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1. Introduction

Ruled surfaces have been widely studied due to their easily parametrizable nature. A ruled surface
is generated by a one-parameter family of rulings sliding along a directrix curve. The striction
curve is the intrinsic directrix uniquely embedded within the surface, whereas the directrix curve
is an artificially selected reference curve, with infinitely many possible choices. The structure of
the striction curve depends solely on the family of rulings of the ruled surface and is independent
of parametrization or the choice of the directrix curve, which itself lacks geometric uniqueness. In
differential geometry, establishing a moving frame to study the properties of curves and surfaces is a
common and essential technique [1–3]. In early studies of ruled surfaces, the conventional Frenet and
Darboux frames could only be constructed along directrix curves, and thus failed to simultaneously
capture the geometrical information of rulings, imposing restrictions on the study of ruled surfaces.
Therefore, in 1925 Sannia chose the striction curve as the directrix by transforming the parameters
of the ruled surface and defined a new moving frame – the Sannia frame – of the rulings along the
striction curve. This frame incorporated both the striction curve and the rulings into a unified system
of differential equations, achieving a synchronous description of their geometric information [4]. In the

https://www.aimspress.com/journal/Math
https://dx.doi.org/10.3934/math.2026003


44

late 19th century, Wunderlich employed the Sannia frame and suggested its potential applicability to
pseudo-Euclidean spaces [5–7]. In 2001 Pottmann and Wallner connected the three vectors e1, e2 and
e3 of the Sannia frame to the origin, and spherical motion generated three distinct curves: the images
of the spherical generator, the central tangent, and the central normal. In this framework, curvature
and torsion correspond to the components of angular velocity [8]. This reformulated the twisting of
rulings as a problem of spherical geodesic curvature and rotation minimization, yielding two minimal
intrinsic variables for computational geometry. In 2006, Hamdoon Omran used the spherical Sannia
frame to construct a complete set of Euclidean invariants from the geodesic curvature and distribution
parameter, enabling full characterization of developability, minimality, and Weingarten properties for
skew ruled surfaces [9]. This established a two-invariant framework for analyzing surface properties.

Recent studies have extended the Sannia frame theory and its applications. Eren Kemal employed
the Sannia frame along striction curves of various classical ruled surfaces to define new types of
ei–Sannia ruled surfaces in Euclidean space, deriving their developability and minimality conditions,
thereby providing a method for constructing novel ruled surfaces [10,11]. Subsequently, Marco
Castrillon-López generalized the Sannia frame to three-dimensional Riemannian manifolds and
established its equations of motion, invariants and a local existence theorem for ruled surfaces, thereby
laying a foundation for studies in non-Euclidean spaces such as the Heisenberg group [12]. Most
recently, Bayram constructed a theoretical bridge between the intrinsic geometry of ruled surfaces and
line-symmetric rigid body motions via the Sannia frame, revealing its key role in kinematic description
and expanding classical motion geometry theory [13].

Existing studies on the Sannia frame have been confined to Euclidean space. Minkowski
space, introduced to formulate special relativity, captures the interdependence of time, space, and
motion, offering a more accurate description of physical phenomena. The alternative frame further
aids in analyzing particle and observer kinematics in curved spacetime, elucidating relativistic and
gravitational effects [14–16]. Therefore, based on the alternative frame for timelike curves in
Minkowski space, we construct non-lightlike Sannia ruled surfaces from the principal normal, C-
direction, and Darboux ruled surfaces. In this paper, we derive their developability and minimality
conditions, establish general links between these surface properties and the underlying timelike curve,
and illustrate the geometry of these surfaces.

2. Preliminaries

Let E3
1 be the Minkowski 3-space, E3

1 is the real vector space R3 endowed with the standard flat
metric

⟨a, b⟩ = a1b1 + a2b2 − a3b3, (2.1)

where a = (a1, a2, a3) and b = (b1, b2, b3) are vectors in E3
1.

The vector product of a × b is given by

a × b =

∣∣∣∣∣∣∣∣∣
i j −k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣ , (2.2)

where i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) are the natural basis vectors in E3
1.
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Let v be any arbitrary vector in E3
1. Then, v is said to be spacelike if ⟨v, v⟩ > 0; lightlike if ⟨v, v⟩ = 0;

timelike if ⟨v, v⟩ < 0.
A regular curve is said to be a timelike curve, spacelike curve, or lightlike curve if, the tangent

vector is timelike, spacelike, or lightlike, respectively.
Let α : I ⊂ E → E3

1 be a timelike curve with arc length parameter s in E3
1, then the Frenet frame

{T, N, B} of α satisfies 
T′

N′

B′

 =


0 κ1 0
κ1 0 τ1

0 −τ1 0



T
N
B

 , (2.3)

where ⟨T,T⟩ = −1, ⟨N, N⟩ = 1, ⟨B, B⟩ = 1.
The alternative frame {N,C,W} of α satisfies

N′

C′

W′

 =


0 κ2 0
δ1κ2 0 δ2τ2

0 δ2τ2 0




N
C
W

 , (2.4)

where C =
κ1T + τ1B√
|κ21 − τ

2
1|

, W = −
τ1T + κ1B√
|κ21 − τ

2
1|

, κ2 =
√∣∣∣κ21 − τ2

1

∣∣∣, τ2 =
τ′1κ1 − κ

′
1τ1

κ21 − τ
2
1

, δ1 = sgn (⟨W,W⟩),

δ2 = sgn (⟨C,C⟩).
Without loss of generality, we only investigate the case where κ21 − τ

2
1 > 0, that is C = κ1T+τ1 B√

κ21−τ
2
1

,

W = − τ1T+κ1 B√
κ21−τ

2
1

, ⟨N, N⟩ = 1, ⟨C,C⟩ = −1, ⟨W,W⟩ = 1 and κ2 =
√
κ21 − τ

2
1. The case where κ21 − τ

2
1 < 0

is analogous and will not be detailed in this paper.
We can define the principal normal ruled surfaces XN , the C-direction ruled surfaces XC and the

Darboux ruled surfaces XW of α as follows:

XN(s, v) = α(s) + vN, (2.5)

XC(s, v) = α(s) + vC, (2.6)

XW(s, v) = α(s) + vW, (2.7)

where {N,C,W} is the alternative moving frame along the curve α.

Definition 2.1. Let r : I → S 2(1) be a curve on unit sphere (or r : I → S 2(−1) be a curve on unit
pseudosphere), then the Sannia frame {e1, e2, e3} is a moving frame along r, defined by

e1 = r, e2 =
e′1√
ϵ1⟨e′1e′1⟩

, e3 = e1 × e2. (2.8)

The Sannia formulas are 
e′1
e′2
e′3

 =


0 κ3 0
−κ3 0 τ3

0 −τ3 0



e1

e2

e3

 , (2.9)

where κ3 = ϵ2⟨e′1, e2⟩, τ3 = ϵ3⟨e′2, e3⟩ are the curvature functions of r, and ϵ1 = sgn
(
⟨e′1, e

′
1⟩
)
, ϵ2 =

sgn (⟨e2, e2⟩), ϵ3 = sgn (⟨e3, e3⟩).
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Definition 2.2. Let XA(s, v) = α(s) + vrA(s) be a ruled surface with striction curve βA, and {e1, e2, e3}

be Sannia frame on rA. The ruled surfaces generated in direction ei are said to be ei-Sannia ruled
surfaces as follows:

ΦAi(s, v) = βA(s) + vei(s) (i = 1, 2, 3). (2.10)

For an ei-Sannia ruled surfaceΦAi(s, v) = βA(s)+ vei(s), the first and second fundamental quantities
are given by

EΦAi
= ⟨(ΦAi)s, (ΦAi)s⟩, FΦAi

= ⟨(ΦAi)s, (ΦAi)v⟩,GΦAi
= ⟨(ΦAi)v, (ΦAi)v⟩,

lΦAi
= ⟨(ΦAi)ss,uΦAi

⟩,mΦAi
= ⟨(ΦAi)sv,uΦAi

⟩, nΦAi
= ⟨(ΦAi)vv,uΦAi

⟩,

where uΦAi
=

(ΦAi )s×(ΦAi )v

∥(ΦAi )s×(ΦAi )v∥
is the unit normal of ΦAi .

The Gaussian curvature KΦAi
and mean curvature HΦAi

of ΦAi are computed as follows:

KΦAi
=

lΦAi
nΦAi
− m2

ΦAi

EΦAi
GΦAi

− F2
ΦAi

,HΦAi
=

1
2

EΦAi
nΦAi
− 2FΦAi

mΦAi
+GΦAi

lΦAi

EΦAi
GΦAi

− F2
ΦAi

.

Next, we generate a family of non-lightlike ei-Sannia ruled surfaces by employing the principal
normal ruled surface, C-direction ruled surface, and Darboux ruled surface based on the alternative
frame, and investigate their developability and minimality.

3. The Sannia ruled surfaces generated by principal normal ruled surface

For a principal normal ruled surface XN(s, v) = α(s)+ vN(s), the striction curve is determined to be
βN = α −

κ1
κ22

N. Subsequently, the Sannia frame {e1, e2, e3} of N can be easily established by e1 = N,
e2 = C and e3 =W. Then the generated ei-Sannia ruled surface are as follows:

ΦN1 = α −
κ1

κ22
N + vN, (3.1)

ΦN2 = α −
κ1

κ22
N + vC, (3.2)

ΦN3 = α −
κ1

κ22
N + vW. (3.3)

Theorem 3.1. Let ΦN1 be an e1-Sannia ruled surface of a principal normal ruled surfaces, then the
following conclusions hold:

i) ΦN1 is developable if and only if α is a plane curve,
ii) ΦN1 is minimal if and only if α is either a plane curve or a cylindrical helix.

Proof. Taking partial derivatives of ΦN1 , we obtain

(
ΦN1

)
s = −

(
κ1

κ22

)′
N + vκ2C +

τ1

κ2
W,

(
ΦN1

)
v = N.
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Thus, the first fundamental quantities of ΦN1 are as follows:

EΦN1
=

((
κ1

κ22

)′)2

− v2κ22 +
τ2

1

κ22
, FΦN1

= −

(
κ1

κ22

)′
,GΦN1

= 1.

The unit normal vector of the ruled surface is

uΦN1
=
−τ1C − vκ22W√∣∣∣v2κ42 − τ

2
1

∣∣∣ .
Taking the second-order partial derivatives of ΦN1 , we obtain

(ΦN1)ss =

(
−

(
κ1

κ22

)′′
+ vκ22

)
N +

(
−

(
κ1

κ22

)′
κ2 −
τ1τ2

κ2
+ vκ′2

)
C +

((
τ1

κ2

)′
− vκ2τ2

)
W,

(ΦN1)sv = κ2C, (ΦN1)vv = 0.

Thus, the second fundamental quantities of ΦN1 are as follows:

lΦN1
=

−τ1

((
κ1
κ22

)′
κ2 +

τ1τ2
κ2
− vκ′2

)
+ vκ22

(
−

(
τ1
κ2

)′
+ vκ2τ2

)
√∣∣∣v2κ42 − τ

2
1

∣∣∣ ,

mΦN1
=

κ2τ1√∣∣∣v2κ42 − τ
2
1

∣∣∣ , nΦN1
= 0.

The Gaussian curvature of the ruled surface ΦN1 is given by

KΦN1
=

κ22τ
2
1

(v2κ42 − τ
2
1)|v2κ42 − τ

2
1|
, (3.4)

it follows that ΦN1 is developable if and only if α is planar since κ2 , 0.
The mean curvature of the ruled surface ΦN1 is

HΦN1
=

B1

2(v2κ42 − τ
2
1)

√
|v2κ42 − τ

2
1|

, (3.5)

where B1 = −2τ1κ2

(
κ1
κ22

)′
+ τ1

((
κ1
κ22

)′
κ2 +

τ1τ2
κ2
− vκ′2

)
+ vκ22

((
τ1
κ2

)′
− vκ2τ2

)
.

Thus, ΦN1 is a minimal surface if and only if B1 = 0, which is equivalent to

v2κ32τ2 + v
(
κ′2τ1 − κ

2
2

(
τ1

κ2

)′)
+

((
κ1

κ22

)′
κ2τ1 +

τ2
1τ2

κ2

)
= 0,

further analysis leads to the system of equations

κ32τ2 = 0,

κ′2τ1 − κ
2
2

(
τ1

κ2

)′
= 0,(

κ1

κ22

)′
τ1κ2 −

τ2
1τ2

κ2
= 0.

(3.6)
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Since τ2 =
τ′1κ1−κ

′
1τ1

κ21−τ
2
1

, it follows that τ2 = 0 if and only if α is a plane curve or a general helix.
We observe that for a plane curve or a cylindrical helix, all the equations of (3.6) are satisfied.
However, for a non-cylindrical general helix, the second equation of (3.6) holds if and only if

κ21 − τ
2
1 = 0, which contradicts our assumption. ■

In the subsequent discussion, we adopt the following conventions: the symbols c and ci denote
nonzero constants, and the symbol g′ denotes the derivative of g with respect to s. These conventions
will not be restated unless otherwise specified.

Theorem 3.2. Let ΦN2 be an e2-Sannia ruled surface of a principal normal ruled surface, then the
following conclusions hold:

i) ΦN2 is developable if and only if

τ1 − τ2

(
κ1

κ22

)′
= 0,

ii) ΦN2 is minimal if and only if α is a plane curve and a cylindrical helix or
τ2 = cκ2,

τ1 − τ2

(
κ1

κ22

)′
= 0.

Proof. Taking partial derivatives of ΦN2 , we obtain(
ΦN2

)
s =

(
−

(
κ1

κ22

)′
+ vκ2

)
N +

(
τ1

κ2
− vτ2

)
W,

(
ΦN2

)
v = C.

Thus, the first fundamental quantities of ΦN2 are as follows:

EΦN2
=

((
κ1

κ22

)′
− vκ2

)2

+

(
τ1

κ2
− vτ2

)2

, FΦN2
= 0,GΦN2

= −1.

The unit normal vector of the ruled surface is

uΦN2
=

(
vτ2 −

τ1
κ2

)
N −

((
κ1
κ22

)′
− vκ2

)
W√(

τ1
κ2
− vτ2

)2
+

((
κ1
κ22

)′
− vκ2

)2
.

Taking the second-order partial derivatives of ΦN2 , we obtain

(ΦN2)ss =

(
vκ′2 −

(
κ1

κ22

)′′)
N +

(
−κ2

(
κ1

κ22

)′
+ vκ22 −

τ1τ2

κ2
+ vτ2

2

)
C +

((
τ1

κ2

)′
− vτ′2

)
W,

(ΦN2)sv = κ2N − τ2W, (ΦN2)vv = 0.

Thus, the second fundamental quantities of ΦN2 are as follows:

lΦN2
=

(
−

(
κ1
κ22

)′′
+ vκ′2

) (
−
τ1
κ2
+ vτ2

)
−

((
κ1
κ22

)′
− vκ2

) ((
τ1
κ2

)′
− vτ′2

)
√(

τ1
κ2
− vτ2

)2
+

((
κ1
κ22

)′
− vκ2

)2
,
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mΦN2
=

−τ1 + τ2

(
κ1
κ22

)′
√(

τ1
κ2
− vτ2

)2
+

((
κ1
κ22

)′
− vκ2

)2
, nΦN2

= 0.

The Gaussian curvature of the ruled surface ΦN2 is given by

KΦN2
= −

(
τ1 − τ2

(
κ1
κ22

)′)2

((
τ1
κ2
− vτ2

)2
+

((
κ1
κ22

)′
− vκ2

)2)2 , (3.7)

it follows that ΦN2 is developable if and only if τ1 − τ2

(
κ1
κ22

)′
= 0.

The mean curvature of the ruled surface ΦN2 is

HΦN2
=

B2

2
((
τ1
κ2
− vτ2

)2
+

((
κ1
κ22

)′
− vκ2

)2) 3
2

,
(3.8)

where B2 =

(
−

(
κ1
κ22

)′′
+ vκ′2

) (
−
τ1
κ2
+ vτ2

)
−

((
κ1
κ22

)′
− vκ2

) ((
τ1
κ2

)′
− vτ′2

)
.

Thus, ΦN2 is a minimal surface if and only if B2 = 0, which is equivalent to

v2 (
κ′2τ2 − τ

′
2κ2

)
+ v

(
−τ2

(
κ1

κ22

)′′
− κ′2
τ1

κ2
+ τ′2

(
κ1

κ22

)′
+ κ2

(
τ1

κ2

)′)
+

(
τ1

κ2

) (
κ1

κ22

)′′
−

(
τ1

κ2

)′ (
κ1

κ22

)′
= 0.

Further, we have 

κ′2τ2 − τ
′
2κ2 = 0,

τ2

(
κ1

κ22

)′′
+ κ′2
τ1

κ2
− τ′2

(
κ1

κ22

)′
− κ2

(
τ1

κ2

)′
= 0,(

τ1

κ2

) (
κ1

κ22

)′′
−

(
τ1

κ2

)′ (
κ1

κ22

)′
= 0.

(3.9)

It can be shown that when τ2 , 0, Eq (3.9) is solved asτ2 = cκ2,

τ1 − τ2

(
κ1
κ22

)′
= 0.

When τ2 = 0, it is easy to see from (3.9) that α is a plane curve or a cylindrical helix. ■

Corollary 3.3. The e2-Sannia ruled surface of a principal normal ruled surface of a plane curve is
developable and minimal.

Theorem 3.4. Let ΦN3 be an e3-Sannia ruled surface of a principal normal ruled surface, then the
following conclusions hold:

i) ΦN3 is developable if and only if τ2 = 0 or
(
κ1

κ22

)′
= 0,

ii) ΦN3 is non-minimal.
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Proof. Taking partial derivatives of ΦN3 , we obtain

(ΦN3)s = −

(
κ1

κ22

)′
N − vτ2C +

τ1

κ2
W, (ΦN3)v =W.

Thus, the first fundamental quantities of ΦN3 are as follows:

EΦN3
=

((
κ1

κ22

)′)2

− v2τ2
2 +
τ2

1

κ22
, FΦN3

=
τ1

κ2
,GΦN3

= 1.

The unit normal vector of the ruled surface is

uΦN3
=

−vτ2N −
(
κ1
κ22

)′
C√∣∣∣∣∣∣v2τ2

2 −

((
κ1
κ22

)′)2
∣∣∣∣∣∣
.

Taking the second-order partial derivatives of ΦN3 , we obtain the following results:

(ΦN3)ss = −

((
κ1

κ22

)′′
+ vκ2τ2

)
N −

(
κ2

(
κ1

κ22

)′
+
τ1τ2

κ2
− vτ′2

)
C −

(
vτ2

2 +

(
τ1

κ2

)′)
W,

(ΦN3)sv = −τ2C, (ΦN3)vv = 0.

Thus, the second fundamental quantities of ΦN3 are as follows:

lΦN3
=

v2τ2
2κ2 + vτ2

(
κ1
κ22

)′′
−

(
κ1
κ22

)′ (
κ2

(
κ1
κ22

)′
+ τ1τ2
κ2
+ vτ′2

)
√∣∣∣∣∣∣v2τ2

2 −

((
κ1
κ22

)′)2
∣∣∣∣∣∣

,

mΦN3
=

−τ2

(
κ1
κ22

)′
√∣∣∣∣∣∣v2τ2

2 −

((
κ1
κ22

)′)2
∣∣∣∣∣∣
, nΦN3

= 0.

The Gaussian curvature of the ruled surface ΦN3 is given by

KΦN3
=

τ2
2

(
κ1
κ22

)′ 2
(
v2τ2

2 −

(
κ1
κ22

)′ 2)
·

∣∣∣∣∣v2τ2
2 −

(
κ1
κ22

)′ 2∣∣∣∣∣ , (3.10)

it follows that ΦN3 is developable if and only if either τ2 = 0 or
(
κ1

κ22

)′
= 0, but not both. If both

are satisfied, the normal vector UΦN3
= (ΦN3)s × (ΦN3)v is a lightlike vector, which contradicts our

assumption.
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The mean curvature of the ruled surface ΦN3 is

HΦN3
=

B3

−2
(
v2τ2

2 −

(
κ1
κ22

)′ 2) √∣∣∣∣∣v2τ2
2 −

(
κ1
κ22

)′ 2∣∣∣∣∣
,

(3.11)

where B3 =
τ1τ2
κ2

(
κ1
κ22

)′
+ vτ2

((
κ1
κ22

)′′
+ vκ2τ2

)
−

(
κ1
κ22

)′ (
κ2

(
κ1
κ22

)′
+ vτ′2

)
.

Thus, ΦN3 is a minimal surface if and only if B3 = 0, which is equivalent to

v2τ2
2κ2 + v

(
τ2

(
κ1

κ22

)′′
− τ′2

(
κ1

κ22

)′)
+

τ1τ2

κ2

(
κ1

κ22

)′
− κ2

((
κ1

κ22

)′)2 = 0.

Further, we have 
τ2 = 0,(
κ1

κ22

)′
= 0.

(3.12)

However, it implies that ΦN3 is lightlike, which contradicts our assumption. Therefore, ΦN3 is
non-minimal. ■

Based on the equivalent condition for developability established in Theorem 3.4, we now examine
the following cases to derive Corollary 3.5 and Corollary 3.6:

Corollary 3.5. τ2 = 0 if and only if α is a non-circular curve or a non-cylindrical general helix.

Proof. Since τ2 = 0 holds if and only if α is a plane curve or a generalized helix. According to the
analysis of Theorem 3.4, thus α must be a non-circular curve or a non-cylindrical generalized helix. ■

By performing a simple transformation on
(
κ1
κ22

)′
= 0, we obtain another equivalent condition for

ΦN3 to be developable:

Corollary 3.6. τ2 , 0 if and only if α is a curve with κ1 = c1e
∫

2 f (s) ds, τ1 = e
∫

f (s) ds
√

c2
1e

∫
2 f (s) ds − c2

2.

Proof. The equation
(
κ1
κ22

)′
= 0 implies κ′1κ2 − 2κ1κ′2 = 0. Further analysis yields

κ′1
κ1
= 2 f (s),

κ′2
κ2
= f (s),

where f (s) is nonzero.

Since κ2 =
√
κ21 − τ

2
1, solving the above system of differential equations yieldsκ1 = c1e

∫
2 f (s) ds,

τ1 = e
∫

f (s) ds
√

c2
1e

∫
2 f (s) ds − c2

2.
(3.13)

Substituting (3.13) into τ2 shows that τ2 , 0. ■
The equivalent conditions for developability, derived from Corollary 3.5 and Corollary 3.6, can be

summarized as follows:
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Corollary 3.7. ΦN3 is developable if and only if α is one of the followings:

i) a non-circular curve,
ii) a non-cylindrical general helix,

iii) a curve with κ1 = c1e
∫

2 f (s) ds, τ1 = e
∫

f (s) ds
√

c2
1e

∫
2 f (s) ds − c2

2.

4. The Sannia ruled surfaces generated by C-direction ruled surface

For a C-direction ruled surface XC = α(s) + vC(s), the striction curve is determined to be βC =

α + τ1τ2
κ2(κ22+τ

2
2)C. Subsequently, the Sannia frame {e1, e2, e3} of C can be easily established by e1 = C,

e2 =
κ2 N−τ2W√
κ22+τ

2
2

and e3 =
−τ2 N−κ2W√
κ22+τ

2
2

. Then the generated ei-Sannia ruled surfaces are as follows:

ΦC1 = α + QC + vC, (4.1)

ΦC2 = α + QC + v
κ2N − τ2W√
κ22 + τ

2
2

, (4.2)

ΦC3 = α + QC + v
−τ2N − κ2W√
κ22 + τ

2
2

, (4.3)

where Q = τ1τ2
κ2(κ22+τ

2
2) .

Theorem 4.1. LetΦC1 be an e1-Sannia ruled surface of a C-direction ruled surface, then the following
conclusions hold:

i) ΦC1 is developable if and only if α is planar,
ii) ΦC1 is minimal if and only if α is planar.

Proof. Taking partial derivatives of ΦC1 , we obtain

(ΦC1)s = λ1N + λ2C + λ3W, (ΦC1)v = C,

where λ1 = κ2(Q + v), λ2 = Q′ + κ1
κ2

, λ3 = −vτ2 +
τ1
κ2
− Qτ2.

Thus, the first fundamental quantities of ΦC1 are as follows:

EΦC1
= λ2

1 − λ
2
2 + λ

2
3, FΦC1

= −λ2,GΦC1
= −1.

The unit normal vector of the ruled surface is

uΦC1
= −
λ3N − λ1W√
λ2

1 + λ
2
3

.

Taking the second-order partial derivatives of

(ΦC1)ss = (λ′1 + λ2κ2)N + (λ1κ2 + λ
′
2 − λ3τ2)C + (−λ2τ2 + λ

′
3)W,

(ΦC1)sv = κ2N − τ2W, (ΦC1)vv = 0.
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Thus, the second fundamental quantities of ΦC1 are as follows:

lΦC1
=
−λ3(λ′1 + λ2κ2) − λ1(λ2τ2 − λ

′
3)√

λ2
1 + λ

2
3

,

mΦC1
=

−τ1√
λ2

1 + λ
2
3

, nΦC1
= 0.

The Gaussian curvature of the ruled surface ΦC1 is given by

KΦC1
=

τ2
1(

λ2
1 + λ

2
3

)2 , (4.4)

it follows that ΦC1 is developable if and only if α is planar.
The mean curvature of the ruled surface ΦC1 is

HΦC1
= −

B4

2(λ2
1 + λ

2
3)

3
2

, (4.5)

where B4 = −λ2τ1 + λ3λ
′
1 − λ1λ

′
3.

Thus, ΦC1 is a minimal surface if and only if B4 = 0, which is equivalent to
τ′2κ2 − κ

′
2τ2 = 0,

τ1κ
′
1
κ2
− κ2

(
τ1
κ2

)′
= 0,

τ1κ1
κ2
= 0.

(4.6)

Thus, Eq (4.6) holds if and only if α is planar. ■

Theorem 4.2. LetΦC2 be an e2-Sannia ruled surface of a C-direction ruled surface, then the following
conclusions hold:

i) ΦC2 is developable if and only if(
κ1
κ2
+ Q′

)
(κ2τ′2 − τ2κ

′
2) + τ1(κ22 + τ

2
2) = 0,

ii) ΦC2 is minimal, then (
κ1
κ2
+ Q′

)′
κ1
κ2
+ Q′

=
κ2τ
′
2 + κ

′
2τ2(

κ22 + τ
2
2

) 3
2

.

Proof. Taking partial derivatives of ΦC2 , we obtain

(ΦC2)s = η1N + η2C + η3W, (ΦC2)v =
κ2√
κ22 + τ

2
2

N −
τ2√
κ22 + τ

2
2

W,
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where η1 = Qκ2 + v

 κ2√
κ22 + τ

2
2


′

, η2 =
κ1
κ2
+ Q′ + v

√
κ22 + τ

2
2, η3 =

τ1

κ2
− Qτ2 − v

 τ2√
κ22 + τ

2
2


′

.

Thus, the first fundamental quantities of ΦC2 are as follows:

EΦC2
= η2

1 − η
2
2 + η

2
3, FΦC2

= 0,GΦC2
= 1.

The unit normal vector of the ruled surface is

uΦC2
=
−η2τ2N − (η1τ2 + η3κ2)C − η2κ2W√∣∣∣η2

2(κ22 + τ
2
2) − (η3κ2 + η1τ2)2

∣∣∣ .
Taking the second-order partial derivatives of ΦC2 , we obtain

(ΦC2)ss = (η′1 + η2κ2)N + (η1κ2 + η
′
2 − η3τ2)C + (η′3 − η2τ2)W,

(ΦC2)sv =

 κ2√
κ22 + τ

2
2


′

N +
√
κ22 + τ

2
2 C −

 τ2√
κ22 + τ

2
2


′

W, (ΦC2)vv = 0.

Thus, the second fundamental quantities of ΦC2 are as follows:

lΦC2
=
−η2η

′
1τ2 + (η3κ2 + η1τ2)η′2 − η2η

′
3κ2√∣∣∣∣η2

2

(
κ22 + τ

2
2

)
− (η3κ2 + η1τ2)2

∣∣∣∣ ,

mΦC2
=

(
κ1
κ2
+ Q′

)
κ2τ
′
2−τ2κ

′
2√

κ22+τ
2
2

+ τ1

√
κ22 + τ

2
2√∣∣∣η2

2(κ22 + τ
2
2) − (η3κ2 + η1τ2)2

∣∣∣ , nΦC2
= 0.

The Gaussian curvature of the ruled surface ΦC2 is given by

KΦC2
=

(
κ22 + τ

2
2

) ((
κ1
κ2
+ Q′

)
κ2τ
′
2−τ2κ

′
2√

κ22+τ
2
2

+

√
κ22 + τ

2
2τ1

)2

(
η2

2(κ22 + τ
2
2) − (η3κ2 + η1τ2)2

)
·
∣∣∣η2

2(κ22 + τ
2
2) − (η3κ2 + η1τ2)2

∣∣∣ , (4.7)

it follows that ΦC2 is developable if and only if
(
κ1
κ2
+ Q′

)
(κ2τ′2 − τ2κ

′
2) + τ1(κ22 + τ

2
2) = 0.

The mean curvature of the ruled surface ΦC2 is

HΦC2
=

(
κ22 + τ

2
2

)
B5

−2
(
η2

2

(
κ22 + τ

2
2

)
− (η3κ2 + η1τ2)2

) √∣∣∣∣η2
2

(
κ22 + τ

2
2

)
− (η3κ2 + η1τ2)2

∣∣∣∣ , (4.8)

where B5 = −η2η
′
1τ2 + (η3κ2 + η1τ2)η′2 − η2η

′
3κ2.

Thus, ΦC2 is a minimal surface if and only if B5 = 0, which is equivalent to

v2b1 + vb2 + b3 = 0,
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where

b1 =

√
κ22 + τ

2
2

κ2
 τ2√
κ22 + τ

2
2


′′

− τ2

 κ2√
κ22 + τ

2
2


′′ − (κ2τ′2 − κ

′
2τ2)(κ2κ′2 + τ2τ

′
2)

(κ22 + τ
2
2)

3
2

,

b2 =

√
κ22 + τ

2
2

(
−κ2

(
τ2

κ2

)′
+ Q(κ2τ′2 + κ

′
2τ2)

)
−
κ2τ
′
2 − κ

′
2τ2√

κ22 + τ
2
2

((
κ1
κ2

)′
+ Q′′

)

+ τ1
κ2κ
′
2 + τ2τ

′
2

κ22 + τ
2
2

+

(
κ1
κ2
+ Q′

) κ2
 τ2√
κ22 + τ

2
2


′′

− τ2

 κ2√
κ22 + τ

2
2


′′ ,

b3 =

(
κ1
κ2
+ Q′

) (
−κ2

(
κ1
κ2

)′
+ Q(κ2τ′2 − κ

′
2τ2)

)
+ τ1

(
κ1
κ2
+ Q′

)′
.

Thus, ΦC2 is minimal if and only if b1 = b2 = b3 = 0. From b1 = b3 = 0, we obtain
κ2

 τ2√
κ22 + τ

2
2


′′

− τ2

 κ2√
κ22 + τ

2
2


′′

=
(κ2τ′2 − κ

′
2τ2)(κ2κ′2 + τ2τ

′
2)

(κ22 + τ
2
2)2

,

− κ2

(
κ1
κ2

)′
+ Q(κ2τ′2 − κ

′
2τ2) =

−τ1

(
κ1
κ2
+ Q′

)′
κ1
κ2
+ Q′

.

(4.9)

Substituting (4.9) into b2 = 0, and thus we obtain(
κ1
κ2
+ Q′

)′
κ1
κ2
+ Q′

=
κ2τ
′
2 + κ

′
2τ2(

κ22 + τ
2
2

) 3
2

.■

Particularly, if α is planar, it is easy to verify that KΦC2
= HΦC2

= 0, soΦC2 is developable minimal.
If α is a cylindrical helix, KΦC2

, 0,HΦC2
= 0, so ΦC2 is a non-developable minimal surface.

Corollary 4.3. The e2-Sannia ruled surface of a C-direction ruled surface of a plane curve is
developable and minimal. However, the e2-Sannia ruled surface of the C-direction ruled surface of
a cylindrical helix is a non-developable minimal.

Theorem 4.4. LetΦC3 be an e3-Sannia ruled surface of a C-direction ruled surface, then the following
conclusions hold:

i) ΦC3 is developable if and only if(
κ1
κ2
+ Q′

) (
τ2κ
′
2 − κ2τ

′
2
)
= 0,

ii) ΦC3 is minimal if and only ifc2τ2 − c1κ2 = 0,(
τ1
κ2

)′
= c1κ1 + c2(2Q′κ2 + κ′2Q).
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Proof. Taking partial derivatives of ΦC3 , we obtain

(ΦC3)s = π1N + π2C + π3W, (ΦC3)v =
−τ2N − κ2W√
κ22 + τ

2
2

,

where π1 = Qκ2 − v

 τ2√
κ22 + τ

2
2


′

, π2 =
κ1
κ2
+ Q′, π3 =

τ1

κ2
− Qτ2 − v

 κ2√
κ22 + τ

2
2


′

.

Thus, the first fundamental quantities of ΦC3 are as follows:

EΦC3
= π2

1 − π
2
2 + π

2
3, FΦC3

=
−τ1√
κ22 + τ

2
2

,GΦC3
= 1.

The unit normal vector of the ruled surface is

uΦC3
=
−π2κ2N − (π1κ2 − π3τ2)C + π2τ2W√∣∣∣π2

2(κ22 + τ
2
2) − (π1κ2 − π3τ2)2

∣∣∣ .
Taking the second-order partial derivatives of ΦC3 , we obtain

(ΦC3)ss = (π′1 + π2κ2)N + (π1κ2 + π
′
2 − π3τ2)C + (π′3 − π2τ2)W,

(ΦC3)sv = −

 τ2√
κ22 + τ

2
2


′

N −

 κ2√
κ22 + τ

2
2


′

W, (ΦC3)vv = 0.

Thus, the second fundamental quantities of ΦC3 are as follows:

lΦC3
=
−π2κ2(π′1 + π2κ2) + (π1κ2 − π3τ2)(π1κ2 + π

′
2 − π3τ2) + π2τ2(π′3 − π2τ2)√∣∣∣π2

2(κ22 + τ
2
2) − (π1κ2 − π3τ2)2

∣∣∣ ,

mΦC3
=

−
(
κ1
κ2
+ Q′

)
·
τ2κ
′
2−κ2τ

′
2√

κ22+τ
2
2√∣∣∣π2

2(κ22 + τ
2
2) − (π1κ2 − π3τ2)2

∣∣∣ , nΦC3
= 0.

The Gaussian curvature of the ruled surface ΦC3 is given by

KΦC3
=

(κ22 + τ
2
2)

((
κ1
κ2
+ Q′

)
·
τ2κ
′
2−κ2τ

′
2√

κ22+τ
2
2

)2

(
π2

2(κ22 + τ
2
2) − (π1κ2 − π3τ2)2

)
·
∣∣∣π2

2(κ22 + τ
2
2) − (π1κ2 − π3τ2)2

∣∣∣ , (4.10)

it follows that ΦC3 is developable if and only if(
κ1
κ2
+ Q′

) (
τ2κ
′
2 − κ2τ

′
2
)
= 0.
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The mean curvature of the ruled surface ΦC3 is

HΦC3
=

2
√
κ22 + τ

2
2B6 + (κ22 + τ

2
2)B7

−2
(
π2

2(κ22 + τ
2
2) − (π1κ2 + π3τ2)2

) √∣∣∣π2
2(κ22 + τ

2
2) − (π1κ2 + π3τ2)2

∣∣∣ , (4.11)

where B6 = τ1

(
κ1
κ2
+ Q′

)
·
τ2κ
′
2−κ2τ

′
2√

κ22+τ
2
2

,

B7 = −π2κ2(π′1 + π2κ2) + (π1κ2 − π3τ2)(π1κ2 + π
′
2 − π3τ2) − π2τ2(π2τ2 − π

′
3).

Thus,ΦC3 is a minimal surface if and only if 2
√
κ22 + τ

2
2B6 + (κ22 + τ

2
2)B7 = 0, which is equivalent to

v2b4 + vb5 + b6 = 0,

where

b4 = κ2τ
′
2 − κ

′
2τ2,

b5 = −(κ22 + τ
2
2)

(
κ1
κ2
+ Q′

)′
·
κ2τ
′
2 − κ

′
2τ2√

κ22 + τ
2
2

+ (κ22 + τ
2
2)

(
κ1
κ2
+ Q′

) κ2
 τ2√
κ22 + τ

2
2


′′

− τ2

 κ2√
κ22 + τ

2
2


′′ ,

b6 =

(
κ1
κ2
+ Q′

)2

(κ22 + τ
2
2) +

(
κ1
κ2
+ Q′

) (
Q′(κ22 + τ

2
2) + Q(κ2κ′2 + τ

′
2τ2) − τ2

(
τ1

κ2

)′)
.

Thus,ΦC3 is minimal if and only if b4 = b5 = b6 = 0. From b4 = 0, it follows that b5 = κ2τ
′
2−κ

′
2τ2 =

0. Substituting this into b6 = 0 givesc2τ2 − c1κ2 = 0,(
τ1
κ2

)′
= c1κ1 + c2(2Q′κ2 + κ′2Q).■

Particularly, if α is a plane curve or a cylindrical helix , it is easy to verify that KΦC3
= 0,HΦC3

, 0,
so ΦC3 is non-minimal developable.

Corollary 4.5. The e3-Sannia ruled surface of a C-direction ruled surface of a plane curve or a
cylindrical helix is non-minimal developable.

5. The Sannia ruled surfaces generated by Darboux ruled surface

For a Darboux ruled surface XW = α + vW, the striction curve is determined to be βW = α +
κ1
κ2τ2

W.
Subsequently, the Sannia frame {e1, e2, e3} of W can be easily established by e1 = W, e2 = C and
e3 = −N. Then the generated ei-Sannia ruled surfaces are as follows:

ΦW1 = α +
κ1
κ2τ2

W + vW, (5.1)

ΦW2 = α +
κ1
κ2τ2

W + vC, (5.2)
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ΦW3 = α +
κ1
κ2τ2

W − vN. (5.3)

When α is a plane curve or a general helix, it is easy to verify that τ2 = 0, and the striction curve
βW does not exist. Therefore, an ei-Sannia ruled surface cannot be generated. Next, we assume that α
is neither a plane curve nor a general helix.

Theorem 5.1. Let ΦW1 be an e1-Sannia ruled surface of a Darboux ruled surface, then ΦW1 is non-
minimal developable.

Proof. Taking partial derivatives of ΦW1 , we obtain

(ΦW1)s = −vτ2C +
((
κ1
κ2τ2

)′
+
τ1

κ2

)
W, (ΦW1)v =W.

Thus, the first fundamental quantities of ΦW1 are as follows:

EΦW1
= − (vτ2)2 +

((
κ1
κ2τ2

)′
+
τ1

κ2

)2

, FΦW1
=

(
κ1
κ2τ2

)′
+
τ1

κ2
,GΦW1

= 1.

The unit normal vector of the ruled surface is

uΦW1
= ±N.

Taking the second-order partial derivatives of ΦW1 , we obtain the following results

(ΦW1)ss = −vκ2τ2N +
(
−vτ′2 − τ2

(
κ1
κ2τ2

)′
−
τ1τ2

κ2

)
C +

(
vτ2

2 +

(
κ1
κ2τ2

)′′
+

(
τ1

κ2

)′)
W,

(ΦW1)sv = −τ2C, (ΦW1)vv = 0.

Thus, the second fundamental quantities of ΦW1 are as follows:

lΦW1
= ±vκ2τ2,mΦW1

= 0, nΦW1
= 0.

The Gaussian curvature of the ruled surface ΦW1 is given by

KΦW1
= 0, (5.4)

it follows that ΦW1 is always developable.
The mean curvature of the ruled surface ΦW1 is

HΦW1
= ±

κ2
2vτ2
, (5.5)

since κ2 , 0, it follows that ΦW1 cannot be minimal. ■

Theorem 5.2. Let ΦW2 be an e2-Sannia ruled surface of a Darboux ruled surface, then the following
conclusions hold:

i) ΦW2 is developable if and only if τ1
κ2
= −

(
κ1
κ2τ2

)′
,

ii) ΦW2 is minimal if and only if 
τ2 = c1κ2,

τ1

κ2
+

(
κ1
κ2τ2

)′
= c2κ2.
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Proof. Taking partial derivatives of ΦW2 , we obtain

(ΦW2)s = vκ2N +
(
−vτ2 +

τ1

κ2
+

(
κ1
κ2τ2

)′)
W, (ΦW2)v = C.

Thus, the first fundamental quantities of ΦW2 are as follows:

EΦW2
= v2κ22 +

(
τ1

κ2
+

(
κ1
κ2τ2

)′
− vτ2

)2

, FΦW2
= 0,GΦW2

= −1.

The unit normal vector of the ruled surface is

uΦW2
=

(
−
τ1
κ2
−

(
κ1
κ2τ2

)′
+ vτ2

)
N + vκ2W√

v2κ22 +
(
−
τ1
κ2
−

(
κ1
κ2τ2

)′
+ vτ2

)2
.

Taking the second-order partial derivatives of ΦW2 , we obtain:

(ΦW2)ss = vκ′2N +
(
vκ22 − τ2

(
τ1

κ2
−

(
κ1
κ2τ2

)′
− vτ2

))
C +

((
τ1

κ2

)′
+

(
κ1
κ2τ2

)′′
− vτ′2

)
W,

(ΦW2)sv = κ2N − τ2W, (ΦW2)vv = 0.

Thus, the second fundamental quantities of ΦW2 are as follows:

lΦW2
=

vκ′2
(
−
τ1
κ2
−

(
κ1
κ2τ2

)′
+ vτ2

)
− vκ2

(
−

(
τ1
κ2

)′
−

(
κ1
κ2τ2

)′′
+ vτ′2

)
√

v2κ22 +
(
−
τ1
κ2
−

(
κ1
κ2τ2

)′
+ vτ2

)2
,

mΦW2
=

−τ1 − κ2
(
κ1
κ2τ2

)′√
v2κ22 +

(
−
τ1
κ2
−

(
κ1
κ2τ2

)′
+ vτ2

)2
, nΦW2

= 0.

The Gaussian curvature of the ruled surface ΦW2 is given by

KΦW2
=

κ22

(
τ1
κ2
+

(
κ1
κ2τ2

)′)2

(
v2κ22 +

(
−
τ1
κ2
−

(
κ1
κ2τ2

)′
+ vτ2

)2)2 , (5.6)

it follows that ΦW2 is developable if and only if τ1
κ2
= −

(
κ1
κ2τ2

)′
.

The mean curvature of the ruled surface ΦW2 is

HΦW2
=

B8

2
(
v2κ22 +

(
−
τ1
κ2
−

(
κ1
κ2τ2

)′
+ vτ2

)2) 3
2

,
(5.7)

where B8 = −vκ′2
(
−
τ1
κ2
−

(
κ1
κ2τ2

)′
+ vτ2

)
+ vκ2

(
−

(
τ1
κ2

)′
−

(
κ1
κ2τ2

)′′
+ vτ′2

)
.
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Thus, ΦW2 is a minimal surface if and only if B8 = 0, which is equivalent to

v(κ′2τ2 − τ
′
2κ2) − κ′2

τ1

κ2
− κ′2

(
κ1
κ2τ2

)′
+ κ2

(
κ1
κ2τ2

)′′
+ κ2

(
τ1

κ2

)′
= 0,

further, we have κ′2τ2 − τ
′
2κ2 = 0,

κ′2
τ1
κ2
+ κ′2

(
κ1
κ2τ2

)′
− κ2

(
κ1
κ2τ2

)′′
− κ2

(
τ1
κ2

)′
= 0,

(5.8)

further from (5.8), we obtain the equivalent equations
τ2 = c1κ2,

τ1

κ2
+

(
κ1
κ2τ2

)′
= c2κ2(c2 is an arbitrary constant).■

Theorem 5.3. Let ΦW3 be an e3-Sannia ruled surface of a Darboux ruled surface, then the following
conclusions hold:

i) ΦW3 is developable if and only if τ1
κ2
= −

(
κ1
κ2τ2

)′
,

ii) ΦW3 is non-minimal.

Proof. Taking partial derivatives of ΦW3 , we obtain

(ΦW3)s = −vκ2C +
((
κ1
κ2τ2

)′
+
τ1

κ2

)
W, (ΦW3)v = −N.

Thus, the first fundamental quantities of ΦW3 are as follows:

EΦW3
= −v2κ22 +

((
κ1
κ2τ2

)′
+
τ1

κ2

)2

, FΦW3
= 0,GΦW3

= 1.

The unit normal vector of the ruled surface is

uΦW3
=

((
κ1
κ2τ2

)′
+ τ1
κ2

)
C − vκ2W√∣∣∣∣∣(vκ2)2 −

((
κ1
κ2τ2

)′
+ τ1
κ2

)2
∣∣∣∣∣
.

Taking the second-order partial derivatives of ΦW3 , we obtain:

(ΦW3)ss = −vκ22 N +
(
−vκ′2 − τ2

((
κ1
κ2τ2

)′
+
τ1

κ2

))
C +

(
vκ2τ2 +

(
κ1
κ2τ2

)′′
+

(
τ1

κ2

)′)
W,

(ΦW3)sv = −κ2C, (ΦW3)vv = 0.

Thus, the second fundamental quantities of ΦW3 are as follows:

lΦW3
=
−vκ2

(
vκ2τ2 +

(
κ1
κ2τ2

)′′
+

(
τ1
κ2

)′)
+

((
κ1
κ2τ2

)′
+ τ1
κ2

) (
vκ′2 + τ2

(
κ1
κ2τ2

)′
+ τ1τ2
κ2

)
√∣∣∣∣∣(vκ2)2 −

((
κ1
κ2τ2

)′
+ τ1
κ2

)2
∣∣∣∣∣

,
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mΦW3
=

κ2
((
κ1
κ2τ2

)′
+ τ1
κ2

)
√∣∣∣∣∣(vκ2)2 −

((
κ1
κ2τ2

)′
+ τ1
κ2

)2
∣∣∣∣∣
, nΦW3

= 0.

The Gaussian curvature of the ruled surface ΦW3 is given by

KΦW3
=

κ22

((
κ1
κ2τ2

)′
+ τ1
κ2

)2(
(vκ2)2 −

((
κ1
κ2τ2

)′
+ τ1
κ2

)2)
·

∣∣∣∣∣(vκ2)2 −
((
κ1
κ2τ2

)′
+ τ1
κ2

)2
∣∣∣∣∣ , (5.9)

it follows that ΦW3 is developable if and only if τ1
κ2
= −

(
κ1
κ2τ2

)′
.

The mean curvature of the ruled surface ΦW3 is

HΦW3
=

B9

2
(
(vκ2)2 −

((
κ1
κ2τ2

)′
+ τ1
κ2

)2) √∣∣∣∣∣(vκ2)2 −
((
κ1
κ2τ2

)′
+ τ1
κ2

)2
∣∣∣∣∣
,

(5.10)

where B9 = vκ2
(
vκ2τ2 +

(
κ1
κ2τ2

)′′
+

(
τ1
κ2

)′)
−

((
κ1
κ2τ2

)′
+ τ1
κ2

) (
vκ′2 + τ2

(
κ1
κ2τ2

)′
+ τ1τ2
κ2

)
.

Thus, ΦW3 is a minimal surface if and only if B9 = 0, which is equivalent to

v2κ22τ2 − v
(
−κ2

(
τ1

κ2

)′
− κ2

(
κ1
κ2τ2

)′′
+ κ′2
τ1

κ2
+ κ′2

(
κ1
κ2τ2

)′)
− τ2

((
τ1

κ2

)
+

(
κ1
κ2τ2

)′)2

= 0,

further, we have 

τ2 = 0,

κ2

(
τ1

κ2

)′
+ κ2

(
κ1
κ2τ2

)′′
− κ′2
τ1

κ2
− κ′2

(
κ1
κ2τ2

)′
= 0,

τ2

((
τ1

κ2

)
+

(
κ1
κ2τ2

)′)
= 0.

(5.11)

Clearly, according to the system of Eq (5.11), this contradicts the assumption τ2 , 0. Therefore,
ΦW3 is not a minimal surface. ■

Corollary 5.4. The ei-Sannia ruled surfaces generated by Darboux ruled surface are developable if
and only if τ1

κ1
= c1s + c2.

Proof. First, convert the differential equation τ1
κ2
= −

(
κ1
κ2τ2

)′
into the following equation

κ21 − τ
2
1

τ′1κ1 − κ
′
1τ1
= −2

∫
τ1

κ1
ds.

Let u(s) = τ1
κ1

, the above indefinite integral equation becomes

u2 − 1
u′
= 2

∫
u ds.

Differentiating both sides of the above indefinite integral equation yields the general solutions
u1(s) = ±1 and u2(s) = c1s + c2(c2 is an arbitrary constant).

If u1(s) = ±1, then τ1
κ1
= ±1, and α is a general helix; however striction curve of the Darboux ruled

surface does not exist, so we discard this case. ■
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6. Applications with the Sannia ruled surfaces

Example. Let α(s) = (
√

2 ch s, s,
√

2 sh s) be a cylindrical helix. Its alternative frame vectors and
curvature functions are as follows:

N = (ch s, 0, sh s),C = (sh s, 0, ch s),W = (0,−1, 0), κ1 =
√

2, τ1 = −1, κ2 = 1, τ2 = 0.

The striction curve of the principal normal ruled surface and the Sannia frame vectors of the
principal normal ruled surface are

βN = (0, s, 0), e1XN = (ch s, 0, sh s), e2XN = (sh s, 0, ch s), e3XN = (0,−1, 0).

The e1, e2-Sannia ruled surfaces (Figures 1 and 2) are given by

ΦN1 = (0, s, 0) + v(ch s, 0, sh s),ΦN2 = (0, s, 0) + v(sh s, 0, ch s).

The Gaussian curvature and mean curvature are calculated as

KΦN1
=

1
(v2 − 1) · |v2 − 1|

,HΦN1
= 0,KΦN2

=

(
1

v2 + 1

)2

,HΦN2
= 0.

It is evident that ΦN1 and ΦN2 are both non-developable minimal surfaces.

Figure 1. The red curve is α(s), and the blue surface is the e1-Sannia ruled surface ΦN1

generated by a principal normal ruled surface.

Figure 2. The red curve is α(s), and the blue surface is the e2-Sannia ruled surface ΦN2

generated by a principal normal ruled surface.
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The striction curve of Darboux ruled surfaces βC(s), and the Sannia frame vectors of Darboux ruled
surfaces are

βC = (
√

2 ch s, s,
√

2 sh s), e1XC = (sh s, 0, ch s), e2XC = (ch s, 0, sh s), e3XC = (0, 1, 0).

The e1, e2, e3-Sannia ruled surfaces (Figures 3–5) are respectively

ΦC1 = (
√

2 ch s, s,
√

2 sh s) + v(sh s, 0, ch s),

ΦC2 = (
√

2 ch s, s,
√

2 sh s) + v(ch s, 0, sh s),

ΦC3 = (
√

2 ch s, s,
√

2 sh s) + v(0, 1, 0).

The Gaussian and mean curvatures are calculated as

KΦC1
=

−1
(v2 + 1)2 ,HΦC1

=

√
2

2(v2 + 1)3/2 ,

KΦC2
= −

1

((
√

2 + v)2 − 1) · |(
√

2 + v)2 − 1|
,HΦC2

= 0,KΦC3
= 0,HΦC3

=

√
2

4
.

It is evident that ΦC1 is a non-developable non-minimal surface, ΦC2 is a non-developable minimal
surface, and ΦC3 is a non-minimal developable surface.

Since α(s) is a cylindrical helix, the striction curve of the Darboux ruled surface does not exist;
clearly, the ei-Sannia ruled surfaces cannot be generated by the Darboux ruled surface. Moreover,
according to Theorem 3.4, ΦN3 is a lightlike ruled surface.

Figure 3. The red curve is α(s), and the blue surface is the e1-Sannia ruled surface ΦC1

generated by a C-direction ruled surface.

Figure 4. The red curve is α(s), and the blue surface is the e2-Sannia ruled surface ΦC2

generated by a C-direction ruled surface.
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Figure 5. The red curve is α(s), and the blue surface is the e3-Sannia ruled surface ΦC3

generated by a C-direction ruled surface.

7. Conclusions

This paper investigates the developability and minimality of non-lightlike Sannia ruled surfaces
generated from principal normal, C-direction, and Darboux ruled surfaces of timelike curves. It
demonstrates that the developability and minimality of the generated Sannia ruled surfaces are fully
determined by the curvature functions of the directrix curves α. This implies that the intrinsic
properties of the directrix curves α govern the corresponding properties of the generated Sannia ruled
surfaces.
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44 (2003), 203–212.

2. H. Pottmann, Ruled surfaces for rationalization and design in architecture, In: Proceedings of the
30th annual conference of the association for computer aided design in architecture (ACADIA),
New York, 21–24 October, 2010, 103–109. http://doi.org/10.52842/conf.acadia.2010.103

3. Y. Li, K. Eren, S. Ersoy, On simultaneous characterizations of partner-ruled surfaces in Minkowski
3-space, AIMS Math., 8 (2023), 22256–22273. http://doi.org/10.3934/math.20231135

4. G. Sannia, Una rappresentazione intrinseca delle rigate, Giorn. Mat., 1925, 31–47.
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