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Abstract: The beta regression model (BRM) is designed to model continuous response variables
constrained to the open interval (0, 1). It is particularly suitable for analyzing proportions, rates,
and other fractional data. Maximum likelihood estimation (MLE) is the most common way to
estimate parameters in the BRM. However, when multicollinearity is present, i.e., when explanatory
variables exhibit high intercorrelation, the MLE may produce unstable and biased parameter estimates,
inflated variance, and increased scalar mean squared error (MSE), ultimately undermining the model’s
statistical reliability. To address the effects of multicollinearity, some biased estimators have been
proposed for the BRM. In this study, we introduce a new almost unbiased estimator for the BRM. A
theoretical comparison of the proposed estimator with existing estimators is derived using the matrix
mean squared error (MMSE) and MSE. The performance of the proposed estimator is subsequently
assessed and contrasted with existing estimators via a comprehensive Monte Carlo simulation study
and applied to two real-world datasets. The simulation and applications consistently show that
the proposed estimator is better than other existing estimators, providing more accurate and stable
parameter estimates for the BRM under multicollinearity.
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1. Introduction

The beta regression model (BRM) constitutes a specialized subclass of generalized linear models
explicitly to model a continuous response variable within the open unit interval (0, 1) with one or
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more explanatory covariates. The BRM is widely used for model proportions, rates, and percentages.
The BRM has been widely utilized across multiple disciplines, including economics, medicine,
environmental studies, and the social sciences. Traditional modeling strategies, such as Gaussian
linear regression, binary logistic regression, and Poisson or negative-binomial count regression,
exhibit limitations when applied to bounded data within the interval (0, 1). To handle these
methodological issues, Ferrari and Cribari-Neto [1] formulated the BRM as a specialized model for
continuously distributed outcomes constrained to the unit interval. By assuming the response follows
a beta distribution, the BRM makes the regression coefficients straightforward to interpret and
naturally handles skewed data and heteroskedasticity [2, 3].

Recently, the BRM has been widely used, such as in the following papers: Stein et al. [4] used the
BRM for network analysis, Amin et al. [5] developed the BRM to model the thermal power plants
data, and Tannous et al. [6] applied the BRM to predictive modelling of medication adherence in
post-myocardial infarction patients. Although the standard assumption assumes that predictors are not
linearly correlated, empirical data sets routinely violate this requirement, a phenomenon known as
multicollinearity [7, 8]. This problem was first introduced by Frisch [9]. When multicollinearity is
present, this makes the beta maximum likelihood estimator inefficient, as it affects the accuracy and
stability of parameter estimates, inflated variance, and increased scalar mean squared error (MSE),
ultimately undermining the model’s statistical reliability. Uncommon strategies for addressing
multicollinearity involve increasing the sample size, altering the model specification, or excluding
highly correlated predictors. Nevertheless, these approaches are frequently impractical or offer
limited effectiveness in applied settings.

To overcome this problem, biased estimation techniques have become popular alternatives. One of
the most widely used methods is the ridge regression estimator, introduced by Hoerl and
Kennard [10]. This method adds a biasing parameter k to the variance-covariance matrix to stabilize
the estimates and reduce variance. Although ridge regression is effective, its performance depends on
choosing an appropriate k value. Additionally, Liu [11] introduced the Liu estimator, which combines
features of ridge regression and the Stein estimator. The Liu estimator applies a linear shrinkage
technique defined as a linear function of the Liu parameter d to handle problems of multicollinearity,
offering better performance in models with both independent and correlated predictors. In addition to
linear regression models, several biased estimation methods have been proposed in the literature.
These include the modified ridge-type estimator [12], the new ridge estimator [13], the new
two-parameter ridge estimator [14], the modified two-parameter Liu estimator [15], the almost
unbiased modified ridge-type estimator [16], the almost unbiased general ridge-type estimator [17],
and the almost unbiased Liu-type estimator [18], among others.

For BRM, various estimators have been introduced and extended by several researchers. Abonazel
and Taha [19] and Qasim et al. [20] proposed the ridge estimator, while Karlsson et al. [21] extended
the Liu estimator. Amin et al. [22] developed the James-Stein estimator, Hammad et al. [8] proposed
modified Liu estimators, and Erkoç et al. [23] proposed the Özkale-Kaciranlar estimator. Additionally,
Lukman et al. [24] introduced the modified ridge-type estimator, Koç and Dünder [25] developed the
Kibria-Lukman estimator and its jackknifed version, and Farghali [26] defined the jackknifed beta
ridge regression estimator.

Although many works have presented biased estimators for addressing multicollinearity in a BRM,
there is no limit to the value of bias, and large shrinkage parameter values can lead to large biases.
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Therefore, almost unbiased estimators have recently emerged, offering a greater balance between bias
and variance in estimation under multicollinearity. Due to the limited application and study of this
type of estimator in BRM. This study proposes a new effective estimator called the almost unbiased
modified ridge-type regression estimator to address multicollinearity in the BRM. This type of
estimator provides a greater balance between bias and variance than existing biased estimators. The
effectiveness of this estimator is evaluated through a comprehensive study of the biased estimators in
the literature and by comparing our proposed estimator with existing estimators through theoretical
comparisons and simulation studies. The simulation study confirms the superiority of the proposed
estimator under different scenarios. The applications also support the simulation results using real
data and confirm the superiority of the proposed estimator in reducing MSE and providing more
stable coefficients, which result in more robust solutions than current estimators in the presence of
multicollinearity.

The remainder of this article is organized as follows: Section 2 provides a literature review on the
BRM and existing estimators. In Section 3, we introduce the proposed estimator, followed by a
discussion of its statistical properties, a comparison with existing estimators, and shrinkage parameter
selection for proposed and existing estimators. Section 4 details the simulation study, considering
various factors. Section 5 evaluates the proposed estimators using real-world datasets. Finally,
Section 6 presents the concluding and future works.

2. Methodology

Let Y be a continuous random variable following a beta distribution with parameters a and b. The
probability density function of the variable Y is given by

f (y; a, b) =
Γ(a + b)ya−1(1 − y)b−1

Γ(a)Γ(b)
, 0 < y < 1, (2.1)

where Γ(.) denotes the gamma function and a, b > 0. The expected value and variance of the variable
Y are

E(Y) =
a

a + b
, Var(Y) =

ab
(a + b)2(a + b + 1)

.

Ferrari and Cribari-Neto [1] proposed a reparameterization of the beta distribution by setting

µ =
a

a + b

and
θ = a + b

in Eq (2.1). This leads to
a = µθ

and
b = θ(1 − µ).
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The reparameterized probability density function is as follows:

f (y; µ, θ) =
Γ(θ)yµθ−1(1 − y)θ(1−µ)−1

Γ(µθ)Γ(θ(1 − µ))
, 0 < y < 1, (2.2)

where µ is the mean of Y , and θ is the precision parameter. The expected value and variance under this
parameterization are

E(Y) = µ, Var(Y) =
Var(µ)
1 + θ

.

Ferrari and Cribari-Neto [1] introduced the BRM by the linear predictor

g(µi) = xT
i β = ηi,

where
xT

i = (1, xi1, xi2, . . . , xip)

is the vector of covariates for the i-th observation from the design matrix

X = [1, xT
1 , ..., x

T
n ]T ,

and
β = (β0, β1, ..., βp)T

is the vector of regression coefficients, and g(.) is called the link function. The BRM commonly
employs the logit link defined as follows:

ηi = g(µi) = log
µi

1 − µi
, µi =

exp (xT
i β)

1 + exp (xT
i β)

.

Then, the log-likelihood function for Eq (2.2) using the link function to estimate the parameters via the
beta maximum likelihood estimator (BMLE) is

l(β) =
n∑

i=1

[
logΓ(θ) − logΓ(µiθ) − logΓ((1 − µi)θ)

+ (µiθ − 1) log yi + (θ(1 − µi) − 1) log(1 − yi)
]
.

(2.3)

Differentiating the log-likelihood in Eq (2.3) for β yields the score function for β, expressed as:

U(β) = θXT T (y∗ − µ∗), (2.4)

where

T = diag
(

1
g′(µ1)

, . . . ,
1

g′(µn)

)
,

y∗ = (y∗1, . . . , y
∗
n)T , µ∗ = (µ∗1, . . . , µ

∗
n)T ,

y∗i = log
(

yi

1 − yi

)
, µ∗i = ψ (µiθ) − ψ ((1 − µi)θ) ,
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and ψ(.) represent the digamma function. The iterative reweighted least-squares algorithm, also known
as the Fisher scoring algorithm, is used to estimate β [27, 28]. This algorithm can be written as:

β(l+1) = β(l) +
(
I(l)ββ

)−1
U (l)
β (β), (2.5)

where U (l)
β is the score function as defined in Eq (2.4), and I(l)ββ is the information matrix for β. For

further details, refer to [27]. The iterations, indexed by l = 0, 1, 2, . . ., continue until the difference
between successive estimates is smaller than a specified threshold. At convergence, the BMLE of β is

β̂BMLE = A−1XT Ŵẑ, (2.6)

where

A = XT ŴX, Ŵ = diag(ŵ1, . . . , ŵn),

ŵi = θ̂
{
ψT

(
µ̂iθ̂

)
+ ψT

(
(1 − µ̂i)θ̂

)} 1
{gT (µ̂i)}2

,

ẑ = η̂ + Ŵ−1T̂ (y∗ − µ∗).

Here, Ŵ and T̂ are the matrices W and T , respectively, evaluated at the BMLE. The covariance, matrix
mean squared error (MMSE), and MSE of β̂BMLE are

Cov(β̂BMLE) = φA−1, (2.7)
MMSE(β̂BMLE) = φξΛ−1ξT , (2.8)

MSE(β̂BMLE) = φ
r∑

j=1

1
λ j
, (2.9)

where
φ = θ−1, α = ξtβ̂BMLE

and
Λ = diag(λ1, λ2, . . . , λr),

which correspond to ξAξt. Here, ξ represents the orthogonal matrix whose columns contain the
eigenvectors of A; that is,

ξ = ξ1, . . . , ξr.

The values
λ1 > λ2 > . . . > λr > 0

are the eigenvalues of the matrix A.
The design matrix becomes ill-conditioned when the highly correlated explanatory variables lead

to very small eigenvalues. As a result, the BMLE for the BRM becomes unstable and inflated.
Multicollinearity affects the reliability of the results by increasing the variances and confidence
intervals of the parameter estimates, which may lead to incorrect inferences. To address this issue,
several biased estimators have been introduced in the literature.
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Qasim et al. [20] proposed the beta ridge regression estimator (BRRE), defined as

β̂BRRE = (A + kIr)−1Aβ̂BMLE, k > 0, (2.10)

where k is the ridge parameter, and Ir is the identity matrix of order r × r. If k = 0, then β̂BRRE reduces
to β̂BMLE.

Karlsson et al. [21] introduced the beta Liu estimator (BLE), given by

β̂BLE = (A + Ir)−1(A + dIr)β̂BMLE, 0 < d < 1, (2.11)

where d is a Liu shrinkage parameter in the range (0, 1). When d = 1, the estimator simplifies to β̂BMLE.
Amin et al. [22] developed a James-Stein estimator, known as the beta James-Stein estimator

(BJSE), which is defined as follows:

β̂BJSE = cβ̂BMLE, 0 < c < 1, (2.12)

where

c =

(
β̂T

BMLEβ̂BMLE

)(
β̂T

BMLEβ̂BMLE + trace(A)−1
) .

If c = 1, the estimator reduces to β̂BMLE.
Algamal and Abonazel [29] proposed the beta Liu-type estimator (BLTE), which is given by

β̂BLTE = (A + kIr)−1(A − dIr)β̂BMLE, −∞ < d < ∞, k > 0, (2.13)

where d and k are Liu-type shrinkage parameters. When d = 0, the estimator simplifies to β̂BRRE, and
when both d = k = 0, it reduces to β̂BMLE.

Abonazel et al. [30] introduced the beta Özkale-Kaciranlar estimator (BOKE) as follows:

β̂BOKE = (A + kIr)−1(A + kdIr)β̂BMLE, 0 < d < 1, k > 0, (2.14)

where d and k are shrinkage parameters. If k = 1, then

β̂BOKE = β̂BLE;

if d = 0, then
β̂BOKE = β̂BRRE;

and if both d = k = 0, then
β̂BOKE = β̂BMLE.

Abonazel et al. [31] proposed the beta Dawoud-Kibria estimator (BDKE) to address severe
multicollinearity, defined as

β̂BDKE = (A + k(1 + d)Ir)−1(A − k(1 + d)Ir)β̂BMLE, 0 < d < 1, k > 0, (2.15)

where d and k are the Dawoud-Kibria shrinkage parameters. If k = 0, then

β̂BDKE = β̂BMLE.
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Akram et al. [32] introduced the beta-modified ridge-type estimator (BMRTE), given by

β̂BMRTE = (A + k(1 + d)Ir)−1Aβ̂BMLE, 0 < d < 1, k > 0, (2.16)

where d and k are modified ridge-type shrinkage parameters. If k = 0, then

β̂BMRTE = β̂BMLE,

and if d = 0, then
β̂BMRTE = β̂BRRE.

Koç and Dünder [25] proposed the beta Kibria-Lukman estimator (BKLE), which is given by

β̂BKLE = (A + kIr)−1(A − kIr)β̂BMLE, (2.17)

where k is the Kibria-Lukman shrinkage parameter. If k = 0, then

β̂BKLE = β̂BMLE.

Farghali [26] presented the jackknifed beta ridge regression estimator (BJRRE) as follows:

β̂BJRRE =
(
Ir − k2(A + kIr)−2)β̂BMLE, k > 0, (2.18)

where k is the jackknifed ridge parameter. If k = 0, then β̂BJRRE reduces to β̂BMLE.
Koç and Dünder [25] developed a beta jackknife Kibria-Lukman estimator (BJKLE) to handle

multicollinearity, defined as

β̂BJKLE =
(
Ir + 2k(A + kIr)−1)(Ir − (2k(A + kIr)−1)2)β̂BMLE, k > 0, (2.19)

where k is the Jackknife Kibria-Lukman parameter. If k = 0, then β̂BJKLE reduces to β̂BMLE.
The MMSE and MSE for the previously mentioned estimators are defined as follows:

MMSE(β̂BRRE) = φξΛ−1
k ΛΛ

−1
k ξ

T + k2ξΛ−1
k αα

TΛ−1
k ξ

T , (2.20)

MSE(β̂BRRE) = φ
r∑

j=1

λ j

(λ j + k)2 + k2
r∑

j=1

α2
j

(λ j + k)2 , (2.21)

MMSE(β̂BLE) = φξΛ−1
1 ΛdΛ

−1ΛdΛ
−1
1 ξ

T + (d − 1)2ξΛ−1
1 αα

TΛ−1
1 ξ

T , (2.22)

MSE(β̂BLE) = φ
r∑

j=1

(λ j + d)2

λ j(λ j + 1)2 + (d − 1)2
r∑

j=1

α2
j

(λ j + 1)2 , (2.23)

MMSE(β̂BJSE) = φcΛ−1cT +

(
−

Λ−1

ξTαTαξ + Λ−1 ξα

)T (
−

Λ−1

ξTαTαξ + Λ−1 ξα

)
, (2.24)

MSE(β̂BJSE) = φ
r∑

j=1

α4
jλ j

(α2
jλ j + 1)2

+

r∑
j=1

α2
j

(α2
jλ j + 1)2

, (2.25)

MMSE(β̂BLTE) = φξΛ−1
k Λd0Λ

−1Λd0Λ
−1
k ξ

T + (d + k)2ξΛ−1
k αα

TΛ−1
k ξ

T , (2.26)
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MSE(β̂BLTE) = φ
r∑

j=1

(λ j − d)2

λ j(λ j + k)2 + (d + k)2
r∑

j=1

α2
j

(λ j + k)2 , (2.27)

MMSE(β̂BOKE) = φξΛ−1
k ΛkdΛ

−1ΛkdΛ
−1
k ξ

T + k2(d − 1)2ξΛ−1
k αα

TΛ−1
k ξ

T , (2.28)

MSE(β̂BOKE) = φ
r∑

j=1

(λ j + kd)2

λ j(λ j + k)2 + k2(d − 1)2
r∑

j=1

α2
j

(λ j + k)2 , (2.29)

MMSE(β̂BDKE) = φξΛ−1
F ΛTΛ

−1ΛTΛ
−1
F ξ

T + 4k2(d + 1)2ξΛ−1
F αα

TΛ−1
F ξ

T , (2.30)

MSE(β̂BDKE) = φ
r∑

j=1

(λ j − k(d + 1))2

λ j(λ j + k(d + 1))2 +

r∑
j=1

4k2(d + 1)2α2
j

(λ j + k(d + 1))2 , (2.31)

MMSE(β̂BMRTE) = φξΛ−1
F ΛΛ

−1
F ξ

T + k2(d + 1)2ξΛ−1
F αα

TΛ−1
F ξ

T , (2.32)

MSE(β̂BMRTE) = φ
r∑

j=1

λ j

(λ j + k(d + 1))2 +

r∑
j=1

k2(d + 1)2α2
j

(λ j + k(d + 1))2 , (2.33)

MMSE(β̂BKLE) = φξΛ−1
k Λk0Λ

−1Λk0Λ
−1
k ξ

T + 4k2ξΛ−1
k αα

TΛ−1
k ξ

T , (2.34)

MSE(β̂BKLE) = φ
r∑

j=1

(λ j − k)2

λ j(λ j + k)2 + 4k2
r∑

j=1

α2
j

(λ j + k)2 , (2.35)

MMSE
(
β̂BJRRE

)
= φξΛ−1(Ir − (Λ + kIr)−2k2)2

ξT + k4ξ(Λ + kIr)−2

× ααT ((Λ + kIr)−2)TξT , (2.36)

MSE
(
β̂BJRRE

)
= φ

r∑
j=1

(
λ2

j + 2λ jk
)2

(λ j + k)4λ j
+ k4

r∑
j=1

α2
j

(λ j + k)4 , (2.37)

MMSE
(
β̂BJKLE

)
= φξ

(
Ir − (2k(Λ + kIr)−1)2)2

Λ
(
Ir − (2k(Λ + kIr)−1)2)ξT

+
[(

Ir + 2k(Λ + kIr)−1)(Ir − (2k(Λ + kIr)−1)2) − I
]
ββT

[(
Ir + 2k(Λ + kIr)−1)

×
(
Ir − (2k(Λ + kIr)−1)2) − I

]
, (2.38)

MSE
(
β̂BJKLE

)
= φ

r∑
j=1

((
λ j + k

)2
− 4k2

)2
(λ j − k)2

(λ j + k)6λ j

+

r∑
j=1

(
(λ j − k)2(λ j + 3k) − (λ j + k)3

)2
α2

j

(λ j + k)6 , (2.39)

where

Λk = diag(λ1 + k, λ2 + k, ..., λp + k),
Λd = diag(λ1 + d, λ2 + d, ..., λp + d),
Λ1 = diag(λ1 + 1, λ2 + 1, ..., λp + 1),
Λkd = diag(λ1 + kd, λ2 + kd, ..., λp + kd),
Λk0 = diag(λ1 − k, λ2 − k, ..., λp − k),
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ΛF = diag(λ1 + k(1 + d), λ2 + k(1 + d), ..., λp + k(1 + d)),
ΛT = diag(λ1 − k(1 + d), λ2 − k(1 + d), ..., λp − k(1 + d)),
Λd0 = diag(λ1 − d, λ2 − d, ..., λp − d).

3. Proposed estimators

Although biased estimators have made significant progress in addressing multicollinearity in BRMs,
they introduce bias in exchange for reducing variance through shrinkage parameters. However, large
values of these parameters lead to considerable bias, which can negatively impact their stability and
reliability. Therefore, researchers have proposed an alternative estimator known as the almost-unbiased
estimator. Several researchers, including Chang [33], Wu et al. [34], and Jegede et al. [16], have studied
these estimators. In this study, we introduce the almost unbiased modified ridge-type estimator for the
BRM, using the following definition.

Definition 1. [35] Let β̂ be a biased estimator of the parameter β, with bias given by

Bias(β̂) = E(β̂) − β = Cβ,

which implies that
E(β̂ −Cβ) = β.

Then, the estimator
β̂ = β̂ −Cβ = (Ir −C)β̂

is called the almost unbiased estimator derived from the biased estimator β̂.
Following the work of Omara [36], we introduce the beta almost unbiased modified ridge-type

estimator (BAUMRTE) as follows:

β̂BAUMRTE =
[
Ir −

(
(A + k(1 + d)Ir)−1A − Ir

) ]
β̂BMRTE

=
[
Ir −

(
(A + k(1 + d)Ir)−1A − Ir

)
(A + k(1 + d)Ir)−1Aβ̂BMLE

=
[
2Ir − (A + k(1 + d)Ir)−1A

]
(A + k(1 + d)Ir)−1Aβ̂BMLE

=
[
Ir −

(
(A + k(1 + d)Ir)−2k2(1 + d)2

) ]
β̂BMLE = Hβ̂BMLE,

(3.1)

where
H =

[
Ir −

(
(A + k(1 + d)Ir)−2k2(1 + d)2

) ]
,

k (k > 0), and d (0 < d < 1) are the almost unbiased modified ridge-type parameters. The
BAUMRTE(0,0) reduces to BMLE and the BAUMRTE(1, k/2) reduces to BJRRE. The bias and the
variance of the BAUMRTE can be found as

Bias
(
β̂BAUMRTE

)
= E

(
β̂BAUMRTE

)
− β = E

(
Hβ̂BMLE

)
− β =

[
H − Ir

]
β (3.2)

and

Cov
(
β̂BAUMRTE

)
= E

([
β̂BAUMRTE − E(β̂BAUMRTE)

] [
β̂BAUMRTE − E(β̂BAUMRTE)

]T
)

=
[
H − Ir

]
Cov(βBMLE)

[
H − Ir

]T
=

[
H − Ir

]
φ(Λ)−1[H − Ir

]T
.

(3.3)
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Using Eqs (3.2) and (3.3), the MMSE and MSE of BAUMRTE can be simplified as

MMSE
(
β̂BAUMRTE

)
= Cov

(
β̂BAUMRTE

)
+ Bias

(
β̂BAUMRTE

)
Bias

(
β̂BAUMRTE

)T

= φ
[
H − Ir

]
(Λ)−1[H − Ir

]T
+

[
H − Ir

]
ββT [H − Ir

]T
(3.4)

and

MSE
(
β̂BAUMRTE

)
= Tr

(
MMSE

(
β̂BAUMRTE

))
= φ

r∑
j=1

1
λ j

(
1 −

k2(1 + d)2

(λ j + k(1 + d)2

)2

+

r∑
j=1

(
k2(1 + d)2

(λ j + k(1 + d))2

)2

α2
j .

(3.5)

The MSE of the BAUMRTE depends on the choice of k and d. Selecting appropriate values of k
and d helps achieve the minimum MSE for the BAUMRTE. For more details, see [36]. Therefore, in
Subsection 3.2, we propose new methods for estimating parameters.

3.1. Superiority of the proposed estimators

The following lemma and theorem will be used to prove some theorems in this section.

Lemma 3.1. Assuming B is a positive definite (pd) matrix, c is a positive constant, and γ is a vector of
nonzero constants, the expression

cB − γγT > 0

holds true iff γBγT < c [37].

Theorem 3.1. Let k > 0, 0 < d < 1, and

(λ j + k(1 + d))4 >
(
λ2

j + 2λ jk(1 + d)
)2
,

then β̂BAUMRTE is superior to β̂BMLE if and only if (iff)

MMSE(β̂BMLE) −MMSE(β̂BAUMRTE) > 0,

where
R = Bias(β̂BAUMRTE).

Proof. The difference between MMSE(β̂BMLE) and MMSE(β̂BAUMRTE), as computed using Eq (2.8) and
Eq (3.4), is

MMSE(β̂BMLE) −MMSE(β̂BAUMRTE) = φξ
[
Λ−1 − Λ−1(Ir − (Λ + k(1 + d)Ir)−2(k(1 + d))2)2

]
ξT − RRT .

(3.6)

Equation (3.6) can be described using the MSE as:

MSE(β̂BMLE) −MSE(β̂BAUMRTE) = φξdiag

 1
λ j
−

(λ2
j + 2λ jk(1 + d))2

(λ j + k(1 + d))4λ j

 ξT − RRT .
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The matrix
[
Λ−1 − Λ−1(Ir − (Λ + k(1 + d)Ir)−2(k(1 + d))2)2

]
is pd iff

(λ j + k(1 + d))4 −
(
λ2

j + 2λ jk(1 + d)
)2
> 0,

which is equivalent to (λ j + k(1 + d))4 >
(
λ2

j + 2λ jk(1 + d)
)2

being non-negative. Therefore the matrix[
Λ−1 − Λ−1(Ir − (Λ + k(1 + d)Ir)−2(k(1 + d))2)2

]
is pd, and the proof is completed by Lemma 3.1. □

Theorem 3.2. Let k > 0, 0 < d < 1, and

λ2
j(λ j + k(1 + d))4 >

(
λ2

j + 2λ jk(1 + d)
)2

(λ j + k)2,

then β̂BAUMRTE is superior to β̂BRRE iff

MMSE(β̂BRRE) −MMSE(β̂BAUMRTE) > 0,

where
RRidge = Bias(β̂BRRE)

and
R = Bias(β̂BAUMRTE).

Proof. The difference between MMSE(β̂BRRE) and MMSE(β̂BAUMRTE), as computed using Eqs (2.20)
and (3.4), is

MMSE(β̂BRRE) −MMSE(β̂BAUMRTE) =φξ
[
Λ−1

k ΛΛ
−1
k − Λ

−1(Ir − (Λ + k(1 + d)Ir)−2(k(1 + d))2)2
]
ξT

+ RRidgeRT
Ridge − RRT .

(3.7)

Equation (3.7) can be described using the MSE as:

MSE(β̂BRRE) −MSE(β̂BAUMRTE) =φξdiag

 λ j

(λ j + k)2 −
(λ2

j + 2λ jk(1 + d))2

(λ j + k(1 + d))4λ j

 ξT + RRidgeRT
Ridge − RRT .

The matrix
[
Λ−1

k ΛΛ
−1
k − Λ

−1(Ir − (Λ + k(1 + d)Ir)−2(k(1 + d))2)2
]

is pd iff

λ2
j(λ j + k(1 + d))4 −

(
λ2

j + 2λ jk(1 + d)
)2

(λ j + k)2 > 0,

which is equivalent to

λ2
j(λ j + k(1 + d))4 >

(
λ2

j + 2λ jk(1 + d)
)2

(λ j + k)2

being non-negative. Therefore the matrix
[
Λ−1

k ΛΛ
−1
k − Λ

−1(Ir − (Λ + k(1 + d)Ir)−2(k(1 + d))2)2
]

is pd,
and the proof is completed by Lemma 3.1. □
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Theorem 3.3. Let k > 0, 0 < d < 1, and

(λ j + d)2(λ j + k(1 + d))4 >
(
λ2

j + 2λ jk(1 + d)
)2

(λ j + 1)2,

then β̂BAUMRTE is superior to β̂BLE iff

MMSE(β̂BLE) −MMSE(β̂BAUMRTE) > 0,

where
RLiu = Bias(β̂BLE)

and
R = Bias(β̂BAUMRTE).

Proof. The difference between MMSE(β̂BLE) and MMSE(β̂BAUMRTE), as computed using Eqs (2.22)
and (3.4), is

MMSE(β̂BLE) −MMSE(β̂BAUMRTE) = φξ
[
Λ−1

1 ΛdΛ
−1ΛdΛ

−1
1 − Λ

−1(Ir − (Λ + k(1 + d)Ir)−2(k(1 + d))2)2
]
ξT

+ RLiuRT
Liu − RRT .

(3.8)

Equation (3.8) can be described using the MSE as:

MSE(β̂BLE) −MSE(β̂BAUMRTE) = φξdiag

 (λ j + d)2

λ j(λ j + 1)2 −
(λ2

j + 2λ jk(1 + d))2

(λ j + k(1 + d))4λ j

 ξT + RLiuRT
Liu − RRT .

The matrix
[
Λ−1

1 ΛdΛ
−1ΛdΛ

−1
1 − Λ

−1(Ir − (Λ + k(1 + d)Ir)−2(k(1 + d))2)2
]

is pd iff

(λ j + d)2(λ j + k(1 + d))4 −
(
λ2

j + 2λ jk(1 + d)
)2

(λ j + 1)2 > 0,

which is equivalent to

(λ j + d)2(λ j + k(1 + d))4 >
(
λ2

j + 2λ jk(1 + d)
)2

(λ j + 1)2

being non-negative. Therefore, the matrix
[
Λ−1

1 ΛdΛ
−1ΛdΛ

−1
1 −Λ

−1(Ir − (Λ+ k(1+ d)Ir)−2(k(1+ d))2)2
]

is pd, and the proof is completed by Lemma 3.1. □

Theorem 3.4. Let k > 0, 0 < d < 1, and

α4
jλ

2
j(λ j + k(1 + d))4 >

(
λ2

j + 2λ jk(1 + d)
)2

(α2
jλ j + 1)2,

then β̂BAUMRTE is superior to β̂BJSE iff

MMSE(β̂BJSE) −MMSE(β̂BAUMRTE) > 0,

where
RJS E = Bias(β̂BJSE)

and
R = Bias(β̂BAUMRTE).
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Proof. The difference between MMSE(β̂BJSE) and MMSE(β̂BAUMRTE), as computed using Eqs (2.24)
and (3.4), is

MMSE(β̂BJSE) −MMSE(β̂BAUMRTE) = φξ
[
cΛ−1cT − Λ−1(Ir − (Λ + k(1 + d)Ir)−2(k(1 + d))2)2

]
ξT

+ RJS ERT
JS E − RRT .

(3.9)

Equation (3.9) can be described using the MSE as:

MSE(β̂BJSE) −MSE(β̂BAUMRTE) = φξdiag

 α4
jλ j

(α2
jλ j + 1)2

−
(λ2

j + 2λ jk(1 + d))2

(λ j + k(1 + d))4λ j

 ξT + RJS ERT
JS E − RRT .

The matrix
[
cΛ−1cT − Λ−1(Ir − (Λ + k(1 + d)Ir)−2(k(1 + d))2)2

]
is pd iff

α4
jλ

2
j(λ j + k(1 + d))4 −

(
λ2

j + 2λ jk(1 + d)
)2

(α2
jλ j + 1)2 > 0,

which is equivalent to

α4
jλ

2
j(λ j + k(1 + d))4 >

(
λ2

j + 2λ jk(1 + d)
)2

(α2
jλ j + 1)2

being non-negative. Therefore the matrix
[
cΛ−1cT −Λ−1(Ir − (Λ+ k(1+ d)Ir)−2(k(1+ d))2)2

]
is pd , and

the proof is completed by Lemma 3.1. □

Theorem 3.5. Let k > 0, 0 < d < 1, and

(λ j − d)2(λ j + k(1 + d))4 > (λ j + k)2
(
λ2

j + 2λ jk(1 + d)
)2
,

then β̂BAUMRTE is superior to β̂BLTE iff

MMSE(β̂BLTE) −MMSE(β̂BAUMRTE) > 0,

where
RLT = Bias(β̂BLTE)

and
R = Bias(β̂BAUMRTE).

Proof. The difference between MMSE(β̂BLTE) and MMSE(β̂BAUMRTE), as computed using Eqs (2.26)
and (3.4), is

MMSE(β̂BLTE) −MMSE(β̂BAUMRTE) = φξ
[
Λ−1

k Λd0Λ
−1Λd0Λ

−1
k − Λ

−1 ×
(
Ir

− (Λ + k(1 + d)Ir)−2(k(1 + d))2)2
]
ξT + RLT RT

LT − RRT .
(3.10)

Equation (3.10) can be described using the MSE as:

MSE(β̂BLTE) −MSE(β̂BAUMRTE) =φξdiag

 (λ j − d)2

λ j(λ j + k)2 −
(λ2

j + 2λ jk(1 + d))2

(λ j + k(1 + d))4λ j

 ξT + RLT RT
LT − RRT .
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The matrix
[
Λ−1

k Λd0Λ
−1Λd0Λ

−1
k − Λ

−1(Ir − (Λ + k(1 + d)Ir)−2(k(1 + d))2)2
]

is pd iff

(λ j − d)2(λ j + k(1 + d))4 − (λ j + k)2
(
λ2

j + 2λ jk(1 + d)
)2
> 0,

which is equivalent to

(λ j − d)2(λ j + k(1 + d))4 > (λ j + k)2
(
λ2

j + 2λ jk(1 + d)
)2

being non-negative. Therefore the matrix
[
Λ−1

k Λd0Λ
−1Λd0Λ

−1
k −Λ

−1(Ir − (Λ+ k(1+d)Ir)−2(k(1+d))2)2
]

is pd, and the proof is completed by Lemma 3.1. □

Theorem 3.6. Let k > 0, 0 < d < 1, and

(λ j + kd)2(λ j + k(1 + d))4 > (λ j + k)2
(
λ2

j + 2λ jk(1 + d)
)2
,

then β̂BAUMRTE is superior to β̂BOKE iff

MMSE(β̂BOKE) −MMSE(β̂BAUMRTE) > 0,

where
ROK = Bias(β̂BOKE)

and
R = Bias(β̂BAUMRTE).

Proof. The difference between MMSE(β̂BOKE) and MMSE(β̂BAUMRTE), as computed using Eqs (2.28)
and (3.4), is

MMSE(β̂BOKE) −MMSE(β̂BAUMRTE) = φξ
[
Λ−1

k ΛkdΛ
−1ΛkdΛ

−1
k − ×Λ

−1(Ir

− (Λ + k(1 + d)Ir)−2(k(1 + d))2)2
]
ξT + ROKRT

OK − RRT .
(3.11)

Equation (3.11) can be described using the MSE as

MSE(β̂BOKE) −MSE(β̂BAUMRTE) =φξdiag

 (λ j + kd)2

λ j(λ j + k)2 −
(λ2

j + 2λ jk(1 + d))2

(λ j + k(1 + d))4λ j

 ξT + ROKRT
OK − RRT .

The matrix
[
Λ−1

k ΛkdΛ
−1ΛkdΛ

−1
k − Λ

−1(Ir − (Λ + k(1 + d)Ir)−2(k(1 + d))2)2
]

is pd iff

(λ j + kd)2(λ j + k(1 + d))4 − (λ j + k)2
(
λ2

j + 2λ jk(1 + d)
)2
> 0,

which is equivalent to

(λ j + kd)2(λ j + k(1 + d))4 > (λ j + k)2
(
λ2

j + 2λ jk(1 + d)
)2

being non-negative. Therefore the matrix
[
Λ−1

k ΛkdΛ
−1ΛkdΛ

−1
k −Λ

−1(Ir − (Λ+ k(1+d)Ir)−2(k(1+d))2)2
]

is pd, and the proof is completed by Lemma 3.1. □
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Theorem 3.7. Let k > 0, 0 < d < 1, and

(λ j − k(d + 1))2(λ j + k(1 + d))4 > (λ j + k(d + 1))2
(
λ2

j + 2λ jk(1 + d)
)2
,

then β̂BAUMRTE is superior to β̂BDKE iff

MMSE(β̂BDKE) −MMSE(β̂BAUMRTE) > 0,

where
RDK = Bias(β̂BDKE)

and
R = Bias(β̂BAUMRTE).

Proof. The difference between MMSE(β̂BDKE) and MMSE(β̂BAUMRTE), as computed using Eqs (2.30)
and (3.4), is

MMSE(β̂BDKE) −MMSE(β̂BAUMRTE) = φξ
[
Λ−1

F ΛTΛ
−1ΛTΛ

−1
F − Λ

−1(Ir

− (Λ + k(1 + d)Ir)−2(k(1 + d))2)2
]
ξT + RDKRT

DK − RRT .
(3.12)

Equation (3.12) can be described using the MSE as

MSE(β̂BDKE) −MSE(β̂BAUMRTE) =φξdiag

 (λ j − k(d + 1))2

λ j(λ j + k(d + 1))2 −
(λ2

j + 2λ jk(1 + d))2

(λ j + k(1 + d))4λ j

 ξT

+ RDKRT
DK − RRT .

The matrix
[
Λ−1

F ΛTΛ
−1ΛTΛ

−1
F − Λ

−1(Ir − (Λ + k(1 + d)Ir)−2(k(1 + d))2)2
]

is pd iff

(λ j − k(d + 1))2(λ j + k(1 + d))4 − (λ j + k(d + 1))2
(
λ2

j + 2λ jk(1 + d)
)2
> 0,

which is equivalent to

(λ j − k(d + 1))2(λ j + k(1 + d))4 > (λ j + k(d + 1))2
(
λ2

j + 2λ jk(1 + d)
)2

being non-negative. Therefore the matrix
[
Λ−1

F ΛTΛ
−1ΛTΛ

−1
F −Λ

−1(Ir − (Λ+ k(1+ d)Ir)−2(k(1+ d))2)2
]

is pd , and the proof is completed by Lemma 3.1. □

Theorem 3.8. Let k > 0, 0 < d < 1, and

λ2
j(λ j + k(1 + d))4 > (λ j + k(d + 1))2

(
λ2

j + 2λ jk(1 + d)
)2
,

then β̂BAUMRTE is superior to β̂BMRTE iff

MMSE(β̂BMRTE) −MMSE(β̂BAUMRTE) > 0,

where
RMRT = Bias(β̂BMRTE)

and
R = Bias(β̂BAUMRTE).
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Proof. The difference between MMSE(β̂BMRTE) and MMSE(β̂BAUMRTE), as computed using Eqs (2.32)
and (3.4), is

MMSE(β̂BMRTE) −MMSE(β̂BAUMRTE) =φξ
[
Λ−1

F ΛΛ
−1
F − Λ

−1(Ir − (Λ + k(1 + d)Ir)−2

(k(1 + d))2)2
]
ξT + RMRT RT

MRT − RRT .
(3.13)

Equation (3.13) can be described using the MSE as:

MSE(β̂BMRTE) −MSE(β̂BAUMRTE) =φξdiag

 λ j

(λ j + k(d + 1))2 −
(λ2

j + 2λ jk(1 + d))2

(λ j + k(1 + d))4λ j

 ξT

+ RMRT RT
MRT − RRT .

(3.14)

The matrix
[
Λ−1

F ΛΛ
−1
F − Λ

−1(Ir − (Λ + k(1 + d)Ir)−2(k(1 + d))2)2
]

is pd iff

λ2
j(λ j + k(1 + d))4 − (λ j + k(d + 1))2

(
λ2

j + 2λ jk(1 + d)
)2
> 0,

which is equivalent to

λ2
j(λ j + k(1 + d))4 > (λ j + k(d + 1))2

(
λ2

j + 2λ jk(1 + d)
)2

being non-negative. Therefore the matrix
[
Λ−1

F ΛΛ
−1
F − Λ

−1(Ir − (Λ + k(1 + d)Ir)−2(k(1 + d))2)2
]

is pd,
and the proof is completed by Lemma 3.1. □

Theorem 3.9. Let k > 0, 0 < d < 1, and

(λ j − k)2(λ j + k(1 + d))4 > (λ j + k)2
(
λ2

j + 2λ jk(1 + d)
)2
,

then β̂BAUMRTE is superior to β̂BKLE iff

MMSE(β̂BKLE) −MMSE(β̂BAUMRTE) > 0, RKL = Bias(β̂BKLE)

and
R = Bias(β̂BAUMRTE).

Proof. The difference between MMSE(β̂BKLE) and MMSE(β̂BAUMRTE), as computed using Eqs (2.34)
and (3.4), is

MMSE(β̂BKLE) −MMSE(β̂BAUMRTE) = φξ
[
Λ−1

k Λk0Λ
−1Λk0Λ

−1
k − Λ

−1(Ir

− (Λ + k(1 + d)Ir)−2(k(1 + d))2)2
]
ξT + RKLRT

KL − RRT .
(3.15)

Equation (3.15) can be described using the MSE as:

MSE(β̂BKLE) −MSE(β̂BAUMRTE) =φξdiag

 (λ j − k)2

λ j(λ j + k)2 −
(λ2

j + 2λ jk(1 + d))2

(λ j + k(1 + d))4λ j

 ξT + RKLRT
KL − RRT .
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The matrix
[
Λ−1

k Λk0Λ
−1Λk0Λ

−1
k − Λ

−1(Ir − (Λ + k(1 + d)Ir)−2(k(1 + d))2)2
]

is pd iff

(λ j − k)2(λ j + k(1 + d))4 − (λ j + k)2
(
λ2

j + 2λ jk(1 + d)
)2
> 0,

which is equivalent to

(λ j − k)2(λ j + k(1 + d))4 > (λ j + k)2
(
λ2

j + 2λ jk(1 + d)
)2

being non-negative. Therefore the matrix
[
Λ−1

k Λk0Λ
−1Λk0Λ

−1
k −Λ

−1(Ir − (Λ+ k(1+ d)Ir)−2(k(1+ d))2)2
]

is pd, and the proof is completed by Lemma 3.1. □

Theorem 3.10. Let k > 0, 0 < d < 1, and

(λ j − k)2(λ j + k(1 + d))4 > (λ j + k)2
(
λ2

j + 2λ jk(1 + d)
)2
,

then β̂BAUMRTE is superior to β̂BJRRE iff

MMSE(β̂BJRRE) −MMSE(β̂BAUMRTE) > 0, RJR = Bias(β̂BJRRE)

and
R = Bias(β̂BAUMRTE).

Proof. The difference between MMSE(β̂BJRRE) and MMSE(β̂BAUMRTE), as computed using Eqs (2.36)
and (3.4), is

MMSE(β̂BJRRE) −MMSE(β̂BAUMRTE) = φξ
[
Λ−1(Ir − (Λ + kIr)−2k2)−2

− Λ−1(Ir − (Λ

+ k(1 + d)Ir)−2 × (k(1 + d))2)2
]
ξT + RJRRT

JR − RRT .
(3.16)

Equation (3.16) can be described using the MSE as:

MSE(β̂BJRRE) −MSE(β̂BAUMRTE) =φξdiag


(
λ2

j + 2λ jk
)2

(λ j + k)4λ j
−

(λ2
j + 2λ jk(1 + d))2

(λ j + k(1 + d))4λ j

 ξT + RJRRT
JR − RRT .

The matrix
[
Λ−1(Ir − (Λ + kIr)−2k2)2

− Λ−1(Ir − (Λ + k(1 + d)Ir)−2(k(1 + d))2)2
]

is pd iff

(λ2
j + 2kλ j)2(λ j + k(1 + d))4 − (λ j + k)4

(
λ2

j + 2λ jk(1 + d)
)2
> 0,

which is equivalent to

(λ2
j + 2kλ j)2(λ j + k(1 + d))4 > (λ j + k)4

(
λ2

j + 2λ jk(1 + d)
)2

being non-negative. Therefore the matrix
[
Λ−1(Ir − (Λ+ kIr)−2k2)−2

−Λ−1(Ir − (Λ+ k(1+ d)Ir)−2(k(1+

d))2)2
]

is pd, and the proof is completed by Lemma 3.1. □
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Theorem 3.11. Let k > 0, 0 < d < 1, and((
λ j + k

)2
− 4k2

)2
(λ j − k)2(λ j + k(1 + d))4 > (λ j + k)6

(
λ2

j + 2λ jk(1 + d)
)2
,

then β̂BAUMRTE is superior to β̂BJKLE iff

MMSE(β̂BJKLE) −MMSE(β̂BAUMRTE) > 0, RJKL = Bias(β̂BJKLE)

and
R = Bias(β̂BAUMRTE).

Proof. The difference between MMSE(β̂BJKLE) and MMSE(β̂BAUMRTE), as computed using Eqs (2.38)
and (3.4), is

MMSE(β̂BJKLE) −MMSE(β̂BAUMRTE) = φξ[
(
Ir − (2k(Λ + kIr)−1)2)2

Λ
(
Ir − (2k(Λ + kIr)−1)2) − Λ−1(Ir

− (Λ + k(1 + d)Ir)−2(k(1 + d))2)2
]
ξT + RJKLRT

JKL − RRT .

(3.17)

Equation (3.17) can be described using the MSE as:

MSE(β̂BJKLE) −MSE(β̂BAUMRTE) = φξdiag
(((λ j + k

)2
− 4k2

)2
(λ j − k)2

(λ j + k)6λ j
−

(λ2
j + 2λ jk(1 + d))2

(λ j + k(1 + d))4λ j

)
ξT

+ RJKLRT
JKL − RRT .

The matrix
[(

Ir − (2k(Λ + kIr)−1)2)2
Λ
(
Ir − (2k(Λ + kIr)−1)2) −Λ−1(Ir − (Λ + k(1 + d)Ir)−2(k(1 + d))2)2

]
is pd iff ((

λ j + k
)2
− 4k2

)2
(λ j − k)2(λ j + k(1 + d))4 − (λ j + k)6

(
λ2

j + 2λ jk(1 + d)
)2
> 0,

which is equivalent to((
λ j + k

)2
− 4k2

)2
(λ j − k)2(λ j + k(1 + d))4 > (λ j + k)6

(
λ2

j + 2λ jk(1 + d)
)2

being non-negative. Therefore the matrix
[(

Ir − (2k(Λ + kIr)−1)2)2
Λ
(
Ir − (2k(Λ + kIr)−1)2) − Λ−1(Ir −

(Λ + k(1 + d)Ir)−2(k(1 + d))2)2
]

is pd, and the proof is completed by Lemma 3.1. □

3.2. Selection biasing parameter estimator

Table 1 illustrates three parameter values for the proposed estimator (k̂1, d̂1), (k̂2, d̂2), and (k̂3, d̂3)
based on the work of Lukman et al. [24], along with the corresponding parameter estimates for each
estimator introduced in the BRM. The effectiveness and strength of the proposed estimator are
inherently influenced by the choice of these shrinkage parameters. Specifically, the values of k̂ and d̂
govern the trade-off between bias and variance: larger values may reduce variance but increase bias,
while smaller values may do the opposite. Hence, careful tuning is essential to achieve an optimal
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balance that leads to superior estimation accuracy, particularly under high multicollinearity. These
parameters are essential for both simulation and application purposes. The optimal values for each
estimator were selected based on previous studies referenced in Table 1.

Table 1. Summary of biasing parameters for different estimators in BRM.

Estimator k values d values Author

BRRE k̂ = min(λ j)
φmin(α̂2

j )
- Abonazel and Taha [19]

BLE - d̂ = max

0,min


∑r

j=1

 φ−1−α̂2
j

(1+λ j)2


∑r

j=1

 (φλ j)−1+α̂2
j

(1+λ j)2

 , 1

 Karlsson et al. [21]

BJSE - ĉ = min
(

α̂2
jλ j

φ+α̂2
jλ j

)
Amin et al. [22]

BLTE k̂ =
∑r

j=1

(
1
φα̂2

j

)
d̂ = max


∑r

j=1

φ−1−k̂α̂2
j

(k̂+λ j)2∑r
j=1

φ−1+λ jα̂
2
j

λ j(k̂+λ j)2

, 0

 Algamal and Abonazel [29]

BOKE k̂ = 1
r

∑r
j=1

(
λ j

φ(λ jα̂
2
j (1−d))−(d/φ)

)
d̂ = 1

2 min
(

λ jα̂
2
j

(λ jα̂
2
j+(1/φ))

)
Abonazel et al. [30]

BDKE k̂ =
1

r

∑r
j=1

1

φ(1+d̂)
(

1
φλ j
+2α̂2

j

)
1/r

min
(

α̂2
j

(1/(λ jφ)+α̂2
j )

)
Abonazel et al. [31]

BMRTE k̂ = min
(

φ

(1+d̂)α̂2
j

)
d̂ = min

(
φ

k̂α̂2
j

)
− 1 Lukman et al. [24]

BKLE k̂ = min
(

φλ j

2α̂2
j+(φλ j)

)
- Koç and Dünder [25]

BJRRE k̂ =

√√√√√√√
max

k j =

φ

1+
√

1+
α̂2

jλ j
φ


α̂2

j

/r - Farghali [26]

BJKLE k̂ = min
(

φ

2α̂2
j+(φ/λ j)

)
- Koç and Dünder [25]

Proposed parameters for BAUMRTE

BAUMRTE

k̂1 =
rφ

max((1+d)α̂2
j )

d̂1 =
1

max

 1
φ

k̂1α̂
2
j
−1


k̂2 = median

(
φ

(1+d)α̂2
j

)
d̂2 =

1

max

 1
φ

k̂2α̂
2
j
−1


k̂3 = median

(
r

(1+d)α̂2
j

)
d̂3 =

1

max

 1
φ

k̂3α̂
2
j
−1


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4. Simulation study

This section evaluates the performance of the proposed estimator through a comprehensive
simulation experiment. The study compares the proposed BAUMRTE with other established
estimators, including the BMLE, BRRE, BLE, BJSE, BLTE, BOKE, BDKE, BMRTE, and BKLE.

4.1. Simulation design

The response variable was generated from a beta distribution using the logit link function, defined
as [38]:

µi =
exp

(
β0 + β1xi1 + β2xi2 + · · · + βpxir

)
1 + exp

(
β0β1xi1 + β2xi2 + · · · + βpxir

) , i = 1, . . . , n; j = 1, . . . , r,

where xi j represents the correlated independent variables and β j denotes the true parameter vector of
the BRM. The parameters were selected such that

r∑
j=1

β2
j = 1.

The correlated explanatory variables were generated using the formula [8, 39]

xi j =
(
1 − ρ2

) 1
2 zi j + ρzi( j+1), i = 1, . . . , n; j = 1, . . . , r,

where ρ represents the degree of correlation among the regressors and zi j are independent standard
normal pseudo-random variables.

The study investigated the performance of the proposed estimator under various conditions as
described in Table 2.

Table 2. Simulation setup parameters used in the study.

Parameter Values

Correlation levels (ρ) 0.80, 0.85, 0.90, 0.95, 0.99

Sample sizes (n) 30, 75, 150, 200, 300, 400

Number of covariates (p) 3, 6, 9

Precision parameter (φ) 0.5, 1.0, 1.5

Number of replications 1000 for each combination of (n, ρ, p, φ)

To assess the performance of the proposed estimator, the estimated MSE was used as the evaluation
criterion. The estimated MSE is defined as

MSE(β̂) =

∑R
i=1

(
β̂i − β

)t (
β̂i − β

)
R

,
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where
(
β̂i − β

)
represents the difference between the estimated and true parameter vectors at the i-th

replication, and R denotes the total number of replications. A detailed description of the simulation
procedure and parameter estimation is provided in Algorithm 1. All computational tasks were carried
out using the R programming language version 4.4.1, with the assistance of the “betareg” package for
BRM.

Algorithm 1 Simulation steps for the proposed estimators in the R programming language.
1: Start
2: Load the required libraries and set the random seed to ensure reproducibility.
3: Input the simulation factors: sample size (n), number of explanatory variables (p), precision

parameter (φ), correlation coefficient (ρ), and true parameter vector (β).
4: Generate multicollinear explanatory variables using

xi j =
(
1 − ρ2

) 1
2 zi j + ρzi( j+1), i = 1, . . . , n; j = 1, . . . , r.

5: Compute the mean of the beta distribution

µi =
exp

(
β0 + β1xi1 + β2xi2 + · · · + βpxir

)
1 + exp

(
β0β1xi1 + β2xi2 + · · · + βpxir

) , i = 1, . . . , n; j = 1, . . . , r, with
p∑

j=1

β2
j = 1.

6: Generate the response variable from the generalized Poisson distribution

yi ∼ Beta(µi, φ).

7: Fit the BRM using the ‘betareg‘ package to obtain

betareg(y ∼ X).

8: Compute the intermediate matrices Ŵ and ẑ.
9: Compute the biasing parameters for the proposed estimators along with the existing estimator as

described in Table 1.
10: Determine β̂, representing the selected estimator (BMLE, BRRE, BLE, BJSE, BLTE, BOKE,

BDKE, BMRTE, BKLE, and BAUMRTE).
11: Compute the squared distance

D =
(
β̂i − β

)t (
β̂i − β

)
.

12: Repeat Steps 6–10 for 1000 replications.
13: Compute the estimated MSE

MSE(β̂) =

∑R
i=1

(
β̂i − β

)t (
β̂i − β

)
R

.

14: Stop

AIMS Mathematics Volume 11, Issue 1, 85–126.



106

4.2. Simulation results discussion

Tables 3–11 present the estimated MSE values for various biased estimators in a BRM, including
the proposed BAUMRTE with three parameters, along with existing methods.

The tables are organized based on different values of the correlation coefficient (ρ), sample size
(n), number of explanatory variables p, and dispersion parameter (φ). The estimators compared
include BMLE, BRRE, BLE, BJSE, BLTE, BOKE, BDKE, BMRTE, BKLE, BJRRE, BJKLE, and
the proposed BAUMRTE with three parameters (k̂1, d̂1), (k̂2, d̂2), and (k̂3, d̂3).

• As the sample size (n) increases, the MSE values for all estimators tend to decrease. This is
expected, as larger sample sizes typically yield more accurate estimates of the parameters.

• The dispersion parameter φ also affects the MSE values. Lower values of φ (e.g., 0.5) tend to
result in higher MSEs, while higher values (e.g., 1.5) lead to lower MSEs.

• Higher values of ρ (e.g., 0.95, 0.99) result in higher MSE values for most estimators, indicating
that high correlation among predictors can degrade estimation performance.

• Increasing the number of covariates p generally increases the MSE for all estimators, especially
in small sample sizes and high multicollinearity scenarios.

• The traditional BMLE has higher MSE values in each scenario, indicating the presence of
multicollinearity.

Using existing biased estimators introduces an MSE lower than the BMLE. Furthermore, the
BAUMRTE outperforms these existing methods, particularly in challenging conditions (high ρ,
low φ, and small n).

• The proposed BAUMRTE consistently shows lower MSE values compared to other estimators
across different scenarios. This indicates that BAUMRTE is more efficient in estimating the
parameters of the BRM.

Among the three variants of BAUMRTE, the BAUMRTE(k̂2, d̂2) generally performs the best in
most scenarios, often yielding the lowest MSE values. This suggests that the second variant of
the proposed estimator is the most effective in reducing bias and variance.

Simulation results show that the proposed BAUMRTE, particularly the variable BAUMRTE(k̂2, d̂2),
is highly effective at reducing the MSE across a wide range of scenarios.

This estimator outperforms existing ones, especially under conditions of high multicollinearity and
low dispersion, making it the best choice for coefficient estimation in BRM under multicollinearity.
BAUMRTE’s performance indicates that it is a valuable addition to the range of feature estimation
tools, as it offers the lowest MSE, meaning it achieves the greatest balance between bias and variance,
especially in cases where traditional methods might fail to provide accurate estimates.
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Table 3. Estimated MSE values when p = 3 and φ = 0.5.

ρ n
BMLE BRRE BLE BJSE BLTE BOKE BDKE BMRTE BKLE BJRRE BJKLE BAUMRTE

- k̂ d̂ ĉ k̂, d̂ k̂, d̂ k̂, d̂ k̂, d̂ k̂ k̂ k̂ k̂1, d̂1 k̂2, d̂2 k̂3, d̂3

0.80 30 1.0788 0.8022 0.5213 0.7982 0.4311 0.8358 0.6460 0.9295 0.7931 0.3848 0.3790 0.3013 0.2830 0.3129

75 0.4907 0.4270 0.3626 0.4135 0.2651 0.4351 0.3791 0.4635 0.4255 0.2195 0.2187 0.1800 0.1695 0.1866

150 0.1847 0.1740 0.1590 0.1775 0.1332 0.1754 0.1639 0.1812 0.1739 0.1018 0.1017 0.0879 0.0844 0.0902

200 0.1281 0.1229 0.1173 0.1258 0.1018 0.1234 0.1174 0.1266 0.1229 0.0755 0.0755 0.0667 0.0642 0.0683

300 0.1387 0.1340 0.1271 0.1360 0.1138 0.1346 0.1292 0.1372 0.1339 0.0864 0.0864 0.0744 0.0708 0.0766

400 0.0826 0.0807 0.0778 0.0831 0.0718 0.0809 0.0786 0.0821 0.0806 0.0564 0.0564 0.0499 0.0478 0.0511

0.85 30 1.2482 0.9698 0.6299 0.9843 0.6106 1.0036 0.8336 1.0820 0.9611 0.5119 0.5050 0.4086 0.3835 0.4266

75 0.5978 0.5046 0.4074 0.5093 0.2807 0.5169 0.4299 0.5609 0.5012 0.2383 0.2372 0.1936 0.1829 0.2006

150 0.2386 0.2190 0.1955 0.2260 0.1508 0.2214 0.1998 0.2324 0.2186 0.1170 0.1169 0.0987 0.0940 0.1016

200 0.1771 0.1669 0.1539 0.1720 0.1248 0.1682 0.1558 0.1743 0.1668 0.0865 0.0864 0.0724 0.0686 0.0748

300 0.1384 0.1323 0.1243 0.1324 0.1072 0.1329 0.1265 0.1365 0.1323 0.0754 0.0753 0.0644 0.0605 0.0666

400 0.0931 0.0900 0.0860 0.0907 0.0760 0.0903 0.0866 0.0922 0.0899 0.0537 0.0537 0.0457 0.0429 0.0473

0.90 30 2.2226 1.5509 0.6456 1.5264 0.9684 1.6169 1.2713 1.8181 1.5315 0.7455 0.7167 0.5623 0.5301 0.5993

75 0.9208 0.7357 0.4809 0.7333 0.3522 0.7539 0.5949 0.8495 0.7278 0.3537 0.3510 0.2813 0.2607 0.2941

150 0.3948 0.3389 0.2738 0.3543 0.1622 0.3436 0.2866 0.3774 0.3370 0.1369 0.1367 0.1092 0.1004 0.1145

200 0.2819 0.2622 0.2323 0.2648 0.1849 0.2649 0.2407 0.2762 0.2618 0.1371 0.1370 0.1128 0.1059 0.1168

300 0.1909 0.1782 0.1643 0.1779 0.1283 0.1796 0.1648 0.1873 0.1780 0.0812 0.0812 0.0641 0.0589 0.0672

400 0.1631 0.1528 0.1418 0.1567 0.1108 0.1538 0.1414 0.1603 0.1526 0.0717 0.0717 0.0580 0.0536 0.0606

0.95 30 2.3864 1.6519 0.5491 1.5407 0.6983 1.7195 1.2203 2.0587 1.6296 0.7719 0.7491 0.5856 0.5409 0.6190

75 2.4742 1.7168 0.6157 1.6361 0.8177 1.7861 1.3040 2.1352 1.6970 0.8533 0.8271 0.6406 0.5917 0.6653

150 0.6825 0.5449 0.4040 0.5625 0.2342 0.5579 0.4327 0.6354 0.5398 0.2371 0.2363 0.1862 0.1700 0.1957

200 0.6107 0.5312 0.3924 0.5355 0.2798 0.5385 0.4545 0.5869 0.5286 0.2655 0.2649 0.2226 0.2071 0.2315

300 0.3857 0.3456 0.2825 0.3628 0.2104 0.3494 0.3028 0.3746 0.3443 0.1814 0.1812 0.1546 0.1455 0.1597

400 0.2627 0.2380 0.2074 0.2444 0.1437 0.2403 0.2125 0.2558 0.2374 0.0979 0.0979 0.0780 0.0713 0.0819

0.99 30 12.0145 7.9712 0.4312 6.0239 3.6898 8.3107 6.1247 10.0219 7.9767 3.9536 2.6399 2.2860 2.6979 2.6679

75 8.7413 5.7251 0.3805 4.4730 2.6077 5.9589 4.3266 7.3354 5.7138 2.7507 2.5115 1.9789 1.8839 2.1044

150 3.6023 2.3597 0.4729 2.0484 0.8154 2.4614 1.6773 3.1126 2.3436 1.0703 1.0468 0.7947 0.7163 0.8414

200 2.7489 1.9133 0.5570 1.7554 0.6981 1.9898 1.3680 2.4510 1.8955 0.9019 0.8943 0.6685 0.5987 0.7091

300 1.4617 0.9922 0.4523 1.0198 0.3230 1.0340 0.6675 1.2953 0.9711 0.3948 0.3933 0.2884 0.2558 0.3075

400 1.4752 1.0642 0.5194 1.0664 0.3624 1.1062 0.7450 1.3432 1.0490 0.4780 0.4766 0.3635 0.3269 0.3846
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Table 4. Estimated MSE values when p = 3 and φ = 1.

ρ n
BMLE BRRE BLE BJSE BLTE BOKE BDKE BMRTE BKLE BJRRE BJKLE BAUMRTE

- k̂ d̂ ĉ k̂, d̂ k̂, d̂ k̂, d̂ k̂, d̂ k̂ k̂ k̂ k̂1, d̂1 k̂2, d̂2 k̂3, d̂3

0.80 30 0.8812 0.4796 0.4283 0.5796 0.4087 0.5211 0.4784 0.3930 0.4638 0.2109 0.2100 0.1804 0.1802 0.1824

75 0.4458 0.3539 0.3407 0.3869 0.2993 0.3685 0.3493 0.3272 0.3493 0.1618 0.1615 0.1424 0.1415 0.1442

150 0.1832 0.1653 0.1601 0.1724 0.1466 0.1681 0.1645 0.1602 0.1648 0.0855 0.0854 0.0754 0.0748 0.0763

200 0.0971 0.0914 0.0904 0.0967 0.0852 0.0921 0.0908 0.0910 0.0913 0.0520 0.0520 0.0501 0.0512 0.0499

300 0.1032 0.0966 0.0960 0.1004 0.0901 0.0976 0.0959 0.0958 0.0964 0.0516 0.0516 0.0452 0.0444 0.0460

400 0.0833 0.0794 0.0790 0.0831 0.0754 0.0802 0.0789 0.0790 0.0793 0.0469 0.0469 0.0412 0.0405 0.0417

0.85 30 0.9914 0.6201 0.5581 0.7926 0.6160 0.6812 0.6582 0.4165 0.6003 0.2740 0.2725 0.2243 0.2204 0.2295

75 0.4917 0.3697 0.3573 0.4238 0.3015 0.3878 0.3639 0.3366 0.3627 0.1704 0.1701 0.1562 0.1566 0.1573

150 0.2430 0.2070 0.2045 0.2236 0.1758 0.2138 0.2021 0.2024 0.2056 0.0924 0.0924 0.0806 0.0804 0.0814

200 0.1518 0.1365 0.1342 0.1481 0.1199 0.1384 0.1342 0.1367 0.1361 0.0663 0.0663 0.0595 0.0588 0.0602

300 0.1385 0.1266 0.1258 0.1331 0.1153 0.1288 0.1252 0.1251 0.1264 0.0576 0.0576 0.0480 0.0466 0.0490

400 0.0822 0.0774 0.0771 0.0798 0.0729 0.0782 0.0770 0.0767 0.0773 0.0408 0.0407 0.0349 0.0340 0.0357

0.90 30 1.7463 0.9608 0.6226 1.2599 0.9724 1.0770 0.9749 0.7501 0.9387 0.4107 0.4044 0.3060 0.2932 0.3210

75 0.7629 0.4901 0.4337 0.6156 0.3992 0.5305 0.4771 0.4239 0.4728 0.1809 0.1804 0.1407 0.1360 0.1448

150 0.3780 0.2853 0.2720 0.3310 0.2138 0.2980 0.2762 0.2727 0.2801 0.0919 0.0918 0.0735 0.0703 0.0759

200 0.2107 0.1816 0.1790 0.1992 0.1538 0.1865 0.1777 0.1794 0.1806 0.0681 0.0681 0.0567 0.0555 0.0579

300 0.1769 0.1573 0.1561 0.1696 0.1391 0.1610 0.1546 0.1558 0.1567 0.0631 0.0631 0.0518 0.0502 0.0530

400 0.1405 0.1257 0.1249 0.1349 0.1116 0.1282 0.1238 0.1244 0.1253 0.0449 0.0449 0.0365 0.0350 0.0376

0.95 30 4.7316 2.6877 1.8482 2.9236 1.0910 1.8300 1.6459 1.4533 1.6492 0.9294 0.9688 0.5072 0.4294 0.4326

75 1.9818 1.0232 0.6025 1.3430 0.9523 1.1584 0.9979 0.8491 0.9975 0.3890 0.3837 0.2753 0.2543 0.2921

150 0.5639 0.3762 0.3554 0.4603 0.2752 0.4034 0.3556 0.3507 0.3626 0.1202 0.1200 0.0910 0.0847 0.0951

200 0.4283 0.3161 0.2990 0.3741 0.2372 0.3337 0.3011 0.3060 0.3096 0.0984 0.0983 0.0721 0.0667 0.0755

300 0.2886 0.2301 0.2259 0.2605 0.1809 0.2390 0.2222 0.2266 0.2273 0.0689 0.0688 0.0515 0.0476 0.0540

400 0.2055 0.1711 0.1680 0.1957 0.1386 0.1765 0.1661 0.1692 0.1695 0.0451 0.0451 0.0352 0.0335 0.0364

0.99 30 10.9418 5.5100 0.4468 5.6873 5.4857 6.3302 5.4645 4.5860 5.5208 2.1280 1.7697 1.0788 1.1961 1.3162

75 6.0788 2.5616 0.3554 2.8455 2.2180 2.9175 2.4596 2.3008 2.5695 0.8578 0.8215 0.5535 0.5081 0.6070

150 3.0440 1.4396 0.4806 1.8456 1.2332 1.6586 1.3387 1.3052 1.4235 0.5225 0.5162 0.3282 0.2915 0.3539

200 2.3885 1.2308 0.5470 1.5728 1.0328 1.4056 1.1107 1.1678 1.1995 0.4556 0.4531 0.3006 0.2660 0.3223

300 1.3782 0.7374 0.4857 0.9979 0.5588 0.8214 0.6588 0.7147 0.7065 0.2561 0.2554 0.1745 0.1539 0.1871

400 1.1838 0.6734 0.4668 0.9123 0.4985 0.7506 0.5948 0.6603 0.6430 0.2359 0.2355 0.1547 0.1365 0.1658
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Table 5. Estimated MSE values when p = 3 and φ = 1.5.

ρ n
BMLE BRRE BLE BJSE BLTE BOKE BDKE BMRTE BKLE BJRRE BJKLE BAUMRTE

- k̂ d̂ ĉ k̂, d̂ k̂, d̂ k̂, d̂ k̂, d̂ k̂ k̂ k̂ k̂1, d̂1 k̂2, d̂2 k̂3, d̂3

0.80 30 0.8216 0.4542 0.4987 0.6620 0.5400 0.5206 0.5389 0.2358 0.4317 0.1995 0.1990 0.1905 0.1973 0.1888

75 0.3627 0.2706 0.2902 0.3216 0.2668 0.2914 0.2923 0.1717 0.2656 0.1265 0.1264 0.1243 0.1309 0.1218

150 0.1745 0.1500 0.1546 0.1641 0.1456 0.1548 0.1561 0.1200 0.1491 0.0754 0.0754 0.0744 0.0778 0.0732

200 0.0992 0.0908 0.0926 0.0977 0.0891 0.0923 0.0928 0.0807 0.0906 0.0494 0.0494 0.0505 0.0536 0.0494

300 0.0840 0.0768 0.0786 0.0812 0.0755 0.0783 0.0784 0.0682 0.0767 0.0399 0.0399 0.0368 0.0377 0.0366

400 0.0716 0.0670 0.0681 0.0701 0.0661 0.0680 0.0680 0.0614 0.0669 0.0375 0.0375 0.0342 0.0347 0.0343

0.85 30 0.9856 0.5573 0.5947 0.7973 0.6980 0.6596 0.6707 0.2614 0.5306 0.2553 0.2546 0.2268 0.2319 0.2266

75 0.4349 0.2945 0.3221 0.3709 0.2901 0.3178 0.3243 0.1791 0.2852 0.1256 0.1255 0.1286 0.1354 0.1261

150 0.2020 0.1635 0.1731 0.1881 0.1596 0.1708 0.1726 0.1213 0.1615 0.0730 0.0730 0.0738 0.0783 0.0721

200 0.1053 0.0914 0.0946 0.1032 0.0889 0.0942 0.0946 0.0756 0.0909 0.0432 0.0432 0.0440 0.0468 0.0429

300 0.1001 0.0894 0.0920 0.0960 0.0873 0.0915 0.0916 0.0776 0.0890 0.0388 0.0388 0.0364 0.0377 0.0361

400 0.0812 0.0744 0.0764 0.0802 0.0735 0.0756 0.0761 0.0656 0.0742 0.0348 0.0348 0.0314 0.0319 0.0314

0.90 30 1.6420 0.7338 0.6442 1.1996 1.0466 0.8936 0.9141 0.3170 0.7009 0.2907 0.2883 0.2315 0.2300 0.2375

75 0.6665 0.3903 0.4029 0.5631 0.4025 0.4388 0.4319 0.2333 0.3676 0.1585 0.1582 0.1507 0.1557 0.1494

150 0.3727 0.2560 0.2772 0.3285 0.2418 0.2794 0.2720 0.1732 0.2469 0.0789 0.0788 0.0697 0.0715 0.0696

200 0.1876 0.1538 0.1617 0.1780 0.1466 0.1600 0.1605 0.1204 0.1522 0.0508 0.0508 0.0484 0.0505 0.0478

300 0.1637 0.1406 0.1463 0.1547 0.1381 0.1458 0.1454 0.1151 0.1398 0.0504 0.0504 0.0418 0.0417 0.0423

400 0.1271 0.1091 0.1140 0.1225 0.1062 0.1124 0.1130 0.0899 0.1085 0.0330 0.0330 0.0285 0.0289 0.0287

0.95 30 2.5522 1.1826 0.7847 1.6984 1.5582 1.4499 1.4045 0.5513 1.1508 0.4361 0.4314 0.2914 0.2745 0.3088

75 2.2285 0.9727 0.7130 1.5008 1.3612 1.2302 1.1472 0.3936 0.9351 0.3259 0.3226 0.1985 0.1822 0.2121

150 0.4727 0.2782 0.3110 0.4029 0.2660 0.3098 0.3024 0.1630 0.2605 0.0803 0.0803 0.0701 0.0703 0.0708

200 0.3488 0.2354 0.2536 0.3130 0.2155 0.2509 0.2530 0.1565 0.2263 0.0638 0.0638 0.0526 0.0515 0.0538

300 0.2179 0.1601 0.1738 0.2048 0.1508 0.1699 0.1690 0.1148 0.1558 0.0409 0.0408 0.0355 0.0357 0.0357

400 0.2256 0.1750 0.1866 0.2083 0.1655 0.1837 0.1839 0.1309 0.1719 0.0422 0.0422 0.0337 0.0328 0.0345

0.99 30 8.8874 3.4092 0.5233 4.4427 5.0327 4.1831 4.3221 1.3775 3.4327 1.0918 0.9824 0.5782 0.6128 0.7057

75 6.2378 2.3026 0.4255 3.3065 3.4000 2.9007 2.8596 0.9572 2.3030 0.7218 0.6991 0.4250 0.3936 0.4739

150 2.8047 1.0404 0.4849 1.7019 1.3797 1.3183 1.1773 0.5237 1.0274 0.3291 0.3262 0.1972 0.1749 0.2135

200 1.7176 0.6457 0.4330 1.1470 0.7787 0.7802 0.7279 0.3285 0.6190 0.1904 0.1898 0.1232 0.1089 0.1326

300 1.3369 0.5818 0.5130 0.9662 0.6873 0.7153 0.6338 0.3004 0.5439 0.1747 0.1744 0.1097 0.0966 0.1180

400 0.9814 0.4178 0.4093 0.7325 0.4554 0.4978 0.4567 0.2170 0.3808 0.1112 0.1111 0.0743 0.0653 0.0799
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Table 6. Estimated MSE values when p = 6 and φ = 0.5.

ρ n
BMLE BRRE BLE BJSE BLTE BOKE BDKE BMRTE BKLE BJRRE BJKLE BAUMRTE

- k̂ d̂ ĉ k̂, d̂ k̂, d̂ k̂, d̂ k̂, d̂ k̂ k̂ k̂ k̂1, d̂1 k̂2, d̂2 k̂3, d̂3

0.80 30 2.9670 2.1730 1.3108 1.8209 1.3791 2.2349 1.9782 2.2459 2.1562 0.5814 0.5733 0.4886 0.4693 0.5054

75 1.1348 0.9683 0.7679 0.8061 0.4901 0.9732 0.8550 1.0612 0.9635 0.2680 0.2666 0.2426 0.2333 0.2485

150 0.4743 0.4408 0.4029 0.4082 0.3146 0.4419 0.4114 0.4636 0.4402 0.1552 0.1551 0.1470 0.1447 0.1486

200 0.3705 0.3512 0.3269 0.3372 0.2690 0.3520 0.3328 0.3649 0.3510 0.1385 0.1385 0.1275 0.1236 0.1298

300 0.2607 0.2497 0.2374 0.2344 0.2035 0.2500 0.2394 0.2575 0.2496 0.0927 0.0927 0.0853 0.0825 0.0870

400 0.2154 0.2096 0.1998 0.2036 0.1813 0.2097 0.2042 0.2137 0.2095 0.0978 0.0978 0.0908 0.0879 0.0925

0.85 30 4.2530 3.0135 1.3790 2.3261 1.7211 3.0709 2.6616 3.3601 2.9955 0.7896 0.7708 0.6744 0.6476 0.7028

75 2.3497 1.8554 1.0922 1.5247 0.9595 1.8834 1.5785 2.1133 1.8416 0.5668 0.5421 0.4763 0.4619 0.4857

150 0.6814 0.6176 0.5474 0.5544 0.3908 0.6197 0.5621 0.6609 0.6163 0.1714 0.1712 0.1559 0.1506 0.1591

200 0.3965 0.3715 0.3412 0.3491 0.2705 0.3721 0.3486 0.3892 0.3711 0.1144 0.1143 0.1067 0.1036 0.1086

300 0.3320 0.3170 0.2967 0.3109 0.2530 0.3182 0.3033 0.3270 0.3169 0.1172 0.1172 0.1061 0.1030 0.1079

400 0.4966 0.4831 0.3815 0.4663 0.4244 0.4836 0.4711 0.4922 0.4830 0.2760 0.2752 0.2553 0.2477 0.2597

0.90 30 4.9709 3.7110 1.4768 2.7929 2.2004 3.7468 3.3038 4.1461 3.6884 1.0957 1.0595 0.9437 0.9125 0.9842

75 2.5026 1.9482 1.1622 1.5370 0.9378 1.9748 1.6861 2.1589 1.9328 0.4903 0.4849 0.4179 0.4006 0.4332

150 1.1218 0.9694 0.7592 0.8232 0.4922 0.9758 0.8483 1.0689 0.9649 0.2663 0.2654 0.2323 0.2216 0.2385

200 2.2286 1.7443 0.6623 1.1577 0.6171 1.7955 1.1280 2.1644 1.7425 0.4780 0.3485 0.3514 0.3879 0.3538

300 0.5628 0.5260 0.4477 0.4983 0.3898 0.5268 0.4963 0.5490 0.5255 0.1828 0.1825 0.1671 0.1602 0.1713

400 0.4376 0.4138 0.3799 0.3843 0.3053 0.4143 0.3906 0.4311 0.4135 0.1218 0.1218 0.1099 0.1046 0.1129

0.95 30 11.2098 7.6255 1.7086 5.2815 4.8911 7.8688 6.8563 8.5009 7.6506 2.1556 1.9709 1.6719 1.6867 1.7928

75 4.5551 3.4717 1.5166 2.4152 1.3457 3.4918 2.9256 4.0698 3.4602 0.9397 0.9251 0.8197 0.7754 0.8503

150 2.3293 1.8995 1.1573 1.4488 0.6775 1.9089 1.5847 2.1825 1.8880 0.5398 0.5338 0.4729 0.4462 0.4902

200 1.2322 1.0315 0.7911 0.9087 0.4234 1.0407 0.8568 1.1688 1.0249 0.2514 0.2510 0.2183 0.2066 0.2248

300 1.1592 1.0233 0.8130 0.8967 0.5473 1.0293 0.9024 1.1069 1.0193 0.3158 0.3154 0.2766 0.2627 0.2843

400 0.7794 0.6938 0.5854 0.6095 0.3745 0.6953 0.6160 0.7536 0.6916 0.1595 0.1594 0.1414 0.1328 0.1462

0.99 30 47.3470 32.9630 1.1357 20.7060 19.4817 33.5061 29.7588 36.2039 33.0441 8.8560 6.4381 5.7973 7.1081 5.6944

75 27.3408 24.0516 0.8918 17.5186 19.9658 24.0987 22.9284 25.9883 24.0676 4.1547 3.4578 3.0145 3.5478 2.9874

150 11.0345 7.9775 1.2261 4.5935 2.4974 8.0554 6.4902 9.7487 7.9670 1.9082 1.8585 1.6041 1.5102 1.6595

200 5.9728 4.1633 1.2786 2.8238 1.3494 4.2237 3.2335 5.2614 4.1442 0.9252 0.9182 0.7672 0.7137 0.7979

300 6.0841 4.8339 1.4143 3.5761 2.1256 4.8604 4.0712 5.6534 4.8130 1.9470 1.9169 1.7627 1.7003 1.8017

400 3.5227 2.5810 1.1915 1.8195 0.6369 2.6019 1.9773 3.2035 2.5557 0.5970 0.5952 0.5128 0.4765 0.5328
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Table 7. Estimated MSE values when p = 6 and φ = 1.

ρ n
BMLE BRRE BLE BJSE BLTE BOKE BDKE BMRTE BKLE BJRRE BJKLE BAUMRTE

- k̂ d̂ ĉ k̂, d̂ k̂, d̂ k̂, d̂ k̂, d̂ k̂ k̂ k̂ k̂1, d̂1 k̂2, d̂2 k̂3, d̂3

0.80 30 2.6417 1.6188 1.2868 1.6734 1.6067 1.6891 1.8096 1.0279 1.5999 0.3930 0.3907 0.3502 0.3441 0.3581

75 0.9045 0.6727 0.6577 0.6657 0.5307 0.6871 0.6851 0.5843 0.6600 0.1548 0.1547 0.1518 0.1540 0.1511

150 0.4567 0.4026 0.3955 0.3826 0.3532 0.4053 0.4044 0.3873 0.4012 0.1251 0.1251 0.1245 0.1265 0.1239

200 0.2652 0.2414 0.2394 0.2421 0.2192 0.2424 0.2414 0.2375 0.2409 0.0804 0.0804 0.0818 0.0836 0.0811

300 0.1964 0.1827 0.1820 0.1849 0.1703 0.1834 0.1827 0.1807 0.1825 0.0695 0.0695 0.0715 0.0734 0.0707

400 0.1749 0.1661 0.1642 0.1634 0.1561 0.1667 0.1658 0.1653 0.1660 0.0627 0.0627 0.0601 0.0599 0.0604

0.85 30 4.3190 2.6353 1.6421 2.6307 2.7420 2.7906 2.9784 1.6094 2.6099 0.5963 0.5893 0.4901 0.4765 0.5102

75 1.9850 1.2363 0.9165 1.3118 1.1477 1.2948 1.3136 0.9307 1.2124 0.2647 0.2605 0.2346 0.2333 0.2393

150 0.5648 0.4712 0.4637 0.4647 0.3935 0.4768 0.4705 0.4519 0.4677 0.1103 0.1103 0.1096 0.1112 0.1092

200 0.3413 0.3021 0.2987 0.2987 0.2653 0.3041 0.3015 0.2957 0.3009 0.0791 0.0791 0.0786 0.0800 0.0782

300 0.2944 0.2703 0.2657 0.2731 0.2433 0.2720 0.2689 0.2687 0.2698 0.0860 0.0860 0.0842 0.0849 0.0841

400 0.2150 0.2026 0.1985 0.2053 0.1876 0.2034 0.2016 0.2025 0.2024 0.0747 0.0747 0.0710 0.0709 0.0713

0.90 30 4.4002 2.5546 1.5056 2.5816 2.7104 2.6666 2.8830 1.5700 2.5411 0.5611 0.5520 0.4566 0.4455 0.4797

75 2.0928 1.3688 1.1164 1.2879 1.0061 1.4075 1.4229 1.0993 1.3364 0.2811 0.2803 0.2583 0.2544 0.2619

150 0.8688 0.6515 0.6239 0.6594 0.4819 0.6660 0.6426 0.6118 0.6388 0.1242 0.1242 0.1177 0.1183 0.1178

200 0.6608 0.5415 0.5275 0.5312 0.4270 0.5467 0.5360 0.5271 0.5362 0.1016 0.1016 0.0949 0.0933 0.0960

300 0.5146 0.4532 0.4284 0.4407 0.3888 0.4569 0.4504 0.4474 0.4513 0.1094 0.1093 0.0972 0.0946 0.0989

400 0.3645 0.3285 0.3195 0.3270 0.2896 0.3298 0.3269 0.3266 0.3277 0.0762 0.0761 0.0712 0.0700 0.0721

0.95 30 9.5361 4.8702 1.6527 4.6055 5.6494 5.1299 5.7809 2.9194 4.9875 0.9694 0.9194 0.7359 0.7435 0.8057

75 3.2469 1.8671 1.2360 1.7471 1.3737 1.9196 1.9534 1.5263 1.8326 0.3331 0.3304 0.2850 0.2702 0.2962

150 1.6243 1.0275 0.9299 1.0421 0.6692 1.0597 1.0198 0.9292 0.9978 0.1549 0.1546 0.1321 0.1253 0.1363

200 1.7468 1.4190 1.0578 1.3898 1.1260 1.4410 1.3956 1.3777 1.4016 0.4570 0.4548 0.3794 0.3637 0.3898

300 1.0316 0.8251 0.7501 0.8133 0.6166 0.8347 0.8040 0.8259 0.8160 0.1845 0.1843 0.1620 0.1541 0.1666

400 0.7546 0.6067 0.5865 0.5945 0.4739 0.6146 0.6002 0.5913 0.6007 0.0991 0.0991 0.0842 0.0796 0.0869

0.99 30 38.1912 19.9095 1.1040 16.4236 21.5827 21.2035 23.7256 12.0603 20.1210 3.4220 2.9865 2.1619 2.4558 2.3520

75 17.5440 10.0358 1.1270 7.1146 7.6831 10.3084 10.5371 8.4968 10.0732 1.8161 1.7547 1.4401 1.3902 1.5371

150 8.6985 4.6973 1.1318 3.5960 3.1040 4.8252 4.8131 4.2352 4.7094 0.7406 0.7302 0.6055 0.5646 0.6353

200 4.7580 2.6511 1.1335 2.1995 1.5442 2.7045 2.6511 2.5197 2.6357 0.4124 0.4105 0.3444 0.3179 0.3603

300 4.1901 2.4543 1.2632 2.1289 1.4840 2.5231 2.4026 2.3874 2.4282 0.4304 0.4290 0.3560 0.3296 0.3716

400 3.2814 1.9780 1.2306 1.8382 1.2104 2.0353 1.9129 1.9397 1.9447 0.3284 0.3279 0.2648 0.2440 0.2767
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Table 8. Estimated MSE values when p = 6 and φ = 1.5.

ρ n
BMLE BRRE BLE BJSE BLTE BOKE BDKE BMRTE BKLE BJRRE BJKLE BAUMRTE

- k̂ d̂ ĉ k̂, d̂ k̂, d̂ k̂, d̂ k̂, d̂ k̂ k̂ k̂ k̂1, d̂1 k̂2, d̂2 k̂3, d̂3

0.80 30 2.3450 1.2272 1.2395 1.5200 1.6630 1.2917 1.6502 0.4235 1.2017 0.3102 0.3195 0.3044 0.3067 0.3058

75 0.7324 0.5077 0.5649 0.5737 0.4939 0.5165 0.5776 0.2853 0.4909 0.2249 0.2349 0.2001 0.2090 0.1957

150 0.3355 0.2815 0.2946 0.2885 0.2734 0.2854 0.2984 0.2151 0.2795 0.1051 0.1052 0.1008 0.1045 0.1046

200 0.2993 0.2626 0.2724 0.2654 0.2569 0.2651 0.2732 0.2187 0.2616 0.0811 0.0811 0.0768 0.0706 0.0751

300 0.2047 0.1852 0.1910 0.1879 0.1832 0.1864 0.1913 0.1595 0.1848 0.0685 0.0685 0.0649 0.0686 0.0632

400 0.1351 0.1263 0.1283 0.1305 0.1246 0.1268 0.1290 0.1148 0.1261 0.0555 0.0555 0.0594 0.0619 0.0582

0.85 30 3.8135 1.7783 1.6127 2.3202 2.6853 1.9662 2.5204 0.5119 1.7611 0.3388 0.3374 0.2952 0.2923 0.3013

75 1.5625 0.9104 0.9384 1.0772 0.9942 0.9597 1.0701 0.4747 0.8790 0.2355 0.2353 0.2288 0.2305 0.2288

150 0.5621 0.4440 0.4735 0.4688 0.4223 0.4523 0.4746 0.3267 0.4380 0.1157 0.1157 0.1137 0.1188 0.1113

200 0.2973 0.2521 0.2632 0.2654 0.2445 0.2552 0.2655 0.1987 0.2504 0.0786 0.0786 0.0663 0.0609 0.0642

300 0.2796 0.2492 0.2549 0.2549 0.2414 0.2516 0.2574 0.2151 0.2484 0.0723 0.0723 0.0714 0.0707 0.0719

400 0.1972 0.1813 0.1840 0.1878 0.1780 0.1827 0.1856 0.1633 0.1811 0.0659 0.0659 0.0654 0.0654 0.0655

0.90 30 3.8261 1.9567 1.4500 2.3316 2.6978 2.0710 2.5924 0.6519 1.9412 0.4308 0.4264 0.3788 0.3760 0.3937

75 2.0685 1.1309 1.1514 1.3381 1.2645 1.2049 1.4085 0.4816 1.0839 0.2509 0.2507 0.2488 0.2529 0.2476

150 0.7041 0.4808 0.5317 0.5565 0.4461 0.4922 0.5361 0.2981 0.4628 0.1099 0.1099 0.1006 0.1064 0.1079

200 0.5100 0.3897 0.4164 0.4201 0.3710 0.3974 0.4215 0.2733 0.3831 0.0722 0.0721 0.0700 0.0717 0.0713

300 0.4373 0.3586 0.3779 0.3768 0.3450 0.3644 0.3785 0.2813 0.3552 0.0709 0.0709 0.0696 0.0706 0.0694

400 0.3463 0.2985 0.3096 0.3052 0.2887 0.3014 0.3119 0.2455 0.2969 0.0533 0.0533 0.0533 0.0544 0.0529

0.95 30 8.2790 3.7263 1.5840 4.1862 5.5546 4.0239 5.1002 1.4072 3.9149 0.6908 0.6653 0.5355 0.5395 0.5819

75 3.0689 1.4222 1.2674 1.7767 1.7304 1.5329 1.8331 0.5503 1.3862 0.2397 0.2387 0.2006 0.1953 0.2056

150 1.4298 0.8196 0.8571 0.9585 0.7318 0.8599 0.9350 0.4601 0.7761 0.1221 0.1220 0.1080 0.1062 0.1094

200 0.9120 0.5860 0.6377 0.6952 0.5086 0.6025 0.6535 0.3618 0.5600 0.0864 0.0864 0.0855 0.0865 0.0853

300 0.8062 0.5816 0.6154 0.6344 0.5250 0.5943 0.6302 0.4020 0.5651 0.0915 0.0915 0.0824 0.0806 0.0836

400 0.6483 0.4773 0.5184 0.5130 0.4397 0.4872 0.5150 0.3401 0.4659 0.0533 0.0533 0.0481 0.0472 0.0488

0.99 30 35.8401 15.5501 1.3770 16.2436 24.2616 17.3908 23.0194 3.9106 15.9000 2.1494 1.9794 1.3155 1.4759 1.5334

75 16.1869 7.3850 1.1626 6.8037 9.0311 7.9701 9.5649 3.0471 7.4950 1.0361 1.0137 0.7715 0.7367 0.8291

150 8.3322 3.8358 1.2716 3.7389 4.1483 4.1154 4.7473 1.7985 3.8511 0.4929 0.4884 0.3782 0.3514 0.3990

200 4.5578 2.1581 1.2157 2.2927 2.1546 2.2872 2.6087 1.0878 2.1467 0.3135 0.3124 0.2483 0.2296 0.2600

300 3.1966 1.4510 1.0478 1.6457 1.3335 1.4986 1.7543 0.7661 1.4138 0.1870 0.1866 0.1569 0.1447 0.1642

400 2.9480 1.4599 1.2207 1.6785 1.3928 1.5426 1.7376 0.7494 1.4259 0.2007 0.2005 0.1562 0.1440 0.1634
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Table 9. Estimated MSE values when p = 9 and φ = 0.5.

ρ n
BMLE BRRE BLE BJSE BLTE BOKE BDKE BMRTE BKLE BJRRE BJKLE BAUMRTE

- k̂ d̂ ĉ k̂, d̂ k̂, d̂ k̂, d̂ k̂, d̂ k̂ k̂ k̂ k̂1, d̂1 k̂2, d̂2 k̂3, d̂3

0.80 30 6.6238 4.8580 2.4912 3.6714 3.6422 4.9250 4.7363 4.6370 4.8454 1.5477 1.5438 0.9785 0.9592 1.0052

75 2.0240 1.6713 1.3174 1.2605 0.9625 1.6786 1.5202 1.8249 1.6650 0.6584 0.6582 0.5465 0.5431 0.5490

150 1.0120 0.9184 0.8077 0.7806 0.6453 0.9203 0.8526 0.9770 0.9165 0.4469 0.4468 0.4205 0.4222 0.4201

200 0.8332 0.7892 0.6266 0.7077 0.6369 0.7909 0.7532 0.8168 0.7887 0.4479 0.4477 0.4083 0.4084 0.4091

300 0.4811 0.4638 0.4186 0.4340 0.4012 0.4641 0.4497 0.4750 0.4636 0.3082 0.3082 0.3003 0.3025 0.3014

400 0.3118 0.3014 0.2894 0.2791 0.2595 0.3017 0.2921 0.3087 0.3014 0.1938 0.1938 0.1791 0.1722 0.1876

0.85 30 9.2185 6.8710 3.0176 4.9183 4.7850 6.9619 6.6360 6.7984 6.8647 2.2704 2.2648 1.4444 1.4128 1.4815

75 2.5429 2.0614 1.5513 1.5317 1.1486 2.0714 1.8777 2.2464 2.0518 0.7505 0.7501 0.5857 0.5789 0.5907

150 1.0260 0.9261 0.8036 0.7279 0.5935 0.9278 0.8523 0.9905 0.9241 0.3447 0.3447 0.2916 0.2907 0.2924

200 0.6741 0.6258 0.5712 0.5300 0.4543 0.6268 0.5860 0.6585 0.6250 0.2854 0.2853 0.2739 0.2755 0.2732

300 0.5245 0.4960 0.4670 0.4524 0.3911 0.4967 0.4709 0.5159 0.4956 0.2838 0.2838 0.2607 0.2634 0.2694

400 0.4219 0.4066 0.3864 0.3759 0.3412 0.4069 0.3927 0.4176 0.4065 0.2502 0.2502 0.2362 0.2387 0.2351

0.90 30 10.1124 7.4642 2.5798 5.2013 5.3101 7.5391 7.0623 7.8001 7.4791 2.5477 2.5351 1.5904 1.5697 1.6440

75 4.7131 3.6866 2.0644 2.5040 1.8216 3.7050 3.2527 4.1639 3.6746 1.2349 1.2334 0.8276 0.8066 0.8431

150 1.7716 1.5514 1.2263 1.1698 0.8127 1.5540 1.3779 1.6965 1.5450 0.5721 0.5720 0.4346 0.4269 0.4390

200 0.9631 0.8681 0.7673 0.7023 0.5623 0.8694 0.7926 0.9327 0.8663 0.3827 0.3827 0.3425 0.3418 0.3430

300 0.9274 0.8563 0.7128 0.7323 0.6131 0.8576 0.7955 0.9057 0.8549 0.4400 0.4399 0.3864 0.3844 0.3879

400 0.5993 0.5597 0.5160 0.4974 0.4253 0.5605 0.5266 0.5857 0.5591 0.2903 0.2903 0.2873 0.2890 0.2866

0.95 30 17.4071 12.3405 2.5557 7.6540 7.9465 12.4777 11.7150 12.8132 12.3655 3.6306 3.6078 2.0901 2.0599 2.1787

75 10.6396 8.1689 2.2085 5.0289 4.2766 8.1963 7.1534 9.4596 8.1784 2.8729 2.8595 1.8154 1.7848 1.8817

150 3.2837 2.6344 1.7328 1.7843 1.0357 2.6436 2.2404 3.0300 2.6189 0.8686 0.8683 0.6067 0.5917 0.6154

200 2.2699 1.8463 1.3589 1.3060 0.7378 1.8542 1.5542 2.1224 1.8360 0.6011 0.6009 0.4347 0.4263 0.4395

300 1.4676 1.2841 1.0447 0.9800 0.6952 1.2862 1.1348 1.4108 1.2791 0.5197 0.5196 0.4211 0.4157 0.4241

400 1.3093 1.1712 0.9560 0.9425 0.6975 1.1736 1.0518 1.2685 1.1677 0.5072 0.5072 0.4152 0.4102 0.4181

0.99 30 113.6662 76.9805 1.7681 48.4301 57.2785 77.8915 76.9529 72.3421 77.4805 21.8890 21.0987 10.2108 11.9418 11.7974

75 48.5493 36.3516 1.6967 19.4982 17.7876 36.5367 32.4142 41.1616 36.3615 10.6700 10.4963 5.6897 5.7901 6.0230

150 16.4735 12.3199 2.0607 6.0582 4.0359 12.3730 10.3378 14.6946 12.3302 3.4201 3.4109 1.9444 1.8729 2.0003

200 12.6094 10.0699 2.2765 6.1722 4.4170 10.0955 8.6965 11.6645 10.0713 3.8412 3.8281 2.4902 2.4388 2.5594

300 9.2413 7.4179 2.2461 4.6712 3.0516 7.4383 6.3244 8.6228 7.4060 3.0576 3.0509 2.1755 2.1289 2.2149

400 7.0114 5.6136 2.1055 3.5682 2.2961 5.6340 4.7660 6.5101 5.5976 1.9838 1.9811 1.2432 1.2068 1.2745
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Table 10. Estimated MSE values when p = 9 and φ = 1.

ρ n
BMLE BRRE BLE BJSE BLTE BOKE BDKE BMRTE BKLE BJRRE BJKLE BAUMRTE

- k̂ d̂ ĉ k̂, d̂ k̂, d̂ k̂, d̂ k̂, d̂ k̂ k̂ k̂ k̂1, d̂1 k̂2, d̂2 k̂3, d̂3

0.80 30 5.5125 3.2282 2.4053 3.1323 3.7941 3.3603 3.9359 1.6454 3.2366 0.8635 0.8626 0.6370 0.6328 0.6454

75 1.6401 1.1809 1.1435 1.0506 0.9892 1.1942 1.2467 0.9619 1.1658 0.4576 0.4576 0.4269 0.4329 0.4139

150 0.7877 0.6565 0.6552 0.6061 0.5619 0.6616 0.6607 0.6250 0.6519 0.3261 0.3261 0.3052 0.3042 0.3107

200 0.4764 0.4220 0.4239 0.4025 0.3796 0.4241 0.4216 0.4136 0.4204 0.2378 0.2378 0.2307 0.2315 0.2302

300 0.3439 0.3205 0.3202 0.3086 0.3009 0.3215 0.3204 0.3175 0.3201 0.2335 0.2335 0.2207 0.2276 0.2273

400 0.2736 0.2570 0.2561 0.2449 0.2422 0.2577 0.2570 0.2549 0.2568 0.1773 0.1773 0.1694 0.1659 0.1663

0.85 30 7.3404 4.4194 2.7573 3.8961 4.7699 4.5640 5.1949 2.6192 4.4264 1.2238 1.2226 0.8596 0.8475 0.8733

75 2.2020 1.5254 1.4223 1.3438 1.2814 1.5482 1.6197 1.2166 1.5064 0.5402 0.5401 0.5122 0.5150 0.5112

150 0.8607 0.7170 0.6939 0.6357 0.5939 0.7209 0.7255 0.6734 0.7119 0.2616 0.2616 0.2598 0.2556 0.2570

200 0.6043 0.5299 0.5239 0.4898 0.4669 0.5329 0.5312 0.5141 0.5275 0.2572 0.2572 0.2479 0.2504 0.2549

300 0.4217 0.3810 0.3788 0.3686 0.3455 0.3824 0.3799 0.3775 0.3800 0.2499 0.2499 0.2305 0.2311 0.2301

400 0.3314 0.3086 0.3059 0.2915 0.2863 0.3093 0.3083 0.3064 0.3082 0.1988 0.1988 0.1807 0.1842 0.1850

0.90 30 8.9253 5.2196 2.7308 4.5318 5.9565 5.3999 6.2588 3.0732 5.3293 1.4493 1.4460 0.9354 0.9236 0.9620

75 4.0449 2.6352 1.9801 2.2199 2.2374 2.6885 2.8420 2.0190 2.6163 0.7237 0.7233 0.5502 0.5451 0.5546

150 1.5068 1.1775 1.0898 1.0161 0.9034 1.1869 1.1887 1.0925 1.1616 0.3687 0.3687 0.3328 0.3334 0.3328

200 0.8356 0.6962 0.6860 0.6357 0.5797 0.6999 0.6951 0.6786 0.6911 0.3352 0.3352 0.3278 0.3222 0.3257

300 0.6468 0.5516 0.5461 0.5080 0.4712 0.5547 0.5500 0.5411 0.5483 0.2853 0.2853 0.2699 0.2647 0.2675

400 0.5707 0.5035 0.4949 0.4705 0.4484 0.5061 0.5026 0.4954 0.5016 0.2685 0.2685 0.2440 0.2481 0.2420

0.95 30 17.1095 9.8603 2.7524 8.2089 10.9831 10.1339 11.9021 5.4907 10.0002 2.2576 2.2496 1.2923 1.3006 1.3493

75 10.6635 6.9302 2.4024 5.2919 6.1695 7.0294 7.3138 5.8350 6.9880 2.0748 2.0557 1.2648 1.2523 1.3274

150 2.6314 1.7564 1.5337 1.4972 1.2208 1.7760 1.7866 1.5814 1.7239 0.5208 0.5208 0.4333 0.4302 0.4353

200 1.8202 1.2812 1.1899 1.1193 0.8793 1.2921 1.2783 1.2206 1.2611 0.4171 0.4171 0.3709 0.3702 0.3715

300 1.2897 1.0134 0.9742 0.8932 0.7751 1.0191 1.0082 0.9840 1.0009 0.3875 0.3875 0.3620 0.3622 0.3621

400 1.0553 0.8370 0.8271 0.7439 0.6526 0.8414 0.8299 0.8206 0.8274 0.3101 0.3101 0.3022 0.3034 0.3017

0.99 30 105.3956 57.5323 1.8903 47.9468 70.0062 59.7886 73.4346 27.4129 59.0222 12.4044 12.1492 5.2065 6.1984 6.3389

75 39.1924 23.3492 1.8098 15.2414 19.9328 23.7928 25.8277 17.4031 23.5598 5.0983 5.0609 2.6181 2.6264 2.7884

150 14.4624 8.9305 2.1867 5.5013 5.7434 9.0402 9.2077 8.1210 8.9547 1.9136 1.9110 1.0896 1.0516 1.1193

200 9.1147 5.5530 2.1759 3.6316 3.3698 5.6255 5.6486 5.2216 5.5625 1.1788 1.1783 0.7293 0.7058 0.7437

300 8.2397 5.6807 2.2553 4.3130 3.9355 5.7185 5.7259 5.4714 5.6729 2.1071 2.1033 1.5098 1.4870 1.5436

400 5.5460 3.6353 2.0652 2.5667 2.1292 3.6774 3.6326 3.5156 3.6151 0.8877 0.8876 0.5845 0.5683 0.5938
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Table 11. Estimated MSE values when p = 9 and φ = 1.5.

ρ n
BMLE BRRE BLE BJSE BLTE BOKE BDKE BMRTE BKLE BJRRE BJKLE BAUMRTE

- k̂ d̂ ĉ k̂, d̂ k̂, d̂ k̂, d̂ k̂, d̂ k̂ k̂ k̂ k̂1, d̂1 k̂2, d̂2 k̂3, d̂3

0.80 30 4.7003 2.2477 2.2401 2.7079 3.4892 2.4578 3.3329 0.8047 2.2947 0.5982 0.5980 0.5335 0.5362 0.5333

75 1.5385 0.9804 1.1045 1.0128 1.0754 1.0074 1.1790 0.5373 0.9558 0.4622 0.4622 0.5540 0.5647 0.5483

150 0.7462 0.5872 0.6289 0.5852 0.5773 0.5975 0.6352 0.4265 0.5796 0.3391 0.3391 0.4421 0.4535 0.4364

200 0.4390 0.3730 0.3936 0.3667 0.3678 0.3768 0.3926 0.3012 0.3707 0.2384 0.2384 0.3368 0.3473 0.3315

300 0.3087 0.2791 0.2891 0.2786 0.2774 0.2806 0.2881 0.2459 0.2784 0.2411 0.2411 0.3274 0.3366 0.3228

400 0.2413 0.2230 0.2283 0.2205 0.2209 0.2240 0.2285 0.2020 0.2227 0.1916 0.1916 0.2672 0.2755 0.2631

0.85 30 6.2976 3.2725 2.5593 3.4880 4.6073 3.4587 4.5306 1.1506 3.3138 0.9034 0.9030 0.7226 0.7196 0.7285

75 1.8156 1.1327 1.2500 1.1756 1.2273 1.1595 1.3615 0.6517 1.1090 0.5336 0.5336 0.5100 0.5079 0.5059

150 0.8598 0.6711 0.7062 0.6395 0.6416 0.6787 0.7305 0.4672 0.6619 0.2673 0.2673 0.2339 0.2427 0.2329

200 0.5792 0.4827 0.5051 0.4668 0.4686 0.4861 0.5127 0.3774 0.4790 0.2538 0.2538 0.3194 0.3275 0.3154

300 0.4068 0.3531 0.3700 0.3521 0.3477 0.3559 0.3683 0.2978 0.3514 0.2500 0.2500 0.3284 0.3368 0.3242

400 0.3157 0.2857 0.2931 0.2786 0.2809 0.2874 0.2946 0.2503 0.2850 0.2052 0.2052 0.2772 0.2851 0.2732

0.90 30 6.5951 4.6222 4.2157 4.8315 5.2147 4.6857 5.5147 2.5784 4.2547 1.1457 1.2457 0.9875 0.8547 0.8350

75 3.4552 1.8943 1.8085 1.9105 2.2114 1.9682 2.4064 0.8216 1.8663 0.5338 0.5337 0.4901 0.4925 0.4894

150 1.2718 0.8856 0.9534 0.8656 0.8292 0.9006 0.9943 0.5544 0.8597 0.3901 0.3901 0.3193 0.3248 0.3166

200 0.7981 0.6275 0.6655 0.6057 0.6003 0.6352 0.6736 0.4789 0.6199 0.3892 0.3892 0.3781 0.3844 0.3749

300 0.6324 0.5104 0.5399 0.5007 0.4915 0.5159 0.5446 0.3950 0.5048 0.3689 0.3686 0.3438 0.3502 0.3405

400 0.4656 0.3903 0.4147 0.3901 0.3836 0.3935 0.4115 0.3169 0.3873 0.2533 0.2533 0.2145 0.2212 0.2112

0.95 30 15.3716 7.1506 2.9260 7.7953 11.3986 7.6376 10.7395 1.4492 7.4229 1.4233 1.4207 0.8169 0.8108 0.8499

75 7.8699 3.9559 2.2923 3.5410 4.8685 4.0776 5.1038 1.9225 4.1114 1.0315 1.0307 0.7435 0.7325 0.7547

150 2.4303 1.4224 1.4583 1.4032 1.3383 1.4491 1.6661 0.8314 1.3856 0.4391 0.4391 0.4055 0.4059 0.4055

200 1.8223 1.1175 1.2344 1.1222 1.0524 1.1389 1.2959 0.6648 1.0910 0.3680 0.3680 0.3605 0.3623 0.3598

300 1.1736 0.8278 0.8889 0.8109 0.7655 0.8398 0.9123 0.5746 0.8093 0.3255 0.3255 0.3159 0.3187 0.3135

400 0.9528 0.7050 0.7646 0.6968 0.6625 0.7143 0.7682 0.5067 0.6915 0.3035 0.3035 0.2923 0.2955 0.2907

0.99 30 89.0642 41.2734 2.1422 38.9094 62.9950 44.4374 61.1816 10.7459 43.0926 7.1514 7.0387 2.8948 3.3283 3.4721

75 36.1971 17.7977 1.9807 14.0208 21.6102 18.4760 23.4643 7.1655 18.2070 3.2455 3.2319 1.6581 1.6436 1.7534

150 13.2611 6.6965 2.2358 5.2543 6.9363 6.8810 8.3759 3.2490 6.7594 1.2378 1.2368 0.7540 0.7331 0.7709

200 8.5521 4.5055 2.2344 3.5782 4.1863 4.6173 5.4290 2.5045 4.5163 0.8693 0.8690 0.5727 0.5585 0.5816

300 6.4692 3.5318 2.1398 2.8727 3.1459 3.6210 4.1728 2.0863 3.5356 0.7587 0.7586 0.5195 0.5081 0.5263

400 5.0095 2.7926 1.9486 2.4160 2.4613 2.8571 3.2582 1.7119 2.7758 0.7003 0.7001 0.4876 0.4785 0.4934
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5. Application to real-life data

In this section, we assess the performance of the proposed estimator using two real-world datasets.
The MSE serves as the primary metric, allowing for a direct comparison with existing methods and a
practical assessment of the proposed estimator’s accuracy under realistic conditions.

5.1. Boston housing data

To further examine the practicality of our new proposed estimator, we apply the proposed estimator
to the Boston housing data, which contains information on median housing values from 506 census
tracts in the Boston suburbs during the 1970 census. This data was originally compiled by Sosa [40]
and includes 506 observations across 12 variables, whose summary statistics are described in Table 12.

Table 12. Summary statistics for variables in Boston housing data.

Variable Mean Median SD Variance Min Max Range Q1.25% Q3.75% Skewness Kurtosis

y 0.1265 0.1136 0.0714 0.0051 0.0173 0.3797 0.3624 0.0695 0.1696 0.9038 3.4765

x1 3.6135 0.2565 8.6015 73.9866 0.0063 88.9762 88.9699 0.0820 3.6771 5.2077 39.7528

x2 11.3636 0.0000 23.3225 543.9368 0.0000 100.0000 100.0000 0.0000 12.5000 2.2191 6.9799

x3 11.1368 9.6900 6.8604 47.0644 0.4600 27.7400 27.2800 5.1900 18.1000 0.2941 1.7668

x4 0.5547 0.5380 0.1159 0.0134 0.3850 0.8710 0.4860 0.4490 0.6240 0.7271 2.9241

x5 6.2846 6.2085 0.7026 0.4937 3.5610 8.7800 5.2190 5.8855 6.6235 0.4024 4.8610

x6 68.5749 77.5000 28.1489 792.3584 2.9000 100.0000 97.1000 45.0250 94.0750 -0.5972 2.0300

x7 3.7950 3.2074 2.1057 4.4340 1.1296 12.1265 10.9969 2.1002 5.1884 1.0088 3.4713

x8 408.2372 330.0000 168.5371 28404.7595 187.0000 711.0000 524.0000 279.0000 666.0000 0.6680 1.8570

x9 18.4555 19.0500 2.1649 4.6870 12.6000 22.0000 9.4000 17.4000 20.2000 -0.7999 2.7059

x10 356.6740 391.4400 91.2949 8334.7523 0.3200 396.9000 396.5800 375.3775 396.2250 -2.8818 10.1438

x11 22.5289 21.2000 9.1822 84.3124 5.0000 50.0000 45.0000 17.0250 25.0000 1.1076 4.4900

The response variable is the percentage of the population with lower socioeconomic status (y).
The explanatory variables include: per capita crime rate by town (x1), the proportion of residential
land zoned for lots over 25,000 square feet (x2), the proportion of non-retail business acres per town
(x3), nitric oxide concentration (parts per 10 million) (x4), average number of rooms per dwelling
(x5), proportion of owner-occupied units built before 1940 (x6), weighted distances to five Boston
employment centers (x7), full-value property-tax rate per USD 10,000 (x8), pupil-teacher ratio by town
(x9), 1000(B − 0.63)2, where B is the proportion of Black residents by town (x10), corrected median
value of owner-occupied homes in USD 1000’s (x11).

This data provides a comprehensive set of variables to evaluate the performance of the proposed
estimator in a real-world context.

The response variable in this data represents a proportion ranging between 0 and 1 as presented in
Figure 1, making it suitable for BRM. Additionally, when fitting this data for different unit regression
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models, the BRM achieves the best performance by achieving the highest log-likelihood (LL) and the
lowest Akaike information criterion (AIC), corrected AIC (AICc), and Bayesian information criterion
(BIC), which makes it the best model for fitting this data as detailed in Table 13.
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Figure 1. Histogram of response variable y in Boston housing data.

Table 13. LL, AIC, AICc, and BIC values for the fitted models in Boston housing data.

Criterion BRM UKRM UWRM ULRM

LL 1073.615 1031.931 1070.303 369.6943

AIC -2121.230 -2037.862 -2114.607 -709.3886

AICc -2120.490 -2035.571 -2112.316 -709.3886

BIC -2066.285 -1982.917 -2059.662 -656.4472

*Note: UKRM = Unit Kumaraswamy regression model, UWRM = Unit Weibull regression model, ULRM = Unit Logistic regression
model.

Additionally, to check multicollinearity in the Boston housing data, we use the condition number,
which is calculated as

√
max(λ j)/min(λ j) equal to 15215.05. This indicates the presence of severe

multicollinearity among the covariates. This issue is further supported by the correlation matrix
presented in Figure 2, which highlights strong correlation between the covariates. These findings
underscore the importance of addressing multicollinearity when applying the BRM to this data.

The response variable (yi) was modeled using a beta regression as follows:

yi ∼ Beta(µi, ϕ),

where the mean µi ∈ (0, 1) is linked to the linear predictor via a logistic link function:

logit(µi) = β0 + β1x1i + β2x2i + · · · + β11x11,i.
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Figure 2. Correlation matrix between explanatory variables in Boston housing data.

Table 14 presents the estimates and MSEs for BMLE along with biased estimators, including BRRE,
BLE, BJSE, BLTE, BOKE, BMRTE, BKLE, BJRRE, BJKLE, and BAUMRTE, which are fitted to the
Boston housing data via the BRM. Coefficients were obtained by evaluating the estimating Eqs (2.6),
(2.10)–(2.17), and (3.1), and the corresponding MSEs were computed with the closed-form expressions
provided in Eqs (2.9), (2.21), (2.23), (2.25), (2.27), (2.29), (2.31), (2.33), (2.35), and (3.5).

Table 14. Estimated coefficients and MSEs of the different estimators for the Boston housing
data.

Coefficient
BMLE BRRE BLE BJSE BLTE BOKE BDKE BMRTE BKLE BJRRE BJKLE BAUMRTE

- k̂ d̂ ĉ k̂, d̂ k̂, d̂ k̂, d̂ k̂, d̂ k̂ k̂ k̂ k̂1, d̂1 k̂2, d̂2 k̂3, d̂3

Intercept 0.243391 -0.000013 0.212730 0.121730 -0.000065 0.001006 0.125747 -0.009859 -0.056273 0.000769 0.246595 0.001746 0.000405 0.001572

x1 -0.001019 0.000116 -0.000999 -0.000509 0.000667 0.002951 -0.000944 -0.000978 -0.000831 -0.000992 -0.001207 -0.001013 -0.000916 -0.001012

x2 0.000111 -0.000476 0.000113 0.000056 -0.002739 -0.007625 0.000120 -0.000160 0.000130 0.000174 0.000093 0.000138 0.000232 0.000141

x3 0.003130 0.000030 0.003101 0.001565 0.000429 0.002234 0.003010 0.001845 0.002707 0.002980 0.003555 0.003161 0.002416 0.003156

x4 -0.331875 -0.000004 -0.308984 -0.165984 -0.000018 -0.002176 -0.242825 -0.016542 -0.088867 -0.000754 -0.467452 -0.002481 -0.000299 -0.002146

x5 -0.199082 -0.000100 -0.198365 -0.099569 -0.000552 -0.005350 -0.196352 -0.153000 -0.192336 -0.031729 -0.206287 -0.071997 -0.016340 -0.065484

x6 0.006953 -0.000191 0.006948 0.003477 0.000537 0.001211 0.006931 0.006152 0.006862 0.006992 0.007043 0.006975 0.007007 0.006977

x7 -0.025262 -0.000094 -0.024554 -0.012634 -0.000522 -0.003470 -0.022546 -0.024499 -0.018358 -0.008251 -0.032294 -0.015586 -0.004342 -0.014634

x8 0.000144 -0.000977 0.000139 0.000072 -0.000643 -0.000625 0.000127 0.000064 0.000098 0.000144 0.000190 0.000144 0.000145 0.000144

x9 -0.015977 -0.000208 -0.015409 -0.007991 -0.000963 -0.007501 -0.013803 -0.018286 -0.010513 -0.010367 -0.021542 -0.012403 -0.007757 -0.012155

x10 -0.000157 -0.003491 -0.000155 -0.000078 -0.004078 -0.002784 -0.000148 -0.000143 -0.000136 -0.000156 -0.000178 -0.000157 -0.000151 -0.000157

x11 -0.044085 -0.000532 -0.044002 -0.022049 -0.003228 -0.022571 -0.043767 -0.047141 -0.043310 -0.042181 -0.044861 -0.043070 -0.039934 -0.042995

MSE 14.642443 0.211831 12.275684 4.655137 0.211403 0.206828 6.803567 0.222002 1.324709 0.202321 1.095835 0.200294 0.204668 0.200104

The estimated coefficients reveal critical insights into the behavior of the estimators: A clear
pattern of coefficient shrinkage is evident. The BMLE produces coefficient estimates with the largest
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magnitudes (e.g., -0.332 for x4, -0.199 for x5). In contrast, the best-performing estimators (e.g.,
BRRE, BAUMRTE) shrink these values dramatically towards zero. For example, the coefficient for x4

is shrunk from -0.332 (BMLE) to approximately -0.002 by the top performers. This is the hallmark of
L2-type regularization, which mitigates the inflationary effect of multicollinearity on coefficient
variance. The top-performing estimators (BRRE, BOKE, BAUMRTE, etc.) show remarkable
consistency in their coefficient estimates. For many predictors (e.g., x1, x6, x8, x10), the estimates are
nearly identical across these methods. This convergence suggests a stable region in the parameter
space that is optimal for prediction under multicollinearity, and these estimators are successfully
locating it.

The application results demonstrate a pronounced superiority of shrinkage estimators over the
baseline BMLE, which yielded an MSE of 14.642. This substantial error strongly suggests the
presence of multicollinearity, a condition that inflates the variance of the BMLE and compromises its
predictive accuracy. In contrast, all biased estimators achieved a drastic reduction in MSE, validating
their core function of introducing controlled bias to secure a greater reduction in variance, thereby
optimizing the bias-variance trade-off. Performance can be divided into groups based on the size of
the MSE. The top group includes ridge-type, Liu-type, and hybrid estimators, such as the BRRE,
BLE, BOKE, and BJRRE, which have moderate MSE values.

Among all methods, the BAUMRTE ensemble achieved the lowest recorded MSEs, ranging
from 0.2001 to 0.2047, establishing it as the preeminent estimator in this analysis. The minimal
performance variation across its three parameter configurations further indicates a desirable
robustness to specific tuning parameter selections. This superior performance is likely attributable to
its adaptive or ensemble structure, which affords a more flexible navigation of the bias-variance
trade-off than its constituent estimators. These findings underscore the critical importance of
estimator selection in the presence of multicollinearity, with the BAUMRTE showing significant
potential for applications in BRM.

5.2. Body fat data

To emphasize the practical benefit and flexibility of the proposed estimator, we use other data for
the body fat data, which was originally introduced by Penrose et al. [41] and later utilized by Hammad
et al. [8]. This dataset consists of n = 252 observations, with one response and 13 covariates, whose
summary statistics are described in Table 15.

The response variable y is the body-fat percentage determined by underwater weighing; the thirteen
predictors are age in years (x1), weight in pounds (x2), height in inches (x3), neck circumference in cm
(x4), chest circumference in cm (x5), abdomen circumference in cm (x6), hip circumference in cm (x7),
thigh circumference in cm (x8), knee circumference in cm (x9), ankle circumference in cm (x10), biceps
(extended) circumference in cm (x11), forearm circumference in cm (x12), and wrist circumference
in cm (x13). This suite of anthropometric measurements yields a rich multivariate profile of body
morphology, permitting regression analyses that relate body composition to easily obtained covariates;
all variables have been scaled to comparable units so that coefficient estimates remain interpretable and
numerical stability is preserved during model fitting.
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Table 15. Summary statistics for variables in body fat data.

Variable Mean Median SD Variance Min Max Range Q1.25% Q3.75% Skewness Kurtosis

y 0.1915 0.1920 0.0837 0.0070 0.000 0.4750 0.4750 0.1248 0.2530 0.1455 2.6490

x1 0.4488 0.4300 0.1260 0.0159 0.220 0.8100 0.5900 0.3575 0.5400 0.2818 2.5681

x2 1.7892 1.7650 0.2939 0.0864 1.185 3.6315 2.4465 1.5900 1.9700 1.1981 8.1418

x3 0.7015 0.7000 0.0366 0.0013 0.295 0.7775 0.4825 0.6825 0.7225 -5.3529 61.3457

x4 0.3799 0.3800 0.0243 0.0006 0.311 0.5120 0.2010 0.3640 0.3942 0.5493 5.6422

x5 1.0082 0.9965 0.0843 0.0071 0.793 1.3620 0.5690 0.9435 1.0537 0.6775 3.9441

x6 0.9256 0.9095 0.1078 0.0116 0.694 1.4810 0.7870 0.8458 0.9932 0.8334 5.1807

x7 0.9990 0.9930 0.0716 0.0051 0.850 1.4770 0.6270 0.9550 1.0352 1.4882 10.3002

x8 0.5941 0.5900 0.0525 0.0028 0.472 0.8730 0.4010 0.5600 0.6235 0.8163 5.5894

x9 0.3859 0.3850 0.0241 0.0006 0.330 0.4910 0.1610 0.3697 0.3992 0.5137 4.0169

x10 0.2310 0.2280 0.0169 0.0003 0.191 0.3390 0.1480 0.2200 0.2400 2.2417 14.6858

x11 0.3227 0.3205 0.0302 0.0009 0.248 0.4500 0.2020 0.3020 0.3432 0.2838 3.4649

x12 0.2866 0.2870 0.0202 0.0004 0.210 0.3490 0.1390 0.2730 0.3000 -0.2180 3.8255

x13 0.1823 0.1830 0.0093 0.0001 0.158 0.2140 0.0560 0.1760 0.1880 0.2799 3.3642

The response variable is a proportion confined to the open unit interval (0, 1), as displayed in
Figure 3, which thus satisfies the distributional requirements of the BRM. The BRM yields the largest
LL and simultaneously attains the smallest AIC, AICc, and BIC, thereby providing the best-supported
model for these data as detailed in Table 16.
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Figure 3. Histogram of response variable y in body fat data.
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Table 16. LL, AIC, AICc, and BIC values for the fitted models in body fat data.

Criterion BRM UKRM UWRM ULRM

LL 395.7120 -761.4240 -759.3901 -708.4826

AIC 380.6258 -731.2517 -726.4096 -678.3102

AICc 277.3610 -524.7219 -519.8798 -471.7805

BIC 369.6943 -709.3886 -709.3886 -656.4472

The condition number is 582.99, signaling severe multicollinearity among the covariates; this
conclusion is corroborated by the correlation matrix displayed in Figure 4, where numerous pairwise
correlations exceed 0.80. Taken together, these diagnostics underscore the necessity of remedial
action against collinearity before any regression technique is applied to this data set.
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Figure 4. Correlation matrix between explanatory variables in the body fat data.

The response variable (yi) was modeled using a beta regression as follows:

yi ∼ Beta(µi, ϕ),

where the mean µi ∈ (0, 1) is linked to the linear predictor via a logistic link function:

logit(µi) = β0 + β1x1i + β2x2i + · · · + β13x13,i.

Analysis of the body fat data in Table 17 starkly illustrates how the choice of the estimator affects
the model when covariates are multicollinear.

The baseline BMLE returns an MSE of 2056.14, indicating severe instability driven by inflated
coefficient variance resulting from the consequences of multicollinearity. Introducing a controlled
amount of bias emerges as an effective remedy: Every regularized alternative slashes the MSE,
quantitatively confirming that bias-variance rebalancing is indispensable in this setting.
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Table 17. Estimated coefficients and MSEs of the different estimators for the body fat data.

Coefficient
BMLE BRRE BLE BJSE BLTE BOKE BDKE BMRTE BKLE BJRRE BJKLE BAUMRTE

- k̂ d̂ ĉ k̂, d̂ k̂, d̂ k̂, d̂ k̂, d̂ k̂ k̂ k̂ k̂1, d̂1 k̂2, d̂2 k̂3, d̂3

Intercept -6.04713 -5.86905 -3.59520 -1.94853 -3.49298 -5.68821 -1.13565 -3.84281 -5.69887 -4.14063 -6.18608 -3.87337 -3.96054 -4.48669

x1 0.59196 0.49288 0.38519 0.19074 0.39050 0.47238 0.17877 0.37621 0.39578 0.52247 0.79357 0.49300 0.50233 0.55620

x2 -1.01820 -0.95353 -0.09924 -0.32809 -0.05072 -0.89495 0.82329 -0.21128 -0.89149 -1.00052 -1.13032 -1.06455 -1.04326 -0.95275

x3 0.41960 0.16398 -1.31217 0.13521 -1.37112 0.04308 -3.04839 -1.16384 -0.08452 0.61236 0.94031 0.57340 0.59086 0.60347

x4 -3.61075 -3.66336 -1.60011 -1.16347 -1.51966 -3.48481 0.41659 -1.80205 -3.72077 -0.56625 -3.06125 -0.36874 -0.42002 -0.99225

x5 0.49157 0.45852 0.27368 0.15840 0.27193 0.43152 0.05566 0.27813 0.42678 0.28793 0.55724 0.25703 0.26523 0.35155

x6 6.32854 6.26187 4.52648 2.03920 4.39497 6.17725 2.71485 4.81824 6.19854 4.22414 6.45204 3.36664 3.63131 5.21148

x7 -2.21088 -2.22225 -1.52966 -0.71240 -1.47648 -2.20214 -0.84452 -1.65262 -2.23395 -1.02959 -2.13386 -0.81357 -0.87507 -1.35889

x8 3.57569 3.38767 1.31407 1.15217 1.21021 3.24382 -0.95529 1.56409 3.20647 1.51818 3.89324 1.11193 1.22824 2.14527

x9 1.71547 1.41875 -0.06435 0.55276 -0.10976 1.27899 -1.84764 0.05445 1.13032 0.35537 2.13603 0.25700 0.28382 0.54885

x10 1.39685 0.72461 -0.48343 0.45010 -0.49682 0.56644 -2.36480 -0.44090 0.06647 0.23845 2.67205 0.15388 0.17633 0.41531

x11 0.94867 0.90375 0.22955 0.30568 0.19109 0.86969 -0.49245 0.32248 0.86037 0.22601 0.98140 0.15068 0.17130 0.36389

x12 4.14463 3.35558 0.54565 1.33550 0.46436 3.06305 -3.05949 0.75473 2.58635 0.85056 5.48706 0.55225 0.63202 1.44296

x13 -8.70369 -4.96782 -0.98425 -2.80453 -0.93371 -4.42969 6.73904 -1.11736 -1.29938 -0.36452 -3.00184 -0.24480 -0.27570 -0.64430

MSE 2056.13905 1111.12601 205.37265 1007.25748 197.42971 941.35703 1502.10499 229.31655 678.97995 170.88255 611.04257 168.19936 167.47079 213.05168

The performance of the estimators can be stratified into distinct tiers. The best-performing group,
which includes the BLE, BLTE, BJRRE, and the BAUMRTE ensemble, achieves MSEs below 230.
Notably, the BLE and BLTE (MSEs 205 and 197, respectively) establish a strong foundational
performance, while the more sophisticated BJRRE and BAUMRTE variants push the performance
boundary even further, with BAUMRTE (k̂2, d̂2) attaining the lowest MSE of 167.47. This positions
BAUMRTE as the most effective estimator for this dataset, with its ensemble nature likely providing a
more robust optimization of the bias-variance trade-off. A second tier of estimators, including the
BRRE, BOKE, and BKLE, delivers significant improvements over the BMLE (MSEs ranging
from 679 to 1111) but is substantially outperformed by the top tier. The BJSE and BDKE form a
middle group, reducing the BMLE’s MSE by over half but failing to match the efficiency of the
BAUMRTE.

An examination of the coefficient estimates reveals the mechanism behind this performance
disparity. The BMLE coefficients exhibit large magnitudes and high variability (e.g., x13: -8.70,
x6: 6.33), which are hallmarks of an overfit model. In contrast, the top-performing estimators
consistently apply a strong shrinkage effect, pulling these extreme coefficients towards zero and, in
some cases, even reversing their signs to more plausible values (e.g., x13 is shrunk to
approximately -0.27 by the best BAUMRTE). The resulting vectors are both more stable and more
parsimonious. Consistency of sign and relative magnitude within the leading group corroborates the
existence of a well-defined, low-variance region in the parameter space that is conducive to
prediction. These findings highlight the effectiveness of the BAUMRTE in reducing MSE, making it a
suitable choice for regression analysis in the BRM under multicollinearity.

6. Conclusions

The BRM is an appropriate model to use for predicting the response variable when it is in the form
of ratios or proportions and follows the beta distribution. Sometimes, the covariates of the model are
highly correlated, and this is known as multicollinearity. The MLE estimating model parameters
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become unreliable under multicollinearity. To address this, alternative methods, such as BRRE, BLE,
and other estimation methods, have been considered. This study addressed the issue of
multicollinearity by proposing the use of the BAUMRTE for the BRM. Furthermore, we derived its
mathematical properties and compared its performance theoretically with the available methods
(MLE, BRRE, BLE, and others) in terms of MSE. A simulation experiment was conducted by varying
different factors to evaluate the efficiency of the proposed estimator over other estimators. Two
real-life applications were also analyzed to illustrate the findings of the simulation experiment. From
the results of the simulation, it was observed that for all the scenarios, the suggested estimator
outperformed its competitive estimators in terms of smaller MSE. Moreover, the findings of both
applications revealed the efficiency of the proposed estimator over the other considered estimators.
This whole study presented evidence that, in the case of severe multicollinearity, almost unbiased
estimation methods performed better than biased estimators in the balance between bias and variance,
resulting in reduced MSE. Results of both the simulation study and empirical applications provide
evidence that the BAUMRTE is superior to other estimators due to its smaller MSE as compared to
other considered estimators. Hence, based on the findings of the simulation experiment and real-life
applications, we recommend practitioners utilize the BAUMRTE(k̂2, d̂2) for estimating BRM
parameters due to its better results in the presence of multicollinearity. Despite its superior
performance, the proposed BAUMRTE estimator has certain limitations. Its reliance on a shrinkage
parameter introduces sensitivity to the calibration of this factor. Furthermore, this study is limited to
specific models and conditions, leaving its efficacy in other complex scenarios, such as
high-dimensional data and other models, in need. Future work could explore the applicability of this
estimator to high-dimensional data exhibiting multicollinearity or investigate its performance in other
regression models, such as the Poisson regression model, negative binomial regression model, and
gamma regression model [42, 43]. A robust version of this estimator could also be developed to
handle multicollinearity and outliers [44].
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