Research article Special Issues

Fixed point theorems without continuity condition in non-solid extended abstract metric spaces with applications

  • Published: 04 January 2026
  • MSC : 47H10, 54H25

  • In this paper, several fixed point results for different contractions in extended abstract metric spaces with non-solid cones are established. The definitions of Cauchy sequences, convergent sequences, and completeness with respect to normality in the non-solid extended abstract metric spaces are reintroduced. We prove that the fixed point exists and is unique in these spaces by removing the orbital continuity assumption. Our results generalize and extend several significant theorems in classical abstract metric spaces and standard metric spaces. A consequence, we present several examples demonstrating that our main theorems serve as powerful tools for solving equations in different space frameworks, for both solid and non-solid cones.

    Citation: Yan Han, Jin Chen, Shaoyuan Xu, Xianhua Xie. Fixed point theorems without continuity condition in non-solid extended abstract metric spaces with applications[J]. AIMS Mathematics, 2026, 11(1): 22-42. doi: 10.3934/math.2026002

    Related Papers:

  • In this paper, several fixed point results for different contractions in extended abstract metric spaces with non-solid cones are established. The definitions of Cauchy sequences, convergent sequences, and completeness with respect to normality in the non-solid extended abstract metric spaces are reintroduced. We prove that the fixed point exists and is unique in these spaces by removing the orbital continuity assumption. Our results generalize and extend several significant theorems in classical abstract metric spaces and standard metric spaces. A consequence, we present several examples demonstrating that our main theorems serve as powerful tools for solving equations in different space frameworks, for both solid and non-solid cones.



    加载中


    [1] S. Banach, Sur les opérations dans les ensembles abstraits at leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
    [2] R. Kannan, Some results on fixed points Ⅱ, Am. Math. Mon., 76 (1969), 405–408. https://doi.org/10.1080/00029890.1969.12000228 doi: 10.1080/00029890.1969.12000228
    [3] S. Reich, Some remarks concerning contraction mappings, Can. Math. Bull., 14 (1971), 121–124. https://doi.org/10.4153/CMB-1971-024-9 doi: 10.4153/CMB-1971-024-9
    [4] G. Hardy, T. Rogers, A generalization of a fixed point theorem of Reich, Can. Math. Bull., 16 (1973), 201–206. https://doi.org/10.4153/CMB-1973-036-0 doi: 10.4153/CMB-1973-036-0
    [5] L. B. Ćirić, A new fixed-point theorem for contractive mapping, Publications de l'Institut Mathématique, 29 (1981), 25–27.
    [6] V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum, 9 (2004), 43–54.
    [7] M. Ozavsar, Fixed point theorems for $(k, l)$-almost contractions in cone metric spaces over Banach algebras, Math. Adv. Pure Appl. Sci., 1 (2018), 46–51.
    [8] F. Develi, M. Özavşar, Almost contraction mappings in cone $b$-metric spaces over Banach algebras, Hacet. J. Math. Stat. 49 (2020), 1965–1973.
    [9] M. Frechet, Sur quelques points du calcul fonctionnel, Rend. Circ. Matem. Palermo, 22 (1906), 1–72. https://doi.org/10.1007/BF03018603 doi: 10.1007/BF03018603
    [10] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., Gos. Ped. Inst. Unianowsk, 30 (1989), 26–37.
    [11] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11.
    [12] T. Kamran, M. Samreen, Q. Ain, A generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
    [13] L. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087
    [14] H. Liu, S. Xu, Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings, Fixed Point Theory Appl., 2013 (2013), 320. https://doi.org/10.1155/2013/187348 doi: 10.1155/2013/187348
    [15] H. Liu, S. Xu, Fixed point theorems of quasi-contractions on cone metric spaces with Banach algebras, Abstr. Appl. Anal., 2013 (2013), 187348. https://doi.org/10.1155/2013/187348 doi: 10.1155/2013/187348
    [16] H. Huang, S. Radenović, Common fixed point theorems of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras and applications, J. Nonlinear Sci. Appl., 8 (2015), 787–799. http://dx.doi.org/10.22436/jnsa.008.05.29 doi: 10.22436/jnsa.008.05.29
    [17] H. Huang, S. Radenovic, G. Deng, A sharp generalization on cone b-metric space over Banach algebra, J. Nonlinear Sci. Appl., 10 (2017), 429–435. https://doi.org/10.22436/jnsa.010.02.09 doi: 10.22436/jnsa.010.02.09
    [18] J. Fernandez, N. Malviya, S. Shukla, Cone b-metric-like spaces over Banach algebra and fixed point theorems with application, Asian J. Math. Comput. Res., 2017, 49–66.
    [19] J. Fernandez, N. Malviya, A. Savic, M. Paunovic, Z. Mitrović, The extended cone b-metric-like spaces over Banach algebra and some applications, Mathematics, 149 (2022), 10. https://doi.org/10.3390/math10010149 doi: 10.3390/math10010149
    [20] Y. Han, S. Xu, Some new theorems on $c$-distance without continuity in cone metric spaces over Banach algebras, J. Funct. Spaces, 2018 (2018), 7463435. https://doi.org/10.1155/2018/7463435 doi: 10.1155/2018/7463435
    [21] W. Ullah, M. Samreen, T. Kamran, Fixed points of mappings on extended cone b-metric space over real Banach algebra, Filomat, 36 (2022), 853–868. https://doi.org/10.2298/FIL2203853U doi: 10.2298/FIL2203853U
    [22] A. Hasanen, D. Manuel, A. Hassen, Analytical solution for differential and nonlinear integral equations via $F_{w_e}$-Suzuki contractions in modified $w_e$-metric-like spaces, J. Funct. Spaces, 2021 (2021), 6128583. https://doi.org/10.1155/2021/6128586 doi: 10.1155/2021/6128586
    [23] Y. Han, S. Xu, J. Chen, H. Yang, Fixed point theorems for b-generalized contractive mappings with weak continuity conditions, AIMS Math., 9 (2024), 15024–15039. https://doi.org/10.3934/math.2024728 doi: 10.3934/math.2024728
    [24] S. Xu, S. Cheng, Y. Han, Non-solid cone b-metric spaces over Banach algebras and fixed point results of contractions with vector-valued coefficients, Open Math., 21 (2023), 20220569. https://doi.org/10.1515/math-2022-0569 doi: 10.1515/math-2022-0569
    [25] X. Shi, W. Wang, P. Long, H. Huang, Z. Jiang, Fixed point theorems in extended cone b-metric-like spaces over Banach algebras, J. Math. Anal. Appl., 548 (2025), 129427. https://doi.org/10.1016/j.jmaa.2025.129427 doi: 10.1016/j.jmaa.2025.129427
    [26] I. Shereen, Q. Kiran, A. Aloqaily, H. Aydi, N. Mlaiki, On new extended cone b-metric-like spaces over a real Banach algebra, J. Inequal. Appl., 2024 (2024), 129. https://doi.org/10.1186/s13660-024-03205-2 doi: 10.1186/s13660-024-03205-2
    [27] A. Belhenniche, L. Guran, S. Benahmed, F. L. Pereira, Solving nonlinear and dynamic programming equations on extended b-metric spaces with the fixed-point technique, Fixed Point Theory Algorithms Sci. Eng., 2022 (2022), 24. https://doi.org/10.1186/s13663-022-00736-5 doi: 10.1186/s13663-022-00736-5
    [28] A. Belhenniche, S. Benahmed, L. Guran, F. L. Pereira, On some generalized contractive maps in partial metric space and related fixed point theorems, Filomat, 36 (2022), 6539–6551. https://doi.org/10.2298/FIL2219539B doi: 10.2298/FIL2219539B
    [29] H. H. Alsulami, R. P. Agarwal, E. Karapinar, F. Khojasteh, A short note on $ C^{*} $-valued contraction mappings, J. Inequal. Appl., 2016 (2016), 50. https://doi.org/10.1186/s13660-016-0992-5 doi: 10.1186/s13660-016-0992-5
    [30] W. Rudin, Functional analysis, New York, 45 (1991), 4.
    [31] S. Xu, S. Radenović, Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach algebras without assumption of normality, Fixed Point Theory Appl., 2014 (2014), 102. https://doi.org/10.1186/1687-1812-2014-102 doi: 10.1186/1687-1812-2014-102
    [32] S. Janković, Z. Kadelburg, S. Radenović, On the cone metric space: A survey, Nonlinear Anal. Theor., 74 (2011), 2591–2601. https://doi.org/10.1016/j.na.2010.12.014 doi: 10.1016/j.na.2010.12.014
    [33] D. Gopal, P. Agarwal, P. Kumam, Metric structures and fixed point theory, CRC Press, 2021. https://doi.org/10.1201/9781003139607
    [34] P. Debnath, N. Konwar, S. Radenović, Metric fixed point theory: Applications in science, engineering and behavioural sciences, Singapore: Springer, 2021. https://doi.org/10.1007/978-981-16-4896-0
    [35] F. F. Bonsall, K. B. Vedak, Lectures on some fixed point theorems of functional analysis, Bombay: Tata Institute of Fundamental Research, 1962.
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(311) PDF downloads(57) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog