0.047141

0.222002

-0.056273

-0.000831

0.000130

0.002707

-0.088867

-0.192336

0.006862

-0.018358

0.000098

-0.010513

-0.000136

-0.043310

1.324709

0.000769

-0.000992

0.000174

0.002980

-0.000754

-0.031729

0.006992

-0.008251

0.000144

-0.010367

-0.000156

-0.042181

0.202321

0.246595

-0.001207

0.000093

0.003555

-0.467452

-0.206287

0.007043

-0.032294

0.000190

-0.021542

-0.000178

-0.044861

1.095835

0.001746  0.000405 0.001572

-0.001013 -0.000916 -0.001012

0.000138 0.000232 0.000141

0.003161 0.002416 0.003156

-0.002481 -0.000299 -0.002146

-0.071997 -0.016340 -0.065484

0.006975 0.007007 0.006977

-0.015586 -0.004342 -0.014634

0.000144 0.000145 0.000144

-0.012403 -0.007757 -0.012155

-0.000157 -0.000151 -0.000157

-0.043070 -0.039934 -0.042995

0.200294 0.204668 0.200104

The estimated coeflicients reveal critical insights into the behavior of the estimators: A clear
pattern of coefficient shrinkage is evident. The BMLE produces coefficient estimates with the largest
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magnitudes (e.g., -0.332 for x4, -0.199 for xs). In contrast, the best-performing estimators (e.g.,
BRRE, BAUMRTE) shrink these values dramatically towards zero. For example, the coefficient for x,
is shrunk from -0.332 (BMLE) to approximately -0.002 by the top performers. This is the hallmark of
L,-type regularization, which mitigates the inflationary effect of multicollinearity on coefficient
variance. The top-performing estimators (BRRE, BOKE, BAUMRTE, etc.) show remarkable
consistency in their coefficient estimates. For many predictors (e.g., xi, Xg, X3, X10), the estimates are
nearly identical across these methods. This convergence suggests a stable region in the parameter
space that is optimal for prediction under multicollinearity, and these estimators are successfully
locating it.

The application results demonstrate a pronounced superiority of shrinkage estimators over the
baseline BMLE, which yielded an MSE of 14.642. This substantial error strongly suggests the
presence of multicollinearity, a condition that inflates the variance of the BMLE and compromises its
predictive accuracy. In contrast, all biased estimators achieved a drastic reduction in MSE, validating
their core function of introducing controlled bias to secure a greater reduction in variance, thereby
optimizing the bias-variance trade-off. Performance can be divided into groups based on the size of
the MSE. The top group includes ridge-type, Liu-type, and hybrid estimators, such as the BRRE,
BLE, BOKE, and BJIRRE, which have moderate MSE values.

Among all methods, the BAUMRTE ensemble achieved the lowest recorded MSEs, ranging
from 0.2001 to 0.2047, establishing it as the preeminent estimator in this analysis. The minimal
performance variation across its three parameter configurations further indicates a desirable
robustness to specific tuning parameter selections. This superior performance is likely attributable to
its adaptive or ensemble structure, which affords a more flexible navigation of the bias-variance
trade-off than its constituent estimators. These findings underscore the critical importance of
estimator selection in the presence of multicollinearity, with the BAUMRTE showing significant
potential for applications in BRM.

5.2. Body fat data

To emphasize the practical benefit and flexibility of the proposed estimator, we use other data for
the body fat data, which was originally introduced by Penrose et al. [41] and later utilized by Hammad
et al. [8]. This dataset consists of n = 252 observations, with one response and 13 covariates, whose
summary statistics are described in Table 15.

The response variable y is the body-fat percentage determined by underwater weighing; the thirteen
predictors are age in years (x;), weight in pounds (x;), height in inches (x3), neck circumference in cm
(x4), chest circumference in cm (xs), abdomen circumference in cm (xg), hip circumference in cm (x7),
thigh circumference in cm (xg), knee circumference in cm (x9), ankle circumference in cm (x;¢), biceps
(extended) circumference in cm (x;;), forearm circumference in cm (x,), and wrist circumference
in cm (x13). This suite of anthropometric measurements yields a rich multivariate profile of body
morphology, permitting regression analyses that relate body composition to easily obtained covariates;
all variables have been scaled to comparable units so that coefficient estimates remain interpretable and
numerical stability is preserved during model fitting.

AIMS Mathematics Volume 11, Issue 1, 85-126.



120

Table 15. Summary statistics for variables in body fat data.

Variable Mean Median SD Variance Min  Max Range Q1.25% Q3.75% Skewness Kurtosis
y 0.1915 0.1920 0.0837 0.0070  0.000 0.4750 0.4750 0.1248  0.2530  0.1455 2.6490
X 0.4488 0.4300 0.1260 0.0159  0.220 0.8100 0.5900 0.3575 0.5400 0.2818 2.5681
X2 1.7892 1.7650 0.2939 0.0864  1.185 3.6315 2.4465 1.5900 1.9700 1.1981 8.1418
X3 0.7015 0.7000 0.0366 0.0013  0.295 0.7775 0.4825 0.6825 0.7225 -5.3529  61.3457
X4 0.3799 0.3800 0.0243 0.0006  0.311 0.5120 0.2010 0.3640  0.3942  0.5493 5.6422
Xs 1.0082 0.9965 0.0843 0.0071  0.793 1.3620 0.5690 0.9435 1.0537 0.6775 3.9441
X6 0.9256 0.9095 0.1078 0.0116  0.694 1.4810 0.7870 0.8458 0.9932  0.8334 5.1807
X7 0.9990 0.9930 0.0716 0.0051  0.850 1.4770 0.6270 0.9550 1.0352  1.4882 10.3002
X3 0.5941 0.5900 0.0525 0.0028 0.472 0.8730 0.4010 0.5600 0.6235 0.8163 5.5894
X9 0.3859 0.3850 0.0241 0.0006  0.330 0.4910 0.1610 0.3697  0.3992  0.5137 4.0169
X10 0.2310 0.2280 0.0169 0.0003  0.191 0.3390 0.1480 0.2200 0.2400 2.2417 14.6858
X11 0.3227 03205 0.0302 0.0009 0.248 0.4500 0.2020 0.3020 0.3432  0.2838 3.4649
X12 0.2866 0.2870 0.0202 0.0004  0.210 0.3490 0.1390 0.2730 0.3000 -0.2180  3.8255
X13 0.1823 0.1830 0.0093 0.0001  0.158 0.2140 0.0560 0.1760 0.1880  0.2799 3.3642

The response variable is a proportion confined to the open unit interval (0, 1), as displayed in
Figure 3, which thus satisfies the distributional requirements of the BRM. The BRM yields the largest
LL and simultaneously attains the smallest AIC, AICc, and BIC, thereby providing the best-supported
model for these data as detailed in Table 16.
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Figure 3. Histogram of response variable y in body fat data.
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Table 16. LL, AIC, AICc, and BIC values for the fitted models in body fat data.

Criterion BRM UKRM UWRM ULRM

LL 395.7120 -761.4240 -759.3901 -708.4826
AIC 380.6258 -731.2517 -726.4096 -678.3102
AlCc 277.3610 -524.7219 -519.8798 -471.7805
BIC 369.6943 -709.3886 -709.3886 -656.4472

The condition number is 582.99, signaling severe multicollinearity among the covariates; this
conclusion is corroborated by the correlation matrix displayed in Figure 4, where numerous pairwise
correlations exceed 0.80. Taken together, these diagnostics underscore the necessity of remedial
action against collinearity before any regression technique is applied to this data set.
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0.85 0.67 0.72] 0.74 0.82 0.80 x9 . . ‘ ‘
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0.73 0.74| 0.66 0.62| 0.63| 0.56| 0.66 0.57| 0.63| 0.59| x13

Figure 4. Correlation matrix between explanatory variables in the body fat data.

The response variable (y;) was modeled using a beta regression as follows:

yi ~ Beta(u;, ¢),

where the mean y; € (0, 1) is linked to the linear predictor via a logistic link function:

logit(u;) = Bo + Bix1i + BoXoi + -+ + B13X13,.

Analysis of the body fat data in Table 17 starkly illustrates how the choice of the estimator affects
the model when covariates are multicollinear.

The baseline BMLE returns an MSE of 2056.14, indicating severe instability driven by inflated
coeflicient variance resulting from the consequences of multicollinearity. Introducing a controlled
amount of bias emerges as an effective remedy: Every regularized alternative slashes the MSE,
quantitatively confirming that bias-variance rebalancing is indispensable in this setting.
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Table 17. Estimated coefficients and MSEs of the different estimators for the body fat data.

MLE BRRE BLE BJSE BLTE BOKE BDKE BMRTE BKLE BJRRE  BJKLE BAUMRTE

k d ¢ kd k.d k.d k.d k k k ki, dy ko, d> ks, ds

. B
Coefficient

Intercept  -6.04713  -5.86905  -3.59520 -1.94853  -3.49298 -5.68821 -1.13565  -3.84281 -5.69887 -4.14063 -6.18608 -3.87337 -3.96054 -4.48669

X 0.59196 0.49288 0.38519  0.19074 0.39050  0.47238  0.17877 037621  0.39578  0.52247  0.79357  0.49300 0.50233  0.55620
X -1.01820  -0.95353  -0.09924 -0.32809  -0.05072 -0.89495 0.82329 -0.21128  -0.89149 -1.00052 -1.13032 -1.06455 -1.04326 -0.95275
X3 0.41960 0.16398 -1.31217  0.13521 -1.37112 0.04308  -3.04839  -1.16384 -0.08452 0.61236  0.94031  0.57340  0.59086  0.60347
X4 -3.61075  -3.66336  -1.60011 -1.16347  -1.51966 -3.48481 0.41659 -1.80205 -3.72077 -0.56625 -3.06125 -0.36874 -0.42002 -0.99225
X5 0.49157 0.45852 0.27368  0.15840 0.27193 043152 0.05566 0.27813  0.42678 0.28793  0.55724  0.25703  0.26523  0.35155
X6 6.32854 6.26187 4.52648  2.03920 439497  6.17725  2.71485 4.81824  6.19854 422414 6.45204 3.36664 3.63131 5.21148
X7 -2.21088  -2.22225  -1.52966 -0.71240  -1.47648 -2.20214 -0.84452  -1.65262 -2.23395 -1.02959 -2.13386 -0.81357 -0.87507 -1.35889
X3 3.57569 3.38767 1.31407  1.15217 1.21021  3.24382  -0.95529  1.56409 3.20647 1.51818 3.89324  1.11193  1.22824  2.14527
X9 1.71547 1.41875 -0.06435  0.55276 -0.10976  1.27899  -1.84764  0.05445 1.13032  0.35537  2.13603  0.25700  0.28382  0.54885
X190 1.39685 0.72461 -0.48343  0.45010 -0.49682  0.56644  -2.36480  -0.44090 0.06647 0.23845  2.67205 0.15388 0.17633  0.41531
X 0.94867 0.90375 0.22955  0.30568 0.19109  0.86969  -0.49245 032248  0.86037  0.22601  0.98140  0.15068  0.17130  0.36389
X12 4.14463 3.35558 0.54565  1.33550 0.46436  3.06305 -3.05949  0.75473  2.58635 0.85056 5.48706  0.55225 0.63202  1.44296
X13 -8.70369  -4.96782  -0.98425 -2.80453  -0.93371 -4.42969 6.73904 -1.11736  -1.29938 -0.36452 -3.00184 -0.24480 -0.27570 -0.64430
MSE 2056.13905 1111.12601 205.37265 1007.25748 197.42971 941.35703 1502.10499 229.31655 678.97995 170.88255 611.04257 168.19936 167.47079 213.05168

The performance of the estimators can be stratified into distinct tiers. The best-performing group,
which includes the BLE, BLTE, BJRRE, and the BAUMRTE ensemble, achieves MSEs below 230.
Notably, the BLE and BLTE (MSEs 205 and 197, respectively) establish a strong foundational
performance, while the more sophisticated BJRRE and BAUMRTE variants push the performance
boundary even further, with BAUMRTE (k», d,) attaining the lowest MSE of 167.47. This positions
BAUMRTE as the most effective estimator for this dataset, with its ensemble nature likely providing a
more robust optimization of the bias-variance trade-off. A second tier of estimators, including the
BRRE, BOKE, and BKLE, delivers significant improvements over the BMLE (MSEs ranging
from 679 to 1111) but is substantially outperformed by the top tier. The BJSE and BDKE form a
middle group, reducing the BMLE’s MSE by over half but failing to match the efficiency of the
BAUMRTE.

An examination of the coeflicient estimates reveals the mechanism behind this performance
disparity. The BMLE coeflicients exhibit large magnitudes and high variability (e.g., x;3: -8.70,
Xe: 6.33), which are hallmarks of an overfit model. In contrast, the top-performing estimators
consistently apply a strong shrinkage effect, pulling these extreme coefficients towards zero and, in
some cases, even reversing their signs to more plausible values (e.g., xj3 is shrunk to
approximately -0.27 by the best BAUMRTE). The resulting vectors are both more stable and more
parsimonious. Consistency of sign and relative magnitude within the leading group corroborates the
existence of a well-defined, low-variance region in the parameter space that is conducive to
prediction. These findings highlight the effectiveness of the BAUMRTE in reducing MSE, making it a
suitable choice for regression analysis in the BRM under multicollinearity.

6. Conclusions
The BRM is an appropriate model to use for predicting the response variable when it is in the form
of ratios or proportions and follows the beta distribution. Sometimes, the covariates of the model are

highly correlated, and this is known as multicollinearity. The MLE estimating model parameters
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become unreliable under multicollinearity. To address this, alternative methods, such as BRRE, BLE,
and other estimation methods, have been considered. This study addressed the issue of
multicollinearity by proposing the use of the BAUMRTE for the BRM. Furthermore, we derived its
mathematical properties and compared its performance theoretically with the available methods
(MLE, BRRE, BLE, and others) in terms of MSE. A simulation experiment was conducted by varying
different factors to evaluate the efficiency of the proposed estimator over other estimators. Two
real-life applications were also analyzed to illustrate the findings of the simulation experiment. From
the results of the simulation, it was observed that for all the scenarios, the suggested estimator
outperformed its competitive estimators in terms of smaller MSE. Moreover, the findings of both
applications revealed the efficiency of the proposed estimator over the other considered estimators.
This whole study presented evidence that, in the case of severe multicollinearity, almost unbiased
estimation methods performed better than biased estimators in the balance between bias and variance,
resulting in reduced MSE. Results of both the simulation study and empirical applications provide
evidence that the BAUMRTE is superior to other estimators due to its smaller MSE as compared to
other considered estimators. Hence, based on the findings of the simulation experiment and real-life
applications, we recommend practitioners utilize the BAUMRTE(k,, d,) for estimating BRM
parameters due to its better results in the presence of multicollinearity. Despite its superior
performance, the proposed BAUMRTE estimator has certain limitations. Its reliance on a shrinkage
parameter introduces sensitivity to the calibration of this factor. Furthermore, this study is limited to
specific models and conditions, leaving its efficacy in other complex scenarios, such as
high-dimensional data and other models, in need. Future work could explore the applicability of this
estimator to high-dimensional data exhibiting multicollinearity or investigate its performance in other
regression models, such as the Poisson regression model, negative binomial regression model, and
gamma regression model [42,43]. A robust version of this estimator could also be developed to
handle multicollinearity and outliers [44].
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