In three-dimensional Minkowski space, a family of Sannia ruled surfaces is generated from the principal normal ruled surfaces, C-direction ruled surfaces, and Darboux ruled surfaces of timelike curves by employing the Sannia frame. This study thoroughly examines the developability and minimality of these surfaces and establishes the corresponding conditions. Finally, illustrative examples are presented through figures, which vividly demonstrate the geometric characteristics of Sannia ruled surfaces.
Citation: Na Hu, Wenke Zhang. The Sannia ruled surfaces generated by timelike curves under the alternative frame perspective[J]. AIMS Mathematics, 2026, 11(1): 43-65. doi: 10.3934/math.2026003
In three-dimensional Minkowski space, a family of Sannia ruled surfaces is generated from the principal normal ruled surfaces, C-direction ruled surfaces, and Darboux ruled surfaces of timelike curves by employing the Sannia frame. This study thoroughly examines the developability and minimality of these surfaces and establishes the corresponding conditions. Finally, illustrative examples are presented through figures, which vividly demonstrate the geometric characteristics of Sannia ruled surfaces.
| [1] | S. Izumiya, N. Takeuchi, Special curves and ruled surfaces, Beiträge zur Algebra und Geometrie, 44 (2003), 203-212. |
| [2] | H. Pottmann, Ruled surfaces for rationalization and design in architecture, In: Proceedings of the 30th annual conference of the association for computer aided design in architecture (ACADIA), New York, 21-24 October, 2010,103-109. http://doi.org/10.52842/conf.acadia.2010.103 |
| [3] |
Y. Li, K. Eren, S. Ersoy, On simultaneous characterizations of partner-ruled surfaces in Minkowski 3-space, AIMS Math., 8 (2023), 22256-22273. http://doi.org/10.3934/math.20231135 doi: 10.3934/math.20231135
|
| [4] | G. Sannia, Una rappresentazione intrinseca delle rigate, Giorn. Mat., 1925, 31-47. |
| [5] | W. Wunderlich, Regelflächen festen dralls mit konstant gedralltem striktionsband, Czechoslovak Math. J., 31 (1981), 457-468. |
| [6] |
E. Kruppa, Strahlflächen als Verallgemeinerungen der Cesàro-Kurven, Monatshefte für Mathematik, 52 (1948), 323-336. https://doi.org/10.1007/BF01525337 doi: 10.1007/BF01525337
|
| [7] |
O. Pylarinos, Sur la géométrie différentielle des surfaces réglées, Annali di Matematica, 87 (1970), 389-412. https://doi.org/10.1007/BF02411989 doi: 10.1007/BF02411989
|
| [8] | H. Pottmann, J. Wallner, Computational line geometry, Heidelberg: Springer, 2001. https://doi.org/10.1007/978-3-642-04018-4 |
| [9] |
F. M. Hamdoon, A. K. Omran, Studying on a skew ruled surface by using the geodesic Frenet trihedron of its generator, Korean J. Math., 24 (2016), 613-626. http://doi.org/10.11568/kjm.2016.24.4.613 doi: 10.11568/kjm.2016.24.4.613
|
| [10] |
S. Enyurt, K. Eren, On ruled surfaces with a Sannia frame in Euclidean 3-space, Kyungpook Math. J., 62 (2022), 509-531. http://doi.org/10.5666/KMJ.2022.62.3.509 doi: 10.5666/KMJ.2022.62.3.509
|
| [11] |
S. Şenyurt, D. Canli, K. H. Ayvacı, On ruled surfaces generated by Sannia frame based in alternative frame, Honam Math. J., 46 (2024), 12-37. https://doi.org/10.5831/HMJ.2024.46.1.12 doi: 10.5831/HMJ.2024.46.1.12
|
| [12] |
M. C. López, M. E. Rosado, A. Soria, Ruled surfaces in 3-dimensional Riemannian manifolds, Mediterr. J. Math., 21 (2024), 97. http://doi.org/10.1007/s00009-024-02631-2 doi: 10.1007/s00009-024-02631-2
|
| [13] |
D. Bayril, J. M. Selig, The geometry of line-symmetric rigid-body motions, Differ. Geom. Appl., 100 (2025), 102270. http://doi.org/10.1016/j.difgeo.2025.102270 doi: 10.1016/j.difgeo.2025.102270
|
| [14] |
Y. Li, H. S. Abdel-Aziz, H. M. Serry, F. M. El-Adawy, M. K. Saad, Geometric visualization of evolved ruled surfaces via alternative frame in Lorentz-Minkowski 3-space, AIMS Math., 9 (2024), 25619-25635. http://doi.org/10.3934/math.20241251 doi: 10.3934/math.20241251
|
| [15] |
D. Canlı, S. Şenyurt, F. E. Kaya, L. Grilli, The pedal curves generated by alternative frame vectors and their Smarandache curves, Symmetry, 16 (2024), 1012. http://doi.org/10.3390/sym16081012 doi: 10.3390/sym16081012
|
| [16] |
S. Ouarab, NC-Smarandache ruled surface and NW-Smarandache ruled surface according to alternative moving frame in $E^3$, J. Mech., 2021 (2021), 9951434. http://doi.org/10.1155/2021/9951434 doi: 10.1155/2021/9951434
|