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1. Introduction

Ruled surfaces have been widely studied due to their easily parametrizable nature. A ruled surface
is generated by a one-parameter family of rulings sliding along a directrix curve. The striction
curve is the intrinsic directrix uniquely embedded within the surface, whereas the directrix curve
is an artificially selected reference curve, with infinitely many possible choices. The structure of
the striction curve depends solely on the family of rulings of the ruled surface and is independent
of parametrization or the choice of the directrix curve, which itself lacks geometric uniqueness. In
differential geometry, establishing a moving frame to study the properties of curves and surfaces is a
common and essential technique [1-3]. In early studies of ruled surfaces, the conventional Frenet and
Darboux frames could only be constructed along directrix curves, and thus failed to simultaneously
capture the geometrical information of rulings, imposing restrictions on the study of ruled surfaces.
Therefore, in 1925 Sannia chose the striction curve as the directrix by transforming the parameters
of the ruled surface and defined a new moving frame — the Sannia frame — of the rulings along the
striction curve. This frame incorporated both the striction curve and the rulings into a unified system
of differential equations, achieving a synchronous description of their geometric information [4]. In the
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late 19th century, Wunderlich employed the Sannia frame and suggested its potential applicability to
pseudo-Euclidean spaces [5—7]. In 2001 Pottmann and Wallner connected the three vectors ey, e, and
e3 of the Sannia frame to the origin, and spherical motion generated three distinct curves: the images
of the spherical generator, the central tangent, and the central normal. In this framework, curvature
and torsion correspond to the components of angular velocity [8]. This reformulated the twisting of
rulings as a problem of spherical geodesic curvature and rotation minimization, yielding two minimal
intrinsic variables for computational geometry. In 2006, Hamdoon Omran used the spherical Sannia
frame to construct a complete set of Euclidean invariants from the geodesic curvature and distribution
parameter, enabling full characterization of developability, minimality, and Weingarten properties for
skew ruled surfaces [9]. This established a two-invariant framework for analyzing surface properties.

Recent studies have extended the Sannia frame theory and its applications. Eren Kemal employed
the Sannia frame along striction curves of various classical ruled surfaces to define new types of
e;,—Sannia ruled surfaces in Euclidean space, deriving their developability and minimality conditions,
thereby providing a method for constructing novel ruled surfaces [10,11]. Subsequently, Marco
Castrillon-Lopez generalized the Sannia frame to three-dimensional Riemannian manifolds and
established its equations of motion, invariants and a local existence theorem for ruled surfaces, thereby
laying a foundation for studies in non-Euclidean spaces such as the Heisenberg group [12]. Most
recently, Bayram constructed a theoretical bridge between the intrinsic geometry of ruled surfaces and
line-symmetric rigid body motions via the Sannia frame, revealing its key role in kinematic description
and expanding classical motion geometry theory [13].

Existing studies on the Sannia frame have been confined to Euclidean space. Minkowski
space, introduced to formulate special relativity, captures the interdependence of time, space, and
motion, offering a more accurate description of physical phenomena. The alternative frame further
aids in analyzing particle and observer kinematics in curved spacetime, elucidating relativistic and
gravitational effects [14-16]. Therefore, based on the alternative frame for timelike curves in
Minkowski space, we construct non-lightlike Sannia ruled surfaces from the principal normal, C-
direction, and Darboux ruled surfaces. In this paper, we derive their developability and minimality
conditions, establish general links between these surface properties and the underlying timelike curve,
and illustrate the geometry of these surfaces.

2. Preliminaries

Let E; be the Minkowski 3-space, E; is the real vector space R* endowed with the standard flat
metric

(a, b) = Cl]bl + Clzbz - a3b3, (21)

where a = (a;,a,,a3) and b = (b, by, b3) are vectors in E?
The vector product of a X b is given by

i j -k
axb=\lag a a3|, 2.2)
b, by, bs

where i = (1,0,0), j = (0,1,0), k = (0,0, 1) are the natural basis vectors in Ef
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Let v be any arbitrary vector in Ef Then, v is said to be spacelike if (v,v) > 0; lightlike if (v,v) = O;
timelike if (v,v) < O.

A regular curve is said to be a timelike curve, spacelike curve, or lightlike curve if, the tangent
vector is timelike, spacelike, or lightlike, respectively.

Leta: I CE — Ef be a timelike curve with arc length parameter s in Ef then the Frenet frame
{T, N, B} of «a satisfies

T 0 «x O0Y(T
Nl=|lky, 0 1||N|, (2.3)
B’ 0 -, 0)\B
where (T, T) = -1,(N,N)=1,(B,B) = 1.
The alternative frame {N, C, W} of « satisfies
N’ 0 K> 0 (N
C|= (51K2 0 527’2 C , (24)
w’ 0 & 0 )W
T+1,B T+« B TK — KT
where C = u, = —Tl—Kl, Ky = |K%—T%, T, = %, 51 = sgn (W, W)),
=72 it =731 oo
0, = sgn({C, C)).
ki T+7 B

Without loss of generality, we only investigate the case where k7 — 77 > 0, that is C = Vo
KT
W= —IT—%? (N,N) = 1,(C,C) = =1, (W, W) = 1 and , = \[«? — 73. The case where } — 7> < 0

is analogous and will not be detailed in this paper.
We can define the principal normal ruled surfaces Xy, the C-direction ruled surfaces X¢ and the

Darboux ruled surfaces Xy of a as follows:

Xn(s,v) = a(s) + VN, (2.5
Xc(s,v) = a(s) +vC, (2.6)
Xw(s,v) = a(s) + vW, 2.7

where {N, C, W} is the alternative moving frame along the curve .

Definition 2.1. Let r : I — S?(1) be a curve on unit sphere (orr : I — S?*(=1) be a curve on unit
pseudosphere), then the Sannia frame {e, e,, e3} is a moving frame along r, defined by

e
e =r,e, = —1,e3 =e| Xe,. (2.8)

Veileie))

9,1 0 K3 0 (2]
e; =|—K3 0 T31l€21, (29)
eg 0 —T3 0 €3

where k3 = €€, e,), T3 = €(e), e3) are the curvature functions of r, and € = sgn ((e’l,e; )), €& =
sgn ({e2, e)), €3 = sgn ({e3, e3)).

The Sannia formulas are
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Definition 2.2. Let X,(s,v) = a(s) + vra(s) be a ruled surface with striction curve B4, and {e,, e, ez}
be Sannia frame on r,. The ruled surfaces generated in direction e; are said to be e;-Sannia ruled
surfaces as follows:

Dy (5,v) = Pals) +vei(s) (i=1,2,3). (2.10)

For an e;-Sannia ruled surface ®,4.(s,v) = Ba(s) + ve;(s), the first and second fundamental quantities
are given by

Ea, = (®@4)s, (Pa)s)s Foo,, = ((Pa)ss (®a)), Go,, = ((Pa)ys (Pa,)y),
lchl. = <((I)A,-)ss’u<I)Ai>»m(I>Ai = <((I)A,-)swu(I)Ai>»n(I)Ai = (((I)A,-)w,qui%

_ ((I)A,-)XX((I)Ai)v . .
where Up, = T @]l is the unit normal of ®,.

The Gaussian curvature K¢, and mean curvature Hg, of ®,; are computed as follows:
1 1

2
l([)A[_ nq)A,- - md)Al. 1 E(DAin(DA 2F(I)A md)A + G(DA ld)A

= sHo, = 5
l E(I)AiG(DAi N FCZDA,» " 2 G‘I’A - F2

Ko,

Next, we generate a family of non-lightlike e;-Sannia ruled surfaces by employing the principal
normal ruled surface, C-direction ruled surface, and Darboux ruled surface based on the alternative
frame, and investigate their developability and minimality.

3. The Sannia ruled surfaces generated by principal normal ruled surface

For a principal normal ruled surface Xy(s, v) = a(s) + vN(s), the striction curve is determined to be
N = @ — —N Subsequently, the Sannia frame {e;, e,, e3} of N can be easily established by e; = N,

e, =C and e3 = W. Then the generated e;-Sannia ruled surface are as follows:

®y, = @ — LN+ N, 3.1)
Kz
K1

®y, = @ — =N +C, (3.2)
Ky

Dy, —a'——N+vW 3.3)
K2

2

Theorem 3.1. Let ®y, be an e -Sannia ruled surface of a principal normal ruled surfaces, then the
following conclusions hold:

1) @y, is developable if and only if @ is a plane curve,

1) @y, is minimal if and only if @ is either a plane curve or a cylindrical helix.

Proof. Taking partial derivatives of ®y,, we obtain
(@), = - (K—;) N +vi,C + —W, (®y,), = N
K2 K>
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Thus, the first fundamental quantities of @y, are as follows:

P "2 T2 p ’

1 2.2 1 1

EcpN] =1l= -V K2+—2,F(1)N1 =—1= ,G(pN] =1.

K K K
2 2 2

The unit normal vector of the ruled surface is
-71C —vicW

2.4 _ 2|
|VK2 7

u(le =

Taking the second-order partial derivatives of @y, , we obtain

(@, )ss = (_ (K_;) + VK%) N+ (_ (K_;) Ky — ELEN vKé) C+ ((2) - VK2T2) W,
K3 K5 K2 K>
(®N|)SV = K2C9 ((DNI )vv = 0.

Thus, the second fundamental quantities of @y, are as follows:

’
’
-7 ((:—%) Ky + T — VK’Z) + VKS (— (Z—;) + v1<272)

l(I)Nl = s
2,4 2|
|V Ky =T
KT
Mey = —F— Ny, = 0.
v — 7|

The Gaussian curvature of the ruled surface ®y, is given by

K an (3.4)
Dy, = , .
G - TG - T
it follows that @y, is developable if and only if e is planar since k, # 0.
The mean curvature of the ruled surface @y, is
B,
Ho, = , (3.5
20265 — 1) V5 — 13
’ ’ 2 )
K K TIT T
where B; = =271k (é) + 7 ((é) Ky + ﬁ - VK;) + VK5 ((é) - VK2T2).
Thus, ®y, is a minimal surface if and only if B; = 0, which is equivalent to
2.3 / 271 ki) T
VKT vkt k| — | |+ | = | kTt + —) =0,
K> K2 K>
further analysis leads to the system of equations
KTy =0,
’
T
KT — k2 —] =0,
20 pa (3.6)
kY TIT,
(—2) T1Ky — L= =0.
K2 K>
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D857 it follows that 7, = 0 if and only if @ is a plane curve or a general helix.
KT

We observe that for a plane curve or a cylindrical helix, all the equations of (3.6) are satisfied.

However, for a non-cylindrical general helix, the second equation of (3.6) holds if and only if
k} — 72 = 0, which contradicts our assumption. m

In the subsequent discussion, we adopt the following conventions: the symbols ¢ and ¢; denote
nonzero constants, and the symbol g’ denotes the derivative of g with respect to s. These conventions

will not be restated unless otherwise specified.

Since 7, =

Theorem 3.2. Let ®y, be an e,-Sannia ruled surface of a principal normal ruled surface, then the
following conclusions hold:
T —T2 (%) =0,
K3

1) Dy, is developable if and only if
1) @y, is minimal if and only if @ is a plane curve and a cylindrical helix or
Ty = CKp,
K ’
T — Ty (—;) =0.
W)

Proof. Taking partial derivatives of @y,, we obtain
(Py,), = (— (%) + VKz)N + (1 - VT2) W, (®y,), =C.
’ K5 Ky
Thus, the first fundamental quantities of @y, are as follows:

’ 2 2
K T
Eo, = ((K_;) -VKZ) + (K—; —V‘rz) ,Fo,, =0,Ge, =-L.

2

The unit normal vector of the ruled surface is
(vrz - %)N - ((%) - VKz)W
2 ’ 2 )
= (5

Taking the second-order partial derivatives of ®y,, we obtain

(@) = (VKé B (K_;) )N + (_KZ (%) + VK5 — LELEN VT%)C + ((ﬂ) - W'z) W,
K2 K2 K2 K>

((I)Nz)sv = K2N - TZW, ((I)Nz)vv =0.

Thus, the second fundamental quantities of @y, are as follows:

(— (%)N + VK;) (—Z—; + VTQ) - ((i—é)l - VKQ) ((Z—;), - VT;)

2

l(DNz - ’ 2 ’
(T—‘ -vT )2 +((%) — vk
P 2 K% 2

AIMS Mathematics Volume 11, Issue 1, 43-65.

uq)N2 =




49

’
—T1+ 7T (%)
2
l’l’l(pNz = ,l’l(pN2 =0.

G ) ¢ ([ -

The Gaussian curvature of the ruled surface @y, is given by

_ (Tl G (’%),)2 ’ (3.7)

le

K

1):0.

it follows that ®y, is developable if and only if 7| — 7 (

[N

The mean curvature of the ruled surface @y, is

B,
2z - (3) - ) o
where 8= (- (1] ) (-5 ) (2] - o) 2) -2,

Thus, ®y, is a minimal surface if and only if B, = 0, which is equivalent to

14 ’ ’ 144 ’ ’
Ki T1 K1 T1 T\ (K1 T1 K
Vv (KyTy — Thia) + v | =15 | K=+t |+ {=]|l=] || |=] =0
K5 Ky K5 K> K> K5 Ky K5

Further, we have

Ii(])N2 =

Wl

KTy — Thky = 0,

144 ’ ’
o8] sl o8 w2 =0
2\ 5 - S TRy T
K ko P\ K> ’ (3.9)

(2o

It can be shown that when 7, # 0, Eq (3.9) is solved as

Ty = CKp,
’
T —T K—l) =0.
ol
When 1, = 0, it is easy to see from (3.9) that « is a plane curve or a cylindrical helix. ®

Corollary 3.3. The e,-Sannia ruled surface of a principal normal ruled surface of a plane curve is
developable and minimal.

Theorem 3.4. Let ®y, be an es-Sannia ruled surface of a principal normal ruled surface, then the
following conclusions hold:
1) Dy, is developable if and only if T, = 0 or (K—;) =0,
K3
ii) ®y, is non-minimal.
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Proof. Taking partial derivatives of ®y,, we obtain

(@), =~ (K—;) N —ve,C+ W, (@y), = W
K2 K>

Thus, the first fundamental quantities of @y, are as follows:

"2 )
K1 22, 1 T
Eo, =([2]] = v*2 + L, Fo, = —,Go,, = 1.
3 2 2 3 3
PN ;

K3 Ky

The unit normal vector of the ruled surface is

—v1oN — (:—;) C
_ 2

Uop, = .
3 "2
#r (1))
2

Taking the second-order partial derivatives of ®y,, we obtain the following results:

()55 = — ((%) + VKsz)N - (K2 (%) FRELEN vr'z)C - (vr% + (2) )W,
) K5 K5 K> K>

(q)N3)sv = _TZC, ((I)N3)w =0.

Thus, the second fundamental quantities of @y, are as follows:

144 ’ ’
2.2 K1 _ [ x K1 1172 /
v T2K2+W2(K%) () (() g +VT2)

(3.10)

it follows that @y, is developable if and only if either 7, = 0 or (K—;) = 0, but not both. If both
K

2
are satisfied, the normal vector Uq,N3 = (Dy,)s X (Py,), 1s a lightlike vector, which contradicts our
assumption.
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The mean curvature of the ruled surface @y, is

B;
(I)N3 = - o) s (3 11)
e (2)) Y- (3)
where B; = % (%) +V1o ((%) + VK2T2) - (%) (Kz (%) + VT;).
2 2 2 )
Thus, ®y, is a minimal surface if and only if B3 = 0, which is equivalent to
17 ’ ’ "2
VAT3Ky + V (Tz (K—;) -5 (K—;) ) + (—Tsz (K—;) - K ((K—;) ) ] =0.
K2 K2 K> K2 K2
Further, we have
7 =0,
' 3.12
o« o
K

However, it implies that @y, is lightlike, which contradicts our assumption. Therefore, ®y, is
non-minimal.

Based on the equivalent condition for developability established in Theorem 3.4, we now examine
the following cases to derive Corollary 3.5 and Corollary 3.6:

Corollary 3.5. 7, = 0 if and only if @ is a non-circular curve or a non-cylindrical general helix.

Proof. Since 1, = 0 holds if and only if @ is a plane curve or a generalized helix. According to the
analysis of Theorem 3.4, thus @ must be a non-circular curve or a non-cylindrical generalized helix. m

’
By performing a simple transformation on (%) = 0, we obtain another equivalent condition for
2

@y, to be developable:
Corollary 3.6. 7, # 0 if and only if @ is a curve with k, = c,el @4 1, = ¢l /)ds \/cfef Hds _ 2,

Proof. The equation (Z—;) = 0 implies «|k; — 2«;«} = 0. Further analysis yields
2

o =2/(s).
2= f(s),

where f(s) is nonzero.

Since k, = 4/k7 — 73, solving the above system of differential equations yields

K| = C]eIZf(s)ds’

3.13
T = el F(9)ds \/c%efzf(s)ds - c%. ( )

Substituting (3.13) into 7, shows that 7, # 0. m
The equivalent conditions for developability, derived from Corollary 3.5 and Corollary 3.6, can be
summarized as follows:
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Corollary 3.7. ®, is developable if and only if a is one of the followings:

1) a non-circular curve,
i1) a non-cylindrical general helix,

iii) a curve with k; = ¢/ ¥©ds 7, = o f(©)ds \/c%eﬁf(‘) s — 2,

4. The Sannia ruled surfaces generated by C-direction ruled surface

For a C-direction ruled surface X = a(s) + vC(s), the striction curve is determined to be S =
7172

@+ - (K2+T2)C. Subsequently, the Sannia frame {e;,e;,e3} of C can be easily established by e; = C,
2 2
e, = % and e; = M Then the generated e;-Sannia ruled surfaces are as follows:
K5+T3 K3+T5
O, =a+ Q0C+vC, 4.1)
N -1tW
@, =a+0C+ p R (4.2)
K+ 13
—1oN — ;W
®c, = a+ QC + v——= (4.3)
K+ 13
— 17172
where O = prpeavd

Theorem 4.1. Let ®, be an e|-Sannia ruled surface of a C-direction ruled surface, then the following
conclusions hold:

1) @, is developable if and only if @ is planar

i) ®¢, is minimal if and only if « is planar.

Proof. Taking partial derivatives of ®,, we obtain
(@c,)s = UN + LC + LW, (Pc)), =C,

where /11 = K2(Q + V), /12 = Q’ + %’ /13 = —V7T + Z—; - QTz.
Thus, the first fundamental quantities of @, are as follows:

Eg. =1 =45+ 45, Fo,, = —1.Go, =—1.

The unit normal vector of the ruled surface is

AN — W

A+ 22

uq,cl =

Taking the second-order partial derivatives of
((I)Cl)ss = (/1/1 + /lsz)N + (/11K2 + /1/2 - /13T2)C + (—/12‘1'2 + /lé)W,

((I)Cl)sv = KZN - T2W’ (q)Cl )vv =0.
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Thus, the second fundamental quantities of @, are as follows:

—A3(A] + dakz) — (12 — A5)

AT+ A3

Mo, = ————No., = 0.

O+

The Gaussian curvature of the ruled surface ®, is given by

lo., =

2
7

(22 + ﬂ%)z’

K(I)Cl =

it follows that @, is developable if and only if e is planar.
The mean curvature of the ruled surface ®¢, is

B,
S
202 + 23)

(Dcl -

where By = —A,7 + /13/1’1 - /11/1;
Thus, @, 1s a minimal surface if and only if B, = 0, which is equivalent to

Thky — Ky = 0,
TIK] T ), —
K2 k2 (Kz =0,

(LS|
K2 :

Thus, Eq (4.6) holds if and only if @ is planar. m

4.4)

4.5)

(4.6)

Theorem 4.2. Let ®, be an e,-Sannia ruled surface of a C-direction ruled surface, then the following

conclusions hold:
1) @, is developable if and only if

Ki
(K— + Q') (KaTh — ToKh) + Ty (K% + T%) =0,
2

1) @, is minimal, then

’
K1 ,
Ko KQ‘I"2 + KéTz
K1 - 3
2
—+Q (K% + T%)
K2

Proof. Taking partial derivatives of ®,, we obtain

(®c,)s = MmN +1,C + 13 W, (D), =

K2 )

N - W,
/2 2 /2 2
Ky + T, Ky + T,
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’ ’

where 1 = Qky + V| ———= |, == + @ +v G+ 5 3= — — Oy — v
K3

2 2 K2 2 2
1//<2+7'2 1/1<2+T2

Thus, the first fundamental quantities of @, are as follows:
E(I)cz = 77% - 77% + 77§’F<I>c2 = O’G(Dcz = 1.

The unit normal vector of the ruled surface is

_ —mTaN — (72 + 73k2)C — ke W
uq,cz = .

\/|77§(K§ + T%) — (3K + 771T2)2|
Taking the second-order partial derivatives of ®,, we obtain

(@c,)ss = () + mk)N + (k2 + 15 — 372)C + (7 — MT2)W,

’ ’

(@) = | —2— | N+ \J& +72C - | —2— | W.(®¢,),, = 0.
G+ T3 G+ T3

Thus, the second fundamental quantities of @, are as follows:

—m2111 T2 + (M3K2 + TN, — Ma1f5K2

Dc, =

\/‘773 (K§ + T%) — (73K + 771T2)2'

K_I , KzT’z—Tzké 2 2
<K2 + 0 ) et + Tk +T5

I’I’L(I)C2 = ; ) n(pcz =0.
\/|’72(K2 +73) — (13K2 + 1 T2) |

The Gaussian curvature of the ruled surface @, is given by

2
KT TK

(K§+T§) (’“ +Q) =22+ K+ 1T
i+

('72(K2 +13) — (3k2 + 7717'2)2) |772(K2 +73) — (n3k2 + mt)?|

K.

(DCZ

4.7)

it follows that @, is developable if and only if (£ + Q') (ko7 = T2K5) + T1(K3 +73) = 0
The mean curvature of the ruled surface @, is

(K% + T%) Bs
Hao., = : (4.8)
-2 (17% (K% + T%) — (m3k2 + 1717'2)2) \/'77% (K% + T%) — (32 + 1 T2)°

where Bs = =1 T2 + (13K2 + T2 — 213Kz
Thus, ®, is a minimal surface if and only if Bs = 0, which is equivalent to

v2hy + vby + b3 = 0,
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where
144 144
N K (K2T; - KéTz)(KzKé + T2T’2)
b, = K2+T2 - - 2 2)3 ’
[ 2 2 K5+ T5)2
+ 72 K5+ T5 2 2
KTy — kKT (k1Y
[i2 2 2 1
bz = K2 + T2 ( ) + Q(K2T2 + K2T2)) T ((K_z) + QN)
A /Kz +75
144 144
KoK, + ToT) Ty Ky
O N B | |
K2+ 12 / 2 2 [ 2 2
2 2 K; + 7,5 Ky + 75
K K\ K ’
1 1 1
by = (— + Q’) (—Kz (—) + Q(koTh — KéTQ)) + 7 (— + Q’) .
K2 K2 K2

Thus, @, 1s minimal if and only if b; = b, = b3 = 0. From b, = b3 = 0, we obtain

T . K> (kaT) — K5 T2) (KoK, + T2T))
— {2 = ) 2\ 5
2 2 2 2 (k5 +75)
\JK + T G+ T 202 (4.9)

’
’ K1 ’
K1 T (_ + Q )
— K (K_) + Q(KZT’Z - KéTz) = KZ—
2

K>

K1
ot
Substituting (4.9) into b, = 0, and thus we obtain
K ’
1
- + Q, ’ /
Ky _ KTy + Ky T2
K1 - 3"
—+ O 2 22
P o (K2 + 72)

Particularly, if a is planar, it is easy to verify that Kq)C2 = Hq,c2 = 0, so D, is developable minimal.
If @ is a cylindrical helix, Kq)c2 # 0, Hq)c2 = 0, so @, is a non-developable minimal surface.

Corollary 4.3. The e,-Sannia ruled surface of a C-direction ruled surface of a plane curve is
developable and minimal. However, the e,-Sannia ruled surface of the C-direction ruled surface of
a cylindrical helix is a non-developable minimal.

Theorem 4.4. Let @, be an es-Sannia ruled surface of a C-direction ruled surface, then the following
conclusions hold:
1) @, is developable if and only if
(ﬂ + Q’) (T2k5 — KaTh) = 0
K2
i1) @ ¢, is minimal if and only if
0Ty — c1ka = 0,
(Z) = ciki + 220k + K50).

K2
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Proof. Taking partial derivatives of ®,, we obtain

—TzN— K2W
(®c,)s = 1N + mC + m3W, (®¢,), = ———,
/ 2., .2
K5 + 75
’ ’
Ty K1 T K2
where m; = Ok, — v ,m=—+0Q' ,m3=——-01 -V

2 2 K2 K2 2 2
,/K2+Tz ,/K2+Tz

Thus, the first fundamental quantities of @, are as follows:

Eg

_ .2 2 2 _
o =M — M + 75, Fop, =
The unit normal vector of the ruled surface is

—mko N — (7T1K2 - 7T3T2)C + m,W

\/|7r§(/<§ +13) — (MK — 7137'2)2|

u¢C3 =

Taking the second-order partial derivatives of ®,, we obtain

(@c,)ss = (] + M2k2)N + (MK + 75 — M3T2)C + (M — maT2)W,
’ ’

T K2
N —

[ .2 2 ,2 2
K2+T2 K2'|'T2

Thus, the second fundamental quantities of @, are as follows:

((I)C3)sv = - W, ((I)C3)vv =0.

—T0Ka (7] + Taky) + (MiKy — M3 T2) (MK + 7 — M3T2) + Moo (7 — MaT2)

lq)C3 =
\/|7T§(K§ +13) — (mKy — 7T3T2)2|

J a
e
K2 K%+T%

\/|7T%(K§ +713) — (miKky — 7T37'2)2|

The Gaussian curvature of the ruled surface ®, is given by

mq)C3 = ,l’lq)C3 =0.

2
2 2« 7\ | T2Ky—KaTh
@+((n+ o) s
( 2 2)( K Q ,/K§+T%)

K(pc3 =

(ﬂ%(K% +13) — (MK — 7r372)2) . |7T§(K§ +713) — (MK — M372)?

it follows that @, is developable if and only if

(ﬂ + Q’) (125 — koTh) = 0.
K2

)

(4.10)
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The mean curvature of the ruled surface ®c, is

2.4 /K% + T§B6 + (K% + T%)B7

Hao., = : @.11)
-2 (n%(/é +713) = (miKkp + 7r372)2) \/|7r§(/<§ +713) = (MK + 7r37'2)2|

where By = 1) (K—‘ + Q') LY
k2 K2+
B7 = —myko () + maka) + (M1Ky — M3T2)(7W Ko + Ty — 3To) — My To(a Ty — 75).

Thus, @, is a minimal surface if and only if 2 , /K% + T%B(, + (K% + T%)B7 = 0, which is equivalent to

V2by + vbs + bg = 0,
where

’ ’
by = KT — K5 T2,

’ r_
b5:—(K§+T§)(ﬂ+Q') -M+(K§+T§)(ﬂ+Q') K> 2 -7 . ,
k2 G+ T2 k2 N+ T \K + T
2 ’
bs = (Z—; ¥ Q’) W3 +72)+ (Z—; + Q/) (Q’(x% +173) + Qioky + ThT2) = T (:—; )

Thus, ®c, is minimal if and only if by = bs = bg = 0. From by = 0, it follows that bs = k7, —K,T) =
0. Substituting this into bg = 0 gives

{Csz —cikp =0,
’
7 — ’ ’
(Z) =C1K] + 6'2(2Q Ky + KZQ)‘.

Particularly, if e is a plane curve or a cylindrical helix , it is easy to verify that Kq;c3 =0, Hq,C} #0,
so @, is non-minimal developable.

Corollary 4.5. The es-Sannia ruled surface of a C-direction ruled surface of a plane curve or a
cylindrical helix is non-minimal developable.

5. The Sannia ruled surfaces generated by Darboux ruled surface

For a Darboux ruled surface Xy = @ + vW, the striction curve is determined to be By = @ + KIz(_‘lrzW'

Subsequently, the Sannia frame {e;,e,,e3} of W can be easily established by e, = W, e, = C and
e; = —N. Then the generated e;-Sannia ruled surfaces are as follows:

Dy, = @+ W+ wW, (5.1)
KTy

Dy, = @ + ——W +C, (5.2)
KT
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Dy, = @ + ——W —N. (5.3)
) K2T2

When « is a plane curve or a general helix, it is easy to verify that 7, = 0, and the striction curve
PBw does not exist. Therefore, an e;-Sannia ruled surface cannot be generated. Next, we assume that «
is neither a plane curve nor a general helix.

Theorem S.1. Let ®y, be an e -Sannia ruled surface of a Darboux ruled surface, then ®y, is non-
minimal developable.

Proof. Taking partial derivatives of ®y,, we obtain
(@), = —vT,C + ((K—l) + 3) W, (®y,), = W
K272 K2
Thus, the first fundamental quantities of ®y, are as follows:
RS ki T
E = — 2+ AL +—1 ,F = L +_1aG =1
Dy, (VTZ) (( KT ) P ) Dy, (K2T2 P Dy,

The unit normal vector of the ruled surface is

u(pwl = +N.
Taking the second-order partial derivatives of ®y,, we obtain the following results

ki \ T K\ (Y
(Py,)ss = —ViToN + (—vré -7 (—1) - g)C + (vr% + (—1) + (—1) )W,
K2To K2 K272 K2
((I)Wl)sv = _T2C» ((I)Wl )vv =0.
Thus, the second fundamental quantities of @y, are as follows:
lq)W] = iVKQTg,I’I’lq)Wl =0, Ny, = 0.

The Gaussian curvature of the ruled surface ®y, is given by

Ko, =0, (5.4)
it follows that @y, is always developable.
The mean curvature of the ruled surface ®y, is
K2
He, = +——, 5.5
®w vt 2 ( )
since k, # 0, it follows that ®y, cannot be minimal. m

Theorem 5.2. Let @y, be an e,-Sannia ruled surface of a Darboux ruled surface, then the following
conclusions hold:

i) @y, is developable if and only le—; =— (K;(—iz)l,
1) @y, is minimal if and only if

Ty = C1K2,

’
T K1
— +|— ] = K.
K2 KT

AIMS Mathematics Volume 11, Issue 1, 43-65.



59

Proof. Taking partial derivatives of ®y,, we obtain

(@y,)s = vioN + (—vrz + 0 (i) )W, (@), = C
Ky KyTh

Thus, the first fundamental quantities of @y, are as follows:
/ 2
Ew,, = Vi3 + (Z—; + (%) - V‘rz) \Fa,, =0,Ga,, = 1.
The unit normal vector of the ruled surface is

(—ﬂ - (K—')/ + vrz) N +vieW

K2 K272

u¢W2 = .
2
2,2 71 « Y
\/" G+(-2- () +m)
Taking the second-order partial derivatives of ®y,, we obtain:

R S e R S M e
K> KyTo Ky KyTo

(q)Wz)SV = KZN - T2W» (q)Wz)vv =0.

Thus, the second fundamental quantities of @y, are as follows:
g = () ) s (- (2) - (25) +om)
o () +om)

’
K1
()

m¢W2 = ,l’lq)w2 =0.
’ 2
\/Vng + (—T—' —~ (K—l) + vrz)
K2 K212
The Gaussian curvature of the ruled surface @y, is given by
"2
(i +(5x))
K2 K272
2 T K / 2)? ’
Vik; + (——‘ - (—‘) + vrg)
K2 K212

it follows that @y, is developable if and only if Z—; = - (K'Z‘—]Tz),
The mean curvature of the ruled surface @y, is

b

Bg

2126+ (-2 - () +ves))

b

where By = vk, (—T—l - (K—l), + vrz) + VK, (— (T—;), - (K—I)N + VT;).

K2

(5.6)

(5.7)
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Thus, @y, is a minimal surface if and only if Bg = 0, which is equivalent to

7 144 ’

T K1 K1 T
V(KSTy — Thky) —kKh— — Ky | — | + k| — | + k2| —] =0,

K2 K272 K2T) K2

further, we have
KTy — Thky = 0,
, Tl Y a Y oY _ 0 (58)
e ) () (3 <o

K212 K272

further from (5.8), we obtain the equivalent equations

Ty = C1Ky,

T K1 ' . .
— 4+ | ——| = caka(c; is an arbitrary constant).m

K2 KT

Theorem 5.3. Let ®y, be an es-Sannia ruled surface of a Darboux ruled surface, then the following
conclusions hold:

i) @y, is developable if and only if - = - (K'z(—‘n)/

i1) @y, is non-minimal.

Proof. Taking partial derivatives of ®y,, we obtain

T

(@y,)s = —viaoC + ((i) + —) W, (®y,), = -N
KT K2

Thus, the first fundamental quantities of @y, are as follows:

’ 2

K T

22 1 1

o =it () + 2 e =060, 1.
KTy K2

The unit normal vector of the ruled surface is

(( X ), + T—I)C— vko W

K2T2 k2
uq)% = > .
’
2 _((x T
\/(VKZ) ((Kzfz) + Kz) ‘
Taking the second-order partial derivatives of ®y,, we obtain:

(@y,)ss = —ViSN + (—VK; -7 ((L) + 7l))C + (VK2T2 + (L) + (ﬁ) )W,
‘ KTy K> K2T> K2

((DW3)SV = _KZC, ((DW3)VV = 0

Thus, the second fundamental quantities of @y, are as follows:

174 ’ ’ ’
v (vr+ (5n) +(2)) + (B5) + 2) (e + v (25) +52)

(I)W3 - ’
() +2)
VK2 K212 K2
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s q)wg_

’
K I
o) +2)
Dy,

- () 2]

The Gaussian curvature of the ruled surface ®y, is given by

9 a Y - 2
S((Z) +2)
KaT2 K2

Kq,w3 = - > - oD (5.9
(o = (Ga5) + 2)) oo - () + 2)
it follows that @y, is developable if and only if Z—; =— (K;(—;z),
The mean curvature of the ruled surface @y, is
By
H(DW3 i 2 « Y oo 2 2 « \ o oo 2 ’ (510)
2(("K2) -((%) +2) ) v - ((25) + 2)
where By = vk, (w<27'2 + (%) + (Z—;) ) - ((K';—sz) + Z—;) (VK& + 7 (K';—;z) + %)
Thus, @y, is a minimal surface if and only if By = 0, which is equivalent to
’ ’” ’ "2
n=von(2) () et () )3 (B8] -
VKT = vk | —| — k| —| +K—+ &5 — | |- —|+|— =0,
K3 KTy K2 K272 K2 KT
further, we have
T, =0,
7 ’ . K ’” , 7 , K1 ’ 0
K| — K|l—| —«kKk— -« |—| =0,
2 K> 2 KyTo 2K2 2 KyTo (511)
o) () )=
K2 K27

Clearly, according to the system of Eq (5.11), this contradicts the assumption 7, # 0. Therefore,
®yy, is not a minimal surface. ®

Corollary 5.4. The e;-Sannia ruled surfaces generated by Darboux ruled surface are developable if
and only le—: =185+ co.

’
Proof. First, convert the differential equation & = — ("—‘) into the following equation
K2 K212
2_ 2
K —T T
————=-2| —ds
T1K1 - K1T1 K1

Let u(s) = Z—ll, the above indefinite integral equation becomes

21
“ - :2fuds.
u

Differentiating both sides of the above indefinite integral equation yields the general solutions
ui(s) = =1 and u,(s) = ¢15 + c2(c; 1s an arbitrary constant).

If u;(s) = =1, then :—1‘ = +1, and « is a general helix; however striction curve of the Darboux ruled
surface does not exist, so we discard this case. m
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6. Applications with the Sannia ruled surfaces

Example. Let a(s) = (\/Ech s, s, V2sh s) be a cylindrical helix. Its alternative frame vectors and
curvature functions are as follows:

N = (chs,0,shs),C = (shs,0,chs),W=(0,-1,0),k = V2,7, = —1,kp = 1,75 = 0.

The striction curve of the principal normal ruled surface and the Sannia frame vectors of the
principal normal ruled surface are

By =(0,5,0),e1x, = (chs,0,shs), e, =(shs,0,chs),esx, =(0,-1,0).
The e, e;-Sannia ruled surfaces (Figures 1 and 2) are given by
®y, =(0,5,0) +v(chs,0,shs), @y, =(0,s,0)+v(shs,O0,chs).
The Gaussian curvature and mean curvature are calculated as

1

1 2
Ko, = ,Ho, =0,Ke, =|—=——| ,Ho, =0.
Dy, (v2_1).|v2_1| Dy, Dy, (V2+1) @y,

It is evident that @y, and ®y, are both non-developable minimal surfaces.

Figure 1. The red curve is a(s), and the blue surface is the e;-Sannia ruled surface ®y,
generated by a principal normal ruled surface.

Figure 2. The red curve is a(s), and the blue surface is the e,-Sannia ruled surface ®y,
generated by a principal normal ruled surface.
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The striction curve of Darboux ruled surfaces B¢(s), and the Sannia frame vectors of Darboux ruled
surfaces are

Pc=( V2ch s, S, V2sh s),eix. = (shs,0,chs), exx. = (chs,0,shs), esx. =(0,1,0).
The ey, e,, e3-Sannia ruled surfaces (Figures 3-5) are respectively
D¢, = ( V2ch s, S, V2sh s) +v(shs,0,chys),
®, = (V2chs, s, V2shs) +v(chs,0,shs),
®c, = (V2chs,s, V2shs) +1(0,1,0).
The Gaussian and mean curvatures are calculated as

ol V2

Ko, = —5——3 Hoe, = =575,
P T 2+ 12T T 202 + 1)

1 V2

__ Ha,, = 0,Ko., =0, Ho,, = .
(VZ4v2—1)-|(VZ+wr—1 es Pa T g

It is evident that @, is a non-developable non-minimal surface, ®, is a non-developable minimal
surface, and @, is a non-minimal developable surface.

Since a(s) is a cylindrical helix, the striction curve of the Darboux ruled surface does not exist;
clearly, the e;-Sannia ruled surfaces cannot be generated by the Darboux ruled surface. Moreover,
according to Theorem 3.4, @y, is a lightlike ruled surface.

Dc,

Figure 3. The red curve is a(s), and the blue surface is the e;-Sannia ruled surface @,
generated by a C-direction ruled surface.

Figure 4. The red curve is a(s), and the blue surface is the e,-Sannia ruled surface ®,
generated by a C-direction ruled surface.
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Figure 5. The red curve is a(s), and the blue surface is the e;-Sannia ruled surface @,
generated by a C-direction ruled surface.

7. Conclusions

This paper investigates the developability and minimality of non-lightlike Sannia ruled surfaces
generated from principal normal, C-direction, and Darboux ruled surfaces of timelike curves. It
demonstrates that the developability and minimality of the generated Sannia ruled surfaces are fully
determined by the curvature functions of the directrix curves @. This implies that the intrinsic
properties of the directrix curves @ govern the corresponding properties of the generated Sannia ruled
surfaces.
Author contributions

Wenke Zhang: Conceptualization, Methodology, Formal analysis, Writing—Original Draft; Na Hu:
Validation, Investigation, Writing—Review Editing, Supervision, Funding acquisition. All authors have
read and approved the final version of the manuscript for publication.
Use of Generative-Al tools declaration

The authors declare they have not used Artificial Intelligence (Al) tools in the creation of this article.
Acknowledgments

We gratefully acknowledge the constructive comments from the editor and the anonymous
referees. This work was funded by Education Department Project of Liaoning Province (Grant No.
LIKMZ20220485).

Conflict of interest

The authors declare no conflict of interest.

AIMS Mathematics Volume 11, Issue 1, 43-65.



65

References

1.

10.

11.

12.

13.

14.

15.

16.

@ AIMS Press

S. Izumiya, N. Takeuchi, Special curves and ruled surfaces, Beitrdge zur Algebra und Geometrie,
44 (2003), 203-212.

H. Pottmann, Ruled surfaces for rationalization and design in architecture, In: Proceedings of the
30th annual conference of the association for computer aided design in architecture (ACADIA),
New York, 21-24 October, 2010, 103—109. http://doi.org/10.52842/conf.acadia.2010.103

Y. Li, K. Eren, S. Ersoy, On simultaneous characterizations of partner-ruled surfaces in Minkowski
3-space, AIMS Math., 8 (2023), 22256-22273. http://doi.org/10.3934/math.20231135

G. Sannia, Una rappresentazione intrinseca delle rigate, Giorn. Mat., 1925, 31-47.

W. Wunderlich, Regelflachen festen dralls mit konstant gedralltem striktionsband, Czechoslovak
Math. J., 31 (1981), 457-468.

E. Kruppa, Strahlflichen als Verallgemeinerungen der Cesaro-Kurven, Monatshefte fiir
Mathematik, 52 (1948), 323-336. https://doi.org/10.1007/BF01525337

O. Pylarinos, Sur la géométrie différentielle des surfaces réglées, Annali di Matematica, 87 (1970),
389-412. https://doi.org/10.1007/BF02411989

H. Pottmann, J. Wallner, Computational line geometry, Heidelberg: Springer, 2001.
https://doi.org/10.1007/978-3-642-04018-4

F. M. Hamdoon, A. K. Omran, Studying on a skew ruled surface by using the
geodesic Frenet trihedron of its generator, Korean J. Math., 24 (2016), 613-626.
http://doi.org/10.11568/kjm.2016.24.4.613

S. Enyurt, K. Eren, On ruled surfaces with a Sannia frame in Euclidean 3-space, Kyungpook Math.
J., 62 (2022), 509-531. http://doi.org/10.5666/KMJ.2022.62.3.509

S. Senyurt, D. Canli, K. H. Ayvaci, On ruled surfaces generated by Sannia frame based in
alternative frame, Honam Math. J., 46 (2024), 12-37. https://doi.org/10.5831/HMJ.2024.46.1.12
M. C. Lopez, M. E. Rosado, A. Soria, Ruled surfaces in 3-dimensional Riemannian manifolds,
Mediterr. J. Math., 21 (2024), 97. http://doi.org/10.1007/s00009-024-02631-2

D. Bayril, J. M. Selig, The geometry of line-symmetric rigid-body motions, Differ. Geom. Appl.,
100 (2025), 102270. http://doi.org/10.1016/j.difgeo.2025.102270

Y. Li, H. S. Abdel-Aziz, H. M. Serry, F. M. El-Adawy, M. K. Saad, Geometric visualization of
evolved ruled surfaces via alternative frame in Lorentz-Minkowski 3-space, AIMS Math., 9 (2024),
25619-25635. http://doi.org/10.3934/math.20241251

D. Canly, S. Senyurt, F. E. Kaya, L. Grilli, The pedal curves generated by alternative frame vectors
and their Smarandache curves, Symmetry, 16 (2024), 1012. http://doi.org/10.3390/sym16081012
S. OQOuarab, NC-Smarandache ruled surface and NW-Smarandache ruled surface
according to alternative moving frame in E3, J. Mech., 2021 (2021), 9951434.
http://doi.org/10.1155/2021/9951434

©2026 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 11, Issue 1, 43-65.


https://dx.doi.org/http://doi.org/10.52842/conf.acadia.2010.103
https://dx.doi.org/http://doi.org/10.3934/math.20231135
https://dx.doi.org/https://doi.org/10.1007/BF01525337
https://dx.doi.org/https://doi.org/10.1007/BF02411989
https://dx.doi.org/https://doi.org/10.1007/978-3-642-04018-4
https://dx.doi.org/http://doi.org/10.11568/kjm.2016.24.4.613
https://dx.doi.org/http://doi.org/10.5666/KMJ.2022.62.3.509
https://dx.doi.org/https://doi.org/10.5831/HMJ.2024.46.1.12
https://dx.doi.org/http://doi.org/10.1007/s00009-024-02631-2
https://dx.doi.org/http://doi.org/10.1016/j.difgeo.2025.102270
https://dx.doi.org/http://doi.org/10.3934/math.20241251
https://dx.doi.org/http://doi.org/10.3390/sym16081012
https://dx.doi.org/http://doi.org/10.1155/2021/9951434
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	The Sannia ruled surfaces generated by principal normal ruled surface
	The Sannia ruled surfaces generated by C-direction ruled surface
	The Sannia ruled surfaces generated by Darboux ruled surface
	Applications with the Sannia ruled surfaces
	Conclusions

