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1. Introduction

Fixed point theory plays a crucial role in nonlinear analysis, differential equations, optimization
theory, game theory, and related fields. In recent years, as nonlinear problems have become increasing
complex, research on fixed point theory has been continuously deepened. New fixed point theorems
and iterative algorithms have been developed. The introduction of partial order structures has provided
a new perspective for fixed point theory, enabling the study of the existence and uniqueness of fixed
points under more general conditions. In the famous Banach contraction principle [1], the existence
and uniqueness of fixed points in complete metric spaces (MSs) were established. Specifically, in a
complete metric space, any mapping that satisfies the Banach contraction condition possesses a unique
fixed point, and the corresponding iterative sequence converges to this fixed point. Subsequently,
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Kannan [2], Reich [3], Hardy [4] and Ćirić [5] modified the Banach contraction into the Kannan
contraction, Reich contraction, Hardy-Rogers contraction and Ćirić quasi-contraction, respectively.
In [6], Berinde introduced an important generalization, initially termed “weak contraction”, and later
renamed “almost contraction”, see [7,8]. These mathematicians established fixed point theorems for
various types of contractions in complete MSs. Scholars have widely applied these results to investigate
the existence and uniqueness of solutions to nonlinear integral equations, nonlinear integral-differential
equations and nonlinear functional differential equations.

The concept of MS was initially proposed by Maurice Frechet [9] in 1906, quantifying the distance
between any two points in a non-empty set. Subsequently, this concept was continuously expanded
and refined by many mathematicians, leading to more advanced and important structures. Firstly,
Bakhtin [10] and Czerwik [11] first proposed the concept of b-metric space (b-MS), an extension of
the traditional MS. In a standard MS, the distance between points satisfies the triangle inequality,
whereas in the b-MSs, by introducing a constant s ≥ 1, this rule is slightly relaxed, making the metric
more flexible. Despite this modification, all b-MSs still maintain symmetry and non-negativity.
Extended b-metric spaces (Eb-MSs) were later proposed by Kamran et al. [12], further generalizing
these concepts. In Eb-MS, a variable multiplier is allowed to vary according to the involved points
rather than remain a fixed constant s ≥ 1. This multiplier is represented as a function η( f , g) ≥ 1,
depending on the configuration of the two points. By replacing the fixed constant with a flexible
function, Eb-MSs can be applied to more complex situations. In 2007, Huang et al. [13] proposed
cone metric spaces (CMSs) as a generalization of traditional MSs, replacing real number sets with
partially ordered Banach spaces. Based on this concept, they defined Cauchy sequences and their
convergence in CMSs. Subsequently, Liu et al. [14,15] extended CMSs by replacing the underlying
Banach space with a Banach algebra (BA), introducing CMSs over BA. They provided a generalized
definition of CMSs and explored the partial order of points within these cones. They also
demonstrated, through examples, that the fixed point theorems in a CMS over a BA are generally not
analogous to those in a traditional MS. Similarly, Huang et al. [16,17] re-proposed the concept of
cone b-metric space (Cb-MS) over a BA, combining CMSs over BA with b-MSs. Meanwhile,
scholars successively expanded these concepts to cone b-metric-like spaces over Banach
algebras (Cb-MLSs over BAs) [18], and further to extended cone b-metric-like spaces over Banach
algebras (ECb-MLSs over BAs) [19]. In these spaces, the abstract metric no longer requires that the
distance between coincident points be zero; rather, points with zero distance must coincide. Since
then, applications have been developed concerning the existence and uniqueness of solutions to
various differential and integral equations, see [20–23]. Through extensive review of references, we
find that these conclusions also depend on the condition of the solid cones.

Until 2023, Xu and Cheng et al. [24] established fixed point theorems for certain contractions in
non-solid Cb-MSs over BAs, demonstrating applications to both solid cones (R2) and non-solid
cones (the generalized real-valued Lebesgue integrable functions on [0, 1]). These applications
highlight the significant value of results in non-solid cones, which are not equivalent to theorems in
existing MSs, CMSs, or Cb-MSs over BAs under solid cones. More recently, Shi et al. [25] presented
several fixed point theorems for Reich-type and Kannan-type contractions in solid ECb-MLSs over
BAs. However, similar to the main results in [19,25,26], these theorems crucially depend on three
restrictive assumptions: (i) completeness of the underlying spaces, (ii) solidness of cones, and (iii)
orbital continuity of contractions.
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In parallel, several studies have further advanced the theory of fixed points in generalized metric
spaces. For instance, Belhenniche et al. [27,28] established fixed point theorems for generalized
contractive mappings in Eb-MSs and partial metric spaces, with applications to dynamic
programming and integral equations. Meanwhile, Alsulami et al. [29] provided a critical analysis of
C∗-algebra-valued contraction mappings, demonstrating that many such results can be derived from
classical metric space theory.

In this paper, we make substantial and explicit improvements over [19,25,26] by establishing fixed
point theorems that weaken or eliminate these limitations. Specifically, our main contributions are as
follows:

(1) Weakening completeness to orbital completeness: While [19,25,26] require complete spaces, we
establish existence under the significantly weaker condition of orbital completeness.

(2) Extending from solid to non-solid cones: The frameworks in [19,25,26] are restricted to solid
cones, whereas our results apply to both solid and non-solid cones, substantially broadening their
applicability.

(3) Relaxing or removing continuity requirements: We significantly weaken the continuity
assumptions in [19,25,26]. In some of our results, the orbital continuity condition is relaxed to
the weaker f0-orbital continuity; in others, it is removed entirely, thereby establishing fixed point
theorems for a broad class of non-continuous operators.

These improvements are not merely incremental; they represent fundamental advances in the theory.
Furthermore, we demonstrate the practical significance of our generalizations through examples that
apply in both solid and non-solid cone settings, thereby highlighting the universality and enhanced
applicability of our approach compared to existing results.

2. Preliminaries

From now on, unless otherwise specified, we assume that N denotes the collection of all natural
numbers, and A denotes a real Banach algebra endowed with a unit element e (Here “real” indicates
that the algebra is defined over the field of R), making it a unital Banach algebra. Let U be a normal
cone inA and ⪯ denote the partial order induced by U, defined as follows

f ⪯ g⇔ g − f ∈ U, f ≺ g⇔ f ⪯ g and f , g,∀ f , g ∈ A.

U is called normal if there is a real positive number K > 0 such that for all f , g ∈ A,

θ ⪯ f ⪯ g⇒ ∥ f ∥ ≤ K∥g∥.

The smallest constant K satisfying the above condition is called the normal constant of U. Since these
are basic notions already presented in [30], we do not repeat them here.

We now proceed by presenting essential definitions and supporting lemmas.
Definition 2.1. (see [16]) Let the set M , ∅, f , g ∈ M and the constant s ≥ 1. If a mapping δ :
M × M → A satisfies:

(i) δ( f , g) = θ ⇔ f = g;
(ii) δ( f , g) = δ(g, f );
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(iii) δ( f , g) ⪯ s[δ( f , h) + δ(h, g)],
then (M,A, δ) is called a Cb-MS over a BA.
Definition 2.2. (see [18]) Let the set M , ∅, f , g ∈ M and η : M × M → [1,+∞) be a function. If a
mapping δ : M × M → A satisfies:

(i) δ( f , g) = θ ⇔ f = g;
(ii) δ( f , g) = δ(g, f );
(iii) δ( f , g) ⪯ η( f , g)[δ( f , h) + δ(h, g)],

then (M,A, δ) is called an ECb-MS over a BA.
Definition 2.3. (see [19]) Let the set M , ∅, f , g ∈ M and η : M × M → [1,+∞) be a function. If a
mapping δ : M × M → A satisfies:

(i) δ( f , g) = θ ⇒ f = g;
(ii) δ( f , g) = δ(g, f );
(iii) δ( f , g) ⪯ η( f , g)[δ( f , h) + δ(h, g)],

then (M,A, δ) is called an ECb-MLS over a BA.
Example 2.1. Suppose the Banach algebra A = Ł [0, 1] ( the set of all generalized real-valued
Lebesgue integral functions on [0, 1]). The cone is defined by

U = {φ ∈ Ł [0, 1] : φ = φ(t) ≥ 0, a.e.t ∈ [0, 1]}

with the norm ∥φ∥1 =
∫ 1

0
|φ(t)|dt. Let M = [0,+∞). Define the cone metric δ : M × M → A as

δ( f , g)(t) = | f + g|φ(t), f , g ∈ M, φ ∈ U\{θ}. Then (M,A, δ) is a normal and non-solid ECb-MLS over
a BA with η( f , g) = e| f+g| ≥ 1.

Inspired by the related concepts in [24] (defined in Cb-MSs over BAs), we introduced the definitions
of Cauchy sequences, convergent sequences, and completeness in non-solid ECb-MLSs over BAs as
follows.
Definition 2.4. Suppose (M,A, δ) is an ECb-MLS over a BA. Let f ∈ M and { fn} ⊆ M. We say

(i) { fn} converges to f with respect to normality if and only if ∥δ( fn, f )∥ → 0 as n → +∞, that is

fn
∥·∥
→ f (n→ +∞);
(ii) { fn} is called a Cauchy sequence with respect to normality if limn,m→+∞ ∥δ( fn, fm)∥ → 0;
(iii) (M,A, δ) is said to be complete with respect to normality if each Cauchy sequence { fn} in M

converges to a point f ∈ M.
The proof of the following lemma is similar to the proof of Lemma 2.1 in [24], so we omit it.

Lemma 2.1. The limit of a convergent sequence with respect to normality in ECb-MLSs over BAs is

unique. That is, if for any given sequence { fn} ⊂ M (n ∈ N), there exist f , g ∈ M such that fn
∥·∥
→ f and

fn
∥·∥
→ g as n→ +∞, then f = g.

Lemma 2.2. (see [30]) Suppose A is a unital Banach algebra, f ∈ A. Then the spectral radius ρA( f )
of f satisfies

ρA( f ) = lim
n→+∞

∥ f n∥
1
n = inf

n∈N
∥ f n∥

1
n .

In particular, ρA( f ) = ρA(− f ) and ρA( f ) ≤ ∥ f ∥.
Lemma 2.3. (see [30]) SupposeA is a unital Banach algebra with a unit e, f ∈ A. If ρA( f ) < 1, then
e − f is invertible. Moreover,

(e − f )−1 =

+∞∑
i=0

f i and ρA
(
(e − f )−1

)
≤

1
1 − ρA( f )

.
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Lemma 2.4. (see [31]) SupposeA is a Banach algebra and f ∈ A. If ρA( f ) < 1, then lim
n→+∞

∥ f n∥ = 0.
Lemma 2.5. (see [30]) For f , g ∈ A, if f commutes with g, then ρA( f + g) ≤ ρA( f ) + ρA(g) and
ρA( f g) ≤ ρA( f )ρA(g).

3. Fixed points of different contractions in ECb-MLSs over BAs

In this section, we consider (M,A, δ) to be an ECb-MLS over a BA and U a normal cone with
normal constant K ≥ 1. In light of the previous definitions and lemmas, some fixed point results for
Reich-type, Kannan-type, and Banach-type contractions in non-solid (M,A, δ) are presented. First,
define a subset U∗ ofA as follows:

U∗ =
{

a ∈ U, a , θ : lim
n→+∞

∥an+1∥

∥an∥
exists

}
.

Based on the Reich-type contraction in [3], we give the following Reich-type contraction in ECb-MLSs
over BAs.
Definition 3.1. Let the set M , ∅ and U be a non-solid cone. If the mapping τ : M → M satisfies

δ(τ f , τg) ⪯ a1δ( f , g) + a2δ( f , τ f ) + a3δ(g, τg) (3.1)

for all f , g ∈ M, where ai ∈ U∗(i = 1, 2, 3) such that a1, a2 commutes with a3 and

ρA(a1 + a2) + ρA(a3) < 1, (3.2)

then τ is named a Reich-type contraction in (M,A, δ).
Definition 3.2. The space (M,A, δ) is named τ-orbitally complete if every Cauchy sequence with
respect to normality included in Oτ( f ) for some f ∈ M converges in M, where
Oτ( f ) = { f , τ f , τ2 f , τ3 f , · · · }.
Remark 3.1. Every complete space (M,A, δ) is τ-orbitally complete for any mapping τ, but not the
converse.
Theorem 3.1. Let (M,A, δ) be a non-solid τ-orbitally complete ECb-MLS over a BA, where τ is a
Reich-type contraction and η( f , g) ≤ 1

1−ρA(a1+a2) for any f , g ∈ M. If for any Picard iterating
sequence { fn} = {τ

n f0} generated by f0 ∈ M,

lim
n,m→+∞

η( fn, fm) <
1

∥(e − a3)−1(a1 + a2)∥
, (3.3)

then τ admits a fixed point f ∈ M and the sequence fn
∥·∥
→ f (n→ +∞).

Proof. Let f0 ∈ M be given. There is a sequence { fn} ⊂ M by utilizing fn = τ fn−1 = τ
n f0, n ≥ 1. If for

some natural number n, τ fn = fn+1 = fn, then fn is a fixed point of τ in M. So, we assume that fn+1 , fn

for all n ∈ N. According to Definition 3.1, we see

δ( fn, fn+1) = δ(τ fn−1, τ fn)
⪯ a1δ( fn−1, fn) + a2δ( fn−1, τ fn−1) + a3δ( fn, τ fn)
= (a1 + a2)δ( fn−1, fn) + a3δ( fn, fn+1). (3.4)
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By ρA(a1 + a2) + ρA(a3) < 1, we know e − a3 is invertible since ρA(a3) < 1 . Then, (3.4) implies that

δ( fn, fn+1) ⪯ (e − a3)−1(a1 + a2)δ( fn−1, fn). (3.5)

Set a = (e − a3)−1(a1 + a2). From (3.5), we deduce

δ( fn, fn+1) ⪯ aδ( fn−1, fn) ⪯ a2δ( fn−2, fn−1) ⪯ · · · ⪯ anδ( f0, f1). (3.6)

For any n ∈ N and p ≥ 1, by (3.6) and Definition 2.3, we have

δ( fn, fn+p) ⪯ η( fn, fn+p)[δ( fn, fn+1) + δ( fn+1, fn+p)]
⪯ η( fn, fn+p)δ( fn, fn+1) + η( fn, fn+p)η( fn+1, fn+p)[δ( fn+1, fn+2) + δ( fn+2, fn+p)]
⪯ η( fn, fn+p)δ( fn, fn+1) + η( fn, fn+p)η( fn+1, fn+p)δ( fn+1, fn+2)
+ η( fn, fn+p)η( fn+1, fn+p)η( fn+2, fn+p)[δ( fn+2, fn+3) + δ( fn+3, fn+p)]
⪯ η( fn, fn+p)δ( fn, fn+1) + η( fn, fn+p)η( fn+1, fn+p)δ( fn+1, fn+2)
+ η( fn, fn+p)η( fn+1, fn+p)η( fn+2, fn+p)δ( fn+2, fn+3) + · · ·
+ η( fn, fn+p)η( fn+1, fn+p) · · · η( fn+p−2, fn+p)[δ( fn+p−2, fn+p−1) + δ( fn+p−1, fn+p)]
⪯ η( fn, fn+p)δ( fn, fn+1) + η( fn, fn+p)η( fn+1, fn+p)δ( fn+1, fn+2)
+ η( fn, fn+p)η( fn+1, fn+p)η( fn+2, fn+p)δ( fn+2, fn+3) + · · ·
+ η( fn, fn+p)η( fn+1, fn+p) · · · η( fn+p−2, fn+p)δ( fn+p−2, fn+p−1)
+ η( fn, fn+p)η( fn+1, fn+p) · · · η( fn+p−2, fn+p)η( fn+p−1, fn + p)δ( fn+p−1, fn+p)
⪯ η( fn, fn+p)anδ( f0, f1) + η( fn, fn+p)η( fn+1, fn+p)an+1δ( f0, f1)
+ η( fn, fn+p)η( fn+1, fn+p)η( fn+2, fn+p)an+2δ( f0, f1) + · · ·
+ η( fn, fn+p)η( fn+1, fn+p) · · · η( fn+p−2, fn+p)η( fn+p−1, fn+p)an+p−1δ( f0, f1)

=

 p−1∑
i=0

ai
n+i∏
j=n

η( f j, fn+p)


 anδ( f0, f1)

⪯

 +∞∑
i=0

ai
n+i∏
j=n

η( f j, fn+p)


 anδ( f0, f1), (3.7)

where
∏

is a product symbol, that is

n+i∏
j=n

η( f j, fn+p) = η( fn, fn+p)η( fn+1, fn+p) · · · η( fn+i, fn+p).

Then ∥∥∥∥∥∥∥
+∞∑
i=0

ai
n+i∏
j=n

η( f j, fn+p)


∥∥∥∥∥∥∥ ≤

+∞∑
i=0

 n+i∏
j=n

η( f j, fn+p)∥ai∥

 ≤ +∞∑
i=0

 n+i∏
j=n

η( f j, fn+p)∥a∥i
 . (3.8)

For i ∈ N, we define

Vn+p
n (i) =

n+i∏
j=n

η( f j, fn+p)∥a∥i, 0 ≤ i ≤ p − 1,
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which implies
Vn+p

n (i + 1)
Vn+p

n (i)
= η( fn+i+1, fn+p)

∥a∥i+1

∥a∥i
= η( fn+i+1, fn+p)∥a∥.

By (3.3), we see
lim

i→+∞
η( fn+i+1, fn+p)∥a∥ < 1.

So, the series
∑+∞

i=0

(∏n+i
j=n η( f j, fn+p)∥a∥i

)
converges. Due to (3.8), we know

∥∥∥∥∑p−1
i=0

(
ai ∏n+i

j=n η( f j, fn+p)
)∥∥∥∥

is bounded.
Since a1, a2 commute with a3, that is, a1a3 = a3a1, a2a3 = a3a2, by Lemma 2.3, we gain

(e − a3)−1(a1 + a2) =

 +∞∑
i=0

(a3)i

 (a1 + a2)

=

 +∞∑
i=0

(a3)i

 a1 +

 +∞∑
i=0

(a3)i

 a2

= a1

 +∞∑
i=0

(a3)i

 + a2

 +∞∑
i=0

(a3)i


= (a1 + a2)

 +∞∑
i=0

(a3)i


= (a1 + a2)(e − a3)−1,

which implies (e − a3)−1 commutes with a1 + a2. By Lemma 2.5 and ρA(a1 + a2) + ρA(a3) < 1, we get

ρA(a) = ρA
(
(e − a3)−1(a1 + a2)

)
≤ ρA((e − a3)−1)ρA(a1 + a2)

≤
ρA(a1 + a2)
1 − ρA(a3)

< 1.

It means ∥an∥ → 0 (n→ +∞) by Lemma 2.4. By (3.7) and (3.8), we have∥∥∥δ( fn, fn+p)
∥∥∥ ≤ ∥∥∥∥∥∥∥

 +∞∑
i=0

ai
n+i∏
j=n

η( f j, fn+p)


 anδ( f0, f1)

∥∥∥∥∥∥∥
≤ ∥an∥ · ∥δ( f0, f1)∥ ·

∥∥∥∥∥∥∥
+∞∑
i=0

ai
n+i∏
j=n

η( f j, fn+p)


∥∥∥∥∥∥∥

≤ ∥an∥ · ∥δ( f0, f1)∥ ·
+∞∑
i=0

 n+i∏
j=n

η( f j, fn+p)∥a∥i
 .

Thus, by ∥an∥ → 0 (n → +∞) and the series
∑+∞

i=0

(∏n+i
j=n η( f j, fn+p)∥a∥i

)
converges, we know for any

p ≥ 1, ∥δ( fn, fn+p)∥ → 0 (n→ +∞), and { fn} is a Cauchy sequence in M.
Because (M,A, δ) is τ-orbitally complete, the sequence { fn} converges to some point f ∈ M. We

claim that f is the fixed point in M. In fact, by (3.1), we have

δ(τ fn, τ f ) ⪯ a1δ( fn, f ) + a2δ( fn, τ fn) + a3δ( f , τ f )
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⪯ a1δ( fn, f ) + a2δ( fn, fn+1) + η( f , τ f )a3
[
δ( f , fn+1) + δ( fn+1, τ f )

]
.

We gain

(e − η( f , τ f )a3) δ( fn+1, τ f ) ⪯ a1δ( fn, f ) + a2δ( fn, fn+1) + η( f , τ f )a3δ( f , fn+1).

Owing to η( f , τ f ) ≤ 1
1−ρA(a1+a2) , we conclude that

ρA(η( f , τ f )a3) ≤ η( f , τ f )ρA(a3) ≤
ρA(a3)

1 − ρA(a1 + a2)
< 1.

Thus, e − η( f , τ f )a3 is invertible. Therefore, we have

δ( fn+1, τ f ) ⪯ (e − η( f , τ f )a3)−1 [
a1δ( fn, f ) + a2δ( fn, fn+1) + η( f , τ f )a3δ( f , fn+1)

]
.

As U is normal, we get

∥δ( fn+1, τ f )∥ ≤ K∥ (e − η( f , τ f )a3)−1
∥ (∥a1∥ · ∥δ( fn, f )∥ + ∥a2∥ · ∥δ( fn, fn+1)∥ + η( f , τ f )∥a3∥ · ∥δ( f , fn+1)∥) .

Because fn
∥·∥
→ f , fn+1

∥·∥
→ f (n → +∞) and { fn} is a Cauchy sequence, we know ∥δ( fn, f )∥ → 0,

∥δ( fn, fn+1)∥ → 0 and ∥δ( f , fn+1)∥ → 0 as n → +∞. As a result, ∥δ( fn+1, τ f )∥ → 0, that is, fn+1
∥·∥
→ τ f

(n→ +∞). So, τ f = f by Lemma 2.1, and f ∈ M is the fixed point.
Now we give the definition of Kannan-type contraction and the corresponding fixed point theorems

as follows.
Definition 3.3. Let the set M , ∅ and U be a non-solid cone. If the mapping τ : M → M satisfies

δ(τ f , τg) ⪯ a
[
δ( f , τ f ) + δ(g, τg)

]
(3.9)

for all f , g ∈ M, where a ∈ U∗ such that

ρA(a) <
1
2
,

then τ is named a Kannan-type contraction in (M,A, δ).
Theorem 3.2. Let (M,A, δ) be a non-solid τ-orbitally complete ECb-MLS over a BA, where τ is a
Kannan-type contraction and η( f , g) ≤ 1

1−ρA(a) for any f , g ∈ M. If for any Picard iterating
sequence { fn} = {τ

n f0} generated by f0 ∈ M,

lim
n,m→+∞

η( fn, fm) <
1

∥(e − a)−1a∥
,

then τ admits a fixed point f ∈ M and the sequence fn
∥·∥
→ f (n→ +∞).

Proof. Let f0 ∈ M be given. There is a sequence { fn} ⊂ M by utilizing fn = τ fn−1 = τ
n f0, n ≥ 1. If for

some natural number n, τ fn = fn+1 = fn, then fn is a fixed point of τ in M. So, we assume that fn+1 , fn

for all n ∈ N. According to Definition 3.3, we see

δ( fn, fn+1) = δ(τ fn−1, τ fn)
⪯ a(δ( fn−1, τ fn−1) + δ( fn, τ fn))
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= aδ( fn−1, fn) + aδ( fn, fn+1).

It follows that
δ( fn, fn+1) ⪯ kδ( fn−1, fn) ⪯ k2δ( fn−2, fn−1) ⪯ · · · ⪯ knδ( f0, f1),

where k = (e − a)−1a and ρA(k) ≤ ρA(a)
1−ρA(a) < 1.

Similar to the proof of Theorem 3.1, we know the series
∑+∞

i=0

(∏n+i
j=n η( f j, fn+p)∥k∥i

)
converges. The

condition ρA(k) < 1 means ∥kn∥ → 0 (n → +∞) by Lemma 2.4. It deduces that { fn} is a Cauchy
sequence in M.

Because (M,A, δ) is τ-orbitally complete, the sequence { fn} converges to some point f ∈ M. We
claim that f is the fixed point in M. In fact, by (3.9), we have

δ(τ fn, τ f ) ⪯ a[δ( fn, τ fn) + δ( f , τ f )]
⪯ aδ( fn, fn+1) + η( f , τ f )a

[
δ( f , fn+1) + δ( fn+1, τ f )

]
.

We gain
(e − η( f , τ f )a) δ( fn+1, τ f ) ⪯ aδ( fn, fn+1) + η( f , τ f )aδ( f , fn+1).

Owing to η( f , τ f ) ≤ 1
1−ρA(a) , we conclude that

ρA(η( f , τ f )a) ≤ η( f , τ f )ρA(a) ≤
ρA(a)

1 − ρA(a)
< 1.

Thus, e − η( f , τ f )a is invertible. Therefore, we have

δ( fn+1, τ f ) ⪯ (e − η( f , τ f )a)−1 [
aδ( fn, fn+1) + η( f , τ f )aδ( f , fn+1)

]
.

As U is normal, we get

∥δ( fn+1, τ f )∥ ≤ K∥ (e − η( f , τ f )a)−1
∥ (∥a∥ · ∥δ( fn, fn+1)∥ + η( f , τ f )∥a∥ · ∥δ( f , fn+1)∥) .

Because fn
∥·∥
→ f , fn+1

∥·∥
→ f (n → +∞) and { fn} is a Cauchy sequence, it follows that ∥δ( fn, f )∥ → 0,

∥δ( fn, fn+1)∥ → 0 and ∥δ( f , fn+1)∥ → 0 as n → +∞. As a result, ∥δ( fn+1, τ f )∥ → 0, that is, fn+1
∥·∥
→ τ f

(n→ +∞). So, τ f = f by Lemma 2.1 and f ∈ M is the fixed point.
Remark 3.2. In Theorem 3.1 and Theorem 3.2, we establish the existence of fixed points without
requiring these contractions to satisfy continuity (Theorem 3.13 in [26]), orbital continuity (Theorem 2
in [19]) or δ-lower orbital continuity (Theorems 3.2, 3.6, 4.1 in [25]). These results improve upon the
main theorems in [19,25,26], which depend crucially on continuity assumptions of τ.

If we further assume that τ is f0-orbital continuity, then the condition η( f , g) ≤ 1
1−ρA(a1+a2) for any

f , g ∈ M in the above theorems can be deleted. We now give these definitions.
Definition 3.4. Let (M,A, δ) be an ECb-MLS over a BA. Let a point f0 ∈ M and

Oτ( f0) = { f0, τ f0, τ
2 f0, τ

3 f0, · · · }. If for any sequence { fn} ⊆ Oτ( f0), fn
∥·∥
→ f as n → +∞ implies

τ fn
∥·∥
→ τ f as n→ +∞, then we say τ is f0-orbitally continuous.

Definition 3.5. If τ is f0-orbitally continuous at every point f0 ∈ M, then we say τ is orbitally
continuous in M.
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Remark 3.3. From the above definitions, it is not difficult to observe that f0-orbital continuity is
weaker than orbital continuity and continuity.
Example 3.1. In order to show our theorems are applicable in examples with weaker conditions, we
construct a f0-orbitally continuous mapping τ in this example. It does not satisfy the conditions of
orbital continuity or continuity. Let A = R2 with the norm ∥ f ∥ = ∥( f1, f2)∥ = | f1| + | f2| and the
multiplication defined by

f g = ( f1, f2)(g1, g2) = ( f1g1, f1g2 + f2g1),

where f = ( f1, f2), g = (g1, g2) ∈ A. Direct verification shows that A is a unital Banach algebra with
its unit e = (1, 0). Define a cone P = {( f1, f2) ∈ R2 : f1, f2 ≥ 0}. Put M = [0, 1] × [0, 1] and construct a
mapping δ : M × M → A by

δ(( f1, f2), (g1, g2)) = (| f1 + g1|
2, | f2 + g2|

2).

We can prove that (M,A, δ) is an ECb-MLS over a BA with η( f , g) = 1 + max{∥ f ∥, ∥g∥, 1} by a detail
checking. Define a self-mapping τ on M as

τ f = τ( f1, f2) =


(1, 1), ( f1, f2) = (0, 0);
(1, 1), ( f1, f2) = (1, 1);
( 1

3 f1,
1
3 f2), otherwise.

It is clear that τ is f0-orbitally continuous. Actually, let f0 = (0, 0), then

τn f0 → (1, 1) and τ(τn f0)→ (1, 1) = τ(1, 1) (n→ +∞).

However, τ is not orbitally continuous, this is because

τn( f1, f2) =
((

1
3

)n

f1,

(
1
3

)n

f2

)
→ (0, 0) (n→ +∞),

which follows that, for all f1, f2 ∈ (0, 1), τ(τn( f1, f2)) → (0, 0) , τ(0, 0) as n → +∞. Accordingly, we
claim that the condition of orbital continuity is stronger than f0-orbital continuity for the mapping τ.
Theorem 3.3. Let (M,A, δ) be a non-solid τ-orbitally complete ECb-MLS over a BA, where τ is
a Reich-type contraction and f0-orbitally continuous for some f0 ∈ M. If for any Picard iterating
sequence { fn} = {τ

n f0} generated by f0,

lim
n,m→+∞

η( fn, fm) <
1

∥(e − a3)−1(a1 + a2)∥
,

then τ admits a fixed point f ∈ M and the sequence fn
∥·∥
→ f (n→ +∞).

Proof. Let f0 ∈ M be given. There is a sequence { fn} ⊂ M by utilizing fn = τ fn−1 = τ
n f0, n ≥ 1. If

for some natural number n, τ fn = fn+1 = fn, then fn is a fixed point of τ in M. So, we assume that

fn+1 , fn for all n ∈ N. By Theorem 3.1, we see fn
∥·∥
→ f for some f ∈ M as n → +∞. Since τ is

f0-orbitally continuous, fn+1 = τ fn
∥·∥
→ τ f (n→ +∞). Thus, f is the fixed point of τ by Lemma 2.1 and

the sequence { fn} converges to f .
Naturally, the following theorem holds.
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Theorem 3.4. Let (M,A, δ) be a non-solid τ-orbitally complete ECb-MLS over a BA, where τ is
a Kannan-type contraction and f0-orbitally continuous for some f0 ∈ M. If for any Picard iterating
sequence { fn} = {τ

n f0} generated by f0,

lim
n,m→+∞

η( fn, fm) <
1

∥(e − a)−1a∥
,

then τ admits a fixed point f ∈ M and the sequence fn
∥·∥
→ f (n→ +∞).

At the end of this section, we give the following theorem of Banach-type contraction in ECb-MLSs
over BAs, without any continuity condition.
Theorem 3.5. Let (M,A, δ) be a non-solid τ-orbitally complete ECb-MLS over a BA. Suppose that
the mapping τ is a Banach-type contraction, which satisfies

δ(τ f , τg) ⪯ aδ( f , g) (3.10)

for all f , g ∈ M, where a ∈ U∗ such that ρA(a) < 1. If for any Picard iterating sequence { fn} = {τ
n f0}

generated by f0,

lim
n,m→+∞

η( fn, fm) <
1
∥a∥
, (3.11)

then τ admits a fixed point f ∈ M and the sequence fn
∥·∥
→ f (n→ +∞).

Proof. Let f0 ∈ M be given. There is a sequence { fn} ⊂ M by utilizing fn = τ fn−1 = τ
n f0, n ≥ 1. If for

some natural number n, τ fn = fn+1 = fn, then fn is a fixed point of τ in M. So, we assume that fn+1 , fn

for all n ∈ N. According to (3.10), we see

δ( fn, fn+1) = δ(τ fn−1, τ fn) ⪯ aδ( fn−1, fn),

which implies that

δ( fn, fn+1) ⪯ aδ( fn−1, fn) ⪯ a2δ( fn−2, fn−1) ⪯ · · · ⪯ anδ( f0, f1).

Similar to the proof of Theorem 3.1, we know the series
∑+∞

i=0

(∏n+i
j=n η( f j, fn+p)∥a∥i

)
converges. The

condition ρA(a) < 1 means ∥an∥ → 0 (n → +∞) by Lemma 2.4. It deduces that { fn} is a Cauchy
sequence in M.

Because (M,A, δ) is τ-orbitally complete, the sequence { fn} converges to some point f ∈ M. We
claim that f is the fixed point in M. In fact, by (3.10), we have

δ(τ fn, τ f ) ⪯ aδ( fn, f ).

As U is normal, we get
∥δ( fn+1, τ f )∥ ≤ K∥a∥ · ∥δ( fn, f )∥.

Because fn
∥·∥
→ f , we see ∥δ( fn, f )∥ → 0 as n → +∞. As a result, ∥δ( fn+1, τ f )∥ → 0, that is, fn+1

∥·∥
→ τ f

(n→ +∞). So, τ f = f by Lemma 2.1 and f ∈ M is the fixed point.
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4. Fixed points of Reich-type and Kannan-type almost contractions in ECb-MSs over BAs

In this section, we consider (M,A, δ) to be a complete ECb-MS over a BA and U a normal cone
with normal constant K ≥ 1. In light of the previous definitions and lemmas, we present fixed point
results for Reich-type and Kannan-type almost contractions in non-solid (M,A, δ) establishing, not
only the existence of fixed points but also their uniqueness. These results generalize the main theorems
in [13,32].
Definition 4.1. Let the set M , ∅ and U be a non-solid cone. If the mapping τ : M → M satisfies

δ(τ f , τg) ⪯ a1δ( f , g) + a2δ( f , τ f ) + a3δ(g, τg) + a4δ(g, τ f ) (4.1)

for all f , g ∈ M, where ai ∈ U∗(i = 1, 2, 3, 4) such that a1, a2 commutes with a3 and

ρA(a1 + a2) + ρA(a3) < 1, (4.2)

then τ is named a Reich-type almost contraction in (M,A, δ).
Definition 4.2. Let the set M , ∅ and U be a non-solid cone. If the mapping τ : M → M satisfies

δ(τ f , τg) ⪯ a
[
δ( f , τ f ) + δ(g, τg)

]
+ kδ(g, τ f )

for all f , g ∈ M, where a, k ∈ U∗ such that

ρA(a) <
1
2
,

then τ is named a Kannan-type almost contraction in (M,A, δ).
Theorem 4.1. Let (M,A, δ) be a non-solid τ-orbitally complete ECb-MS over a BA, where τ is a
Reich-type almost contraction and η( f , g) ≤ 1

1−ρA(a1+a2) for any f , g ∈ M. If for any Picard iterating
sequence { fn} = {τ

n f0} generated by f0 ∈ M,

lim
n,m→+∞

η( fn, fm) <
1

∥(e − a3)−1(a1 + a2)∥
, (4.3)

then τ admits a fixed point f ∈ M and the sequence fn
∥·∥
→ f (n→ +∞). Furthermore, if ρA(a1+a4) < 1,

then the fixed point is unique.
Proof. Let f0 ∈ M be given. There is a sequence { fn} ⊂ M by utilizing fn = τ fn−1 = τ

n f0, n ≥ 1. If for
some natural number n, τ fn = fn+1 = fn, then fn is a fixed point of τ in M. So, we assume that fn+1 , fn

for all n ∈ N. According to Definition 4.1, we see

δ( fn, fn+1) = δ(τ fn−1, τ fn)
⪯ a1δ( fn−1, fn) + a2δ( fn−1, τ fn−1) + a3δ( fn, τ fn) + a4δ( fn, τ fn−1)
= (a1 + a2)δ( fn−1, fn) + a3δ( fn, fn+1). (4.4)

Similar to the analysis of Theorem 3.1, we can obtain { fn} is a Cauchy sequence in M.
Because (M,A, δ) is τ-orbitally complete, the sequence { fn} converges to some point f ∈ M. We
claim that f is the fixed point in M. In fact, by (4.1), we have

δ(τ fn, τ f ) ⪯ a1δ( fn, f ) + a2δ( fn, τ fn) + a3δ( f , τ f ) + a4δ( f , τ fn)
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⪯ a1δ( fn, f ) + a2δ( fn, fn+1) + η( f , τ f )a3
[
δ( f , fn+1) + δ( fn+1, τ f )

]
+ a4δ( f , fn+1).

It follows that[
e − η( f , τ f )a3

]
δ( fn+1, τ f ) ⪯ a1δ( fn, f ) + a2δ( fn, fn+1) + (η( f , τ f )a3 + a4)δ( f , fn+1).

Owing to η( f , τ f ) ≤ 1
1−ρA(a1+a2) , we conclude that

ρA(η( f , τ f )a3) ≤ η( f , τ f )ρA(a3) ≤
ρA(a3)

1 − ρA(a1 + a2)
< 1.

Thus, e − η( f , τ f )a3 is invertible. Therefore, we have

δ( fn+1, τ f ) ⪯
[
e − η( f , τ f )a3

]−1 [
a1δ( fn, f ) + a2δ( fn, fn+1) + (η( f , τ f )a3 + a4) δ( f , fn+1)

]
.

As U is normal, we get

∥δ( fn+1, τ f )∥ ≤ K∥(e − η( f , τ f )a3)−1∥(∥a1∥ · ∥δ( fn, f )∥
+ ∥a2∥ · ∥δ( fn, fn+1)∥ + ∥η( f , τ f )a3 + a4∥ · ∥δ( f , fn+1)∥).

Because fn
∥·∥
→ f , fn+1

∥·∥
→ f (n → +∞) and { fn} is a Cauchy sequence, ∥δ( fn, f )∥ → 0, ∥δ( fn, fn+1)∥ → 0

and ∥δ( f , fn+1)∥ → 0 as n → +∞. As a result, ∥δ( fn+1, τ f )∥ → 0, that is, fn+1
∥·∥
→ τ f (n → +∞). So,

τ f = f by Lemma 2.1. Hence, f ∈ M is the fixed point and the sequence fn
∥·∥
→ f (n→ +∞).

We now turn to the proof of uniqueness for the fixed point. Otherwise, if there is another point
g ∈ M, g , f such that τg = g, then

δ(τ f , τg) ⪯ a1δ( f , g) + a2δ( f , τ f ) + a3δ(g, τg) + a4δ(g, τ f )
= (a1 + a4)δ( f , g).

Repeating this progress, we have

δ( f , g) ⪯ (a1 + a4)δ( f , g) = (a1 + a4)δ(τ f , τg) ⪯ (a1 + a4)2δ( f , g) ⪯ · · · ⪯ (a1 + a4)nδ( f , g).

Thus, δ( f , g) ⪯ (a1 + a4)nδ( f , g) for any n ≥ 1. It implies that

∥δ( f , g)∥ ≤ K∥(a1 + a4)n∥ · ∥δ( f , g)∥.

Using the fact that ρA(a1+a4) < 1, we know ∥(a1+a4)n∥ → 0 (n→ +∞) by Lemma 2.4. So, δ( f , g) = θ
and f = g.

Next, we consider the fixed point theorem for Reich-type almost contraction in non-solid (M,A, δ)
under the condition of f0-orbital continuity.
Theorem 4.2. Let (M,A, δ) be a non-solid τ-orbitally complete ECb-MS over a BA, where τ is a
Reich-type almost contraction and f0-orbitally continuous for some f0 ∈ M. If for any Picard iterating
sequence { fn} = {τ

n f0} generated by f0 ∈ M,

lim
n,m→+∞

η( fn, fm) <
1

∥(e − a3)−1(a1 + a2)∥
,
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then τ admits a fixed point f ∈ M and the sequence fn
∥·∥
→ f (n→ +∞). Furthermore, if ρA(a1+a4) < 1,

then the fixed point is unique.
Proof. Let f0 ∈ M be given. There is a sequence { fn} ⊂ M by utilizing fn = τ fn−1 = τ

n f0, n ≥ 1. If for
some natural number n, τ fn = fn+1 = fn, then fn is a fixed point of τ in M. So, we assume that fn+1 , fn

for all n ∈ N. Similar to Theorem 4.1, we see the sequence { fn} converges to some point f ∈ M. Since

τ is f0-orbitally continuous, fn+1 = τ fn
∥·∥
→ τ f (n→ +∞). Thus, f is the fixed point of τ by Lemma 2.1.

The proof of uniqueness closely follows that of Theorem 4.1.
The fixed point theorems for Kannan-type almost contraction with vector-valued coefficients in

non-solid ECb-MS over BA can be obtained similar to Theorem 4.1 and Theorem 4.2. Accordingly,
the proof is omitted.
Theorem 4.3. Let (M,A, δ) be a non-solid τ-orbitally complete ECb-MS over a BA, where τ is a
Kannan-type almost contraction and η( f , g) ≤ 1

1−ρA(a) for any f , g ∈ M. If for any Picard iterating
sequence { fn} = {τ

n f0} generated by f0 ∈ M,

lim
n,m→+∞

η( fn, fm) <
1

∥(e − a)−1a∥
,

then τ admits a fixed point f ∈ M and the sequence fn
∥·∥
→ f (n → +∞). Furthermore, if ρA(k) < 1,

then the fixed point is unique.
Theorem 4.4. Let (M,A, δ) be a non-solid τ-orbitally complete ECb-MS over a BA, where τ is a
Kannan-type almost contraction and f0-orbitally continuous for some f0 ∈ M. If for any Picard iterating
sequence { fn} = {τ

n f0} generated by f0 ∈ M,

lim
n,m→+∞

η( fn, fm) <
1

∥(e − a)−1a∥
,

then τ admits a fixed point f ∈ M and the sequence fn
∥·∥
→ f (n → +∞). Furthermore, if ρA(k) < 1,

then the fixed point is unique.

5. Applications

This section provides illustrative examples demonstrating that our main results serve as effective
tools for establishing solutions in different equations, regardless of whether the underlying cones are
solid or non-solid.
Example 5.1. Let the set M = [0, 1) and the Banach algebraA = R. The multiplication ofA is defined
by its usual pointwise multiplication. ThenA is a Banach algebra with e = 1. The cone is denoted by

U = { f ∈ A | f ≥ 0} ⊂ R.

For any non-negative real function φ(t) ∈ Ł[0, 1] (the set of all generalized real-valued Lebesgue
integral functions on [0, 1]). Define δ : M × M → A by

δ( f , g) = α
∫ 1

0
| f + g|φ(t)dt,
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where α ≥ 0 is a constant and the function η( f , g) = 1 + 1
4 | f + g| for any f , g ∈ M. Then (M,A, δ) is a

normal and solid ECb-MLS over a BA. Define the mapping τ : M → M by

τ f =
{ 2

3 f , f ∈ [0, 9
17 );

1
10 f + 3

10 , f ∈ [ 9
17 , 1).

Then τ is f0-orbitally continuous for any f0 ∈ [0, 9
17 ), because τn f0 → 0, τ(τn f0)→ 0 = τ0. However, τ

is not orbitally continuous. In fact, for any f ∈ [ 9
17 , 1), letting n tend to +∞, we have

τn f →
1
3
, τ(τn f )→

1
3
, τ

1
3
=

2
9
,

which yields that τ is not orbitally continuous. Moreover, the space (M,A, δ) is τ-orbitally complete
but not complete. Next, we prove that τ is a Kannan-type contraction in three different cases.
Case 1: for all f , g ∈ [ 9

17 , 1), we have τ f = 1
10 f + 3

10 , τg =
1
10g + 3

10 . Then,

δ(τ f , τg) = α
∫ 1

0

∣∣∣∣∣ 1
10

f +
3

10
+

1
10

g +
3

10

∣∣∣∣∣φ(t)dt

= α

∫ 1

0

∣∣∣∣∣ 1
10

( f + g) +
3
5

∣∣∣∣∣φ(t)dt

⪯ α

∫ 1

0

∣∣∣∣∣11
25

( f + g) +
6

25

∣∣∣∣∣φ(t)dt

=
2
5
α

(∫ 1

0

∣∣∣∣∣ f + 1
10

f +
3

10

∣∣∣∣∣φ(t)dt +
∫ 1

0

∣∣∣∣∣g + 1
10

g +
3

10

∣∣∣∣∣φ(t)dt
)

=
2
5

(δ( f , τ f ) + δ(g, τg)) ,

since
11
25

( f + g) +
6

25
−

1
10

( f + g) −
3
5
=

17
50

( f + g) −
9

25
≥

17
50
·

18
17
−

9
25
= 0.

Case 2: for all f , g ∈ [0, 9
17 ), we have τ f = 2

3 f , τg = 2
3g. Then,

δ(τ f , τg) = α
∫ 1

0

∣∣∣∣∣23 f +
2
3

g
∣∣∣∣∣φ(t)dt

=
2
3
α

∫ 1

0
| f + g|φ(t)dt

⪯
2
5
α

(∫ 1

0

∣∣∣∣∣ f + 2
3

f
∣∣∣∣∣φ(t)dt +

∫ 1

0

∣∣∣∣∣g + 2
3

g
∣∣∣∣∣φ(t)dt

)
=

2
5

(δ( f , τ f ) + δ(g, τg)) .

Case 3: for all f ∈ [0, 9
17 ), g ∈ [ 9

17 , 1), we have τ f = 2
3 f , τg = 1

10g + 3
10 . Then,

δ(τ f , τg) = α
∫ 1

0

∣∣∣∣∣23 f +
1

10
g +

3
10

∣∣∣∣∣φ(t)dt
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⪯ α

∫ 1

0

∣∣∣∣∣23 f
∣∣∣∣∣φ(t)dt + α

∫ 1

0

∣∣∣∣∣ 1
10

g +
3
10

∣∣∣∣∣φ(t)dt

⪯
2
5
α

(∫ 1

0

∣∣∣∣∣ f + 2
3

f
∣∣∣∣∣φ(t)dt +

∫ 1

0

∣∣∣∣∣g + 1
10

g +
3
10

∣∣∣∣∣φ(t)dt
)

=
2
5

(δ( f , τ f ) + δ(g, τg)) .

The third inequality holds because

2
5

(
11
10

g +
3

10

)
−

1
10

g −
3
10
=

17
50

g −
9
50
≥

17
50
·

9
17
−

9
50
= 0.

Let a = 2
5 ∈ U, ρA(a) = 2

5 <
1
2 . Moreover, we have

η( f , g) = 1 +
1
4
| f + g| < 1 +

1
4
× 2 =

3
2
<

5
3
=

1
1 − ρA(a)

.

To verify that limn,m→+∞ η( fn, fm) < 1
|(e−a)−1a| , we analyze two cases.

(1) If f0 ∈ [0, 9
17 ), fn =

(
2
3

)n
f0, fm =

(
2
3

)m
f0, then

lim
n,m→+∞

η( fn, fm) = lim
n,m→+∞

(
1 +

1
4

∣∣∣∣∣∣
(
2
3

)n

f0 +

(
2
3

)m

f0

∣∣∣∣∣∣
)
= 1 <

3
2
=

1
∥(e − a)−1a∥

,

(2) If f0 ∈ [ 9
17 , 1), then

fn =

(
1

10

)n

f0 +
3

10
×

1 −
(

1
10

)n

1 − 1
10

=

(
1
10

)n

f0 +
1
3

(
1 −

(
1

10

)n)
and

fm =

(
1

10

)m

f0 +
1
3

(
1 −

(
1

10

)m)
.

One get

lim
n,m→+∞

η( fn, fm) = lim
n,m→+∞

(
1 +

1
4

∣∣∣∣∣∣
(

1
10

)n

f0 +
1
3

(
1 −

(
1

10

)n)
+

(
1

10

)m

f0 +
1
3

(
1 −

(
1

10

)m)∣∣∣∣∣∣
)

=
7
6
<

3
2
=

1
∥(e − a)−1a∥

.

This establishes all requirements of Theorem 3.4, from which it follows that τ has a fixed point in M.
Remark 5.1. The main results of [19,25,26] are not applicable in Example 5.1 since they require that
the spaces are complete and the mappings satisfy certain continuity conditions. Therefore, conclusions
are very different from the existing conclusions in the literature.
Example 5.2. Let F : [0, 1] × R → R be a generalized real-valued Lebesgue integral function where
R = [−∞,+∞] is the set on all generalized real numbers. Consider the following nonlinear integral
equation ∫ 1

0
F(t, f (s)) ds = f (t). (5.1)
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If for a.e. t ∈ [0, 1], and a.e. f , g ∈ R, one has

|F(t, f ) − F(t, g)| ≤ H(x)| f − g|, (5.2)

where the function H(x) satisfying 0 <
∫ 1

0
H(x) dx < 1. Then Eq. (5.1) has a unique non-negative

solution in Ł [0, 1].
Proof. Let A = Ł [0, 1] and the norm be defined by ∥ f ∥1 =

∫ 1

0

∣∣∣ f (t)
∣∣∣dt for f ∈ A. The multiplication

in A defined as the pointwise multiplication of functions. Then A is a real Banach algebra with unit
element e = e(t) = 1 for a.e. t ∈ [0, 1]. The cone is denoted by

U = { f ∈ Ł [0, 1] | f = f (t) ≥ 0, for a.e. t ∈ [0, 1]}.

Then U is normal but non-solid. Let M = Ł [0, 1]. Define δ : M × M → A by

δ( f , g)(t) =
(∫ 1

0
| f (t) + g(t)| dt

)
· φ(t),

where φ(t) ∈ U\{θ} with η( f , g) = 1 + max{| f |, |g|} for all f , g ∈ M. Then (M,A, δ) is a normal and
nonsolid ECb-MLS over BA. Consider the nonlinear mapping τ : M → M defined by

τ f (t) =
∫ 1

0
F(t, f (s)) ds.

Similar to Example 5.1, we can verify that condition (3.11) is satisfied. According to (5.2) and the fact
that ∥ f g∥1 ≤ ∥ f ∥1∥g∥1, one get

δ(τ f , τg)(t) =
(∫ 1

0
|τ f (t) + τg(t)| dt

)
φ(t)

=

( ∫ 1

0

∣∣∣∣∣∣
∫ 1

0

(
F(t, f (s)) + F(t, g(s))

)
ds

∣∣∣∣∣∣ dt
)
φ(t)

≤

( ∫ 1

0

(∫ 1

0
|F(t, f (s)) + F(t, g(s))| ds

)
dt

)
φ(t)

≤

( ∫ 1

0

(∫ 1

0
H(t)

∣∣∣ f (s) + g(s)
∣∣∣ds

)
dt

)
φ(t)

≤

(∫ 1

0
H(t)dt

)
·

( ∫ 1

0

∣∣∣ f (s) + g(s)
∣∣∣ds

)
φ(t)

= a
( ∫ 1

0

∣∣∣ f (s) + g(s)
∣∣∣ds

)
φ(t)

= aδ
(
f , g

)
,

where a =
∫ 1

0
H(t) dt ∈ (0, 1) satisfying the spectral radius ρA(a) < 1. In fact, 0 < a < 1 implies

ρA(a) = limn→+∞ ∥an∥
1
n < 1. By Theorem 3.5, we see all the condition of Theorem 3.5 are satisfied.

Therefore, it follows from Theorem 3.5 that the Eq (5.1) has a unique non-negative solution in Ł [0, 1].
Remark 5.2. The results presented in this paper extend and generalize the corresponding results of
Reich-type and Kannan-type contractions given in [13,18,19,25,26,32]. Our results are established
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within the framework of non-solid ECb-MLSs and ECb-MSs over BAs, which are not equivalent to
any metric spaces, even when the cone is normal, this distinction arises because all existing methods
for proving such equivalence fundamentally depend on the solidness of cones, thereby rendering both
these approaches and their associated techniques inapplicable in our case.
Remark 5.3. The key results of this paper enrich the literature on fixed point theory in metric and
abstract metric spaces, complementing previous work such as [31–35].

6. Conclusions

This paper addresses the existence and uniqueness of Reich-type and Kannan-type (almost)
contractions in non-solid ECb-MLSs and ECb-MSs over BAs, together with the convergence of the
associated iterated sequences. By introducing new notions of Cauchy sequence, convergent sequence,
and completeness with respect to normality in these abstract spaces, we establish several fixed point
theorems for such contractions with vector-valued coefficients. The main novelty lies in deducing new
fixed-point results without any orbital continuity in non-solid abstract spaces by new concepts.
Another novelty is the weakening of completeness to orbital completeness. In the illustrative
applications, we still obtain existence, uniqueness, and iterative convergence of fixed points for these
contractions, even without continuity of mappings or completeness of spaces.

Future research is expected to focus the fixed points of Hardy-Rogers contractions and Ćirić quasi-
contractions in these abstract spaces, together with related applications to nonlinear integral functions
and neural networks.

Author contributions

Conceptualization, Y. H., J. C., S. X. and X. X.; methodology, Y. H., J. C. and S. X.; validation, Y.
H., J. C., S. X. and X. X.; formal analysis, Y. H., J. C., S. X. and X. X.; investigation, Y. H. and S. X.;
writing-original draft preparation, Y. H. and S. X.; writing-review and editing, Y. H., J. C. and S. X.;
supervision, S. X; project administration, Y. H., S. X. and X. X.; funding acquisition, Y. H., S. X. and
X. X. All authors have read and agreed to the published version of the manuscript.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The research is partially supported by Yunnan Provincial Reserve Talent Program for Young and
Middle-aged Academic and Technical Leaders (No. 202405AC350086); the National Natural Science
Foundation of China (No. 12361099); Guangdong Basic and Applied Basic Research Foundation
(No. 2023A1515010997); the Special Basic Cooperative Research Programs of Yunnan Provincial
Undergraduate Universities’ Association (No. 202301BA070001-095, 202301BA070001-092).

AIMS Mathematics Volume 11, Issue 1, 22–42.



40

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. S. Banach, Sur les opérations dans les ensembles abstraits at leur application aux équations
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