This paper studies the oscillatory behavior of a class of second-order neutral delay differential equations (NDDEs). Using comparison principles and Riccati transformation techniques, we derived new sufficient conditions for oscillation. A recursive framework was introduced to enhance the monotonic properties of positive solutions, leading to sharper criteria. Auxiliary inequalities, exponential estimates, and integral averaging methods support the analysis. Illustrative examples demonstrate the applicability and improvements over existing results, positioning our findings within a broader context relevant to engineering and biological models.
Citation: Maged Alkilayh, Nedhal Almohammed. Oscillatory dynamics and recursive monotonicity of positive solutions to second-order neutral delay differential equations: Analytical framework and applications[J]. AIMS Mathematics, 2025, 10(9): 21595-21616. doi: 10.3934/math.2025960
This paper studies the oscillatory behavior of a class of second-order neutral delay differential equations (NDDEs). Using comparison principles and Riccati transformation techniques, we derived new sufficient conditions for oscillation. A recursive framework was introduced to enhance the monotonic properties of positive solutions, leading to sharper criteria. Auxiliary inequalities, exponential estimates, and integral averaging methods support the analysis. Illustrative examples demonstrate the applicability and improvements over existing results, positioning our findings within a broader context relevant to engineering and biological models.
| [1] | R. D. Driver, Ordinary and delay differential equations, New York: Springer, 1977. |
| [2] | J. Wu, Theory and applications of partial Functional differential equations, New York: Springer, 2012. https://doi.org/10.1007/978-1-4612-4050-1 |
| [3] | G. S. Ladde, V. Lakshmikantham, B. G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, New York: Marcel Dekker, 1987. |
| [4] | J. K. Hale, Oscillations in neutral functional differential equations, Berlin, Heidelberg: Springer, 1971. |
| [5] | I. Győri, G. E. Ladas, Oscillation Theory of Delay Differential equations: With Applications, Clarendon Press, 1991. |
| [6] | L. Erbe, Q. Kong, B. G. Zhang, Oscillation Theory for functional differential equations, CRC Press, 1994. |
| [7] | K. Gopalsamy, Stability and oscillations in delay differential equations of population dynamics, Dordrecht: Springer, 1992. |
| [8] | A. Bellen, M. Zennaro, Numerical methods for delay differential equations, New York: Oxford University Press, 2013. |
| [9] | R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation Theory for second order Linear, Half-Linear, Superlinear and Sublinear dynamic equations, Dordrecht: Springer, 2002. http://doi.org/10.1007/978-94-017-2515-6 |
| [10] | O. Dosly, P. Rehak, Half-Linear differential equations, Amsterdam: Elsevier, 2005. |
| [11] | K. Gopalsamy, Stability and oscillations in delay differential equations of population dynamics, Dordrecht: Springer, 2013. https://doi.org/10.1007/978-94-015-7920-9 |
| [12] |
Ch. G. Philos, On the existence of nonoscillatory solutions tending to zero at $\infty $ for differential equations with positive delays, Arch. Math., 36 (1981), 168–178. http://doi.org/10.1007/bf01223686 doi: 10.1007/bf01223686
|
| [13] |
O. Moaaz, A. Al-Jaser, A. Essam, New comparison theorems for testing the oscillation of solutions of fourth-order differential equations with a variable argument, Electron. Res. Arch., 33 (2025), 4075–4090. http://doi.org/10.3934/era.2025182 doi: 10.3934/era.2025182
|
| [14] |
M. Aldiaiji, B. Qaraad, L. F. Iambor, E. M. Elabbasy, New Oscillation Theorems for Second-Order Superlinear Neutral Differential Equations with Variable Damping Terms, Symmetry, 15 (2023), 1630. http://doi.org/10.3390/sym15091630 doi: 10.3390/sym15091630
|
| [15] |
E. Tunç, S. R. Grace, On oscillatory and asymptotic behavior of a Second-Order nonlinear damped neutral differential equation, Int. J. Differ. Eq., 2016 (2016), 3746368. http://doi.org/10.1155/2016/3746368 doi: 10.1155/2016/3746368
|
| [16] |
R. P. Agarwal, M. Bohner, T. Li, C. Zhang, A new approach in the study of oscillatory behavior of even-order neutral delay differential equations, Appl. Math. Comput., 225 (2013), 787–794. http://doi.org/10.1016/j.amc.2013.09.037 doi: 10.1016/j.amc.2013.09.037
|
| [17] |
T. Li, Y. V. Rogovchenko, Oscillation of second‐order neutral differential equations, Math. Nachr., 288 (2015), 1150–1162. http://doi.org/10.1002/mana.201300029 doi: 10.1002/mana.201300029
|
| [18] |
T. Li, Y. V. Rogovchenko, Oscillation criteria for second-order superlinear Emden–Fowler neutral differential equations, Monatsh. Math., 184 (2017), 489–500. http://doi.org/10.1007/s00605-017-1039-9 doi: 10.1007/s00605-017-1039-9
|
| [19] |
A. Al-Jaser, C. Cesarano, B. Qaraad, L. F. Iambor, Second-Order Damped Differential Equations with Superlinear Neutral Term: New Criteria for Oscillation, Axioms, 13 (2024), 234. http://doi.org/10.3390/axioms13040234 doi: 10.3390/axioms13040234
|
| [20] |
J. Džurina, S. R. Grace, I. Jadlovská, T. Li, Oscillation criteria for second‐order Emden–Fowler delay differential equations with a sublinear neutral term, Math. Nachr., 293 (2020), 910–922. http://doi.org/10.1002/mana.201800196 doi: 10.1002/mana.201800196
|
| [21] |
J. J. A. M. Brands, Oscillation theorems for second-order functional differential equations, J. Math. Anal. Appl., 63 (1978), 54–64. http://doi.org/10.1016/0022-247x(78)90104-x doi: 10.1016/0022-247x(78)90104-x
|
| [22] | G. Ladas, V. Lakshmikantham, J. S. Papadakis, Oscillations of higher-order retarded differential equations generated by the retarded argument, New York: ACADEMIC PRESS, 1972,219–231. http://doi.org/10.1016/b978-0-12-627250-5.50013-7 |
| [23] |
J. Džurina, I. P. Stavroulakis, Oscillation criteria for second-order delay differential equations, Appl. Math. Comput., 140 (2003), 445–453. http://doi.org/10.1016/s0096-3003(02)00243-6 doi: 10.1016/s0096-3003(02)00243-6
|
| [24] |
R. Xu, F. Meng, Some new oscillation criteria for second order quasi-linear neutral delay differential equations, Appl. Math. Comput., 182 (2006), 797–803. http://doi.org/10.1016/j.amc.2006.04.042 doi: 10.1016/j.amc.2006.04.042
|
| [25] |
S. R. Grace, J. Džurina, I. Jadlovská, T. Li, An improved approach for studying oscillation of second-order neutral delay differential equations, J. Inequal. Appl., 2018 (2018), 193. http://doi.org/10.1186/s13660-018-1767-y doi: 10.1186/s13660-018-1767-y
|
| [26] |
B. Baculikova, T. Li, J. Dzurina, Oscillation theorems for second order neutral differential equations, Electron. J. Qual. Theory Differ. Equ., 2011 (2011), 74. http://doi.org/10.14232/ejqtde.2011.1.74 doi: 10.14232/ejqtde.2011.1.74
|
| [27] |
G. E. Chatzarakis, J. Džurina, I. Jadlovská, New oscillation criteria for second-order half-linear advanced differential equations, Appl. Math. Comput., 347 (2018), 404–416. http://doi.org/10.1016/j.amc.2018.10.091 doi: 10.1016/j.amc.2018.10.091
|
| [28] |
M. Bohner, S. Grace, I. Jadlovská, Oscillation criteria for second-order neutral delay differential equations, Electron. J. Qual. Theory Differ. Equ., 2017 (2017), 60. http://doi.org/10.14232/ejqtde.2017.1.60 doi: 10.14232/ejqtde.2017.1.60
|
| [29] |
A. Essam, O. Moaaz, M. Ramadan, G. AlNemer, I. M. Hanafy, Improved results for testing the oscillation of functional differential equations with multiple delays, AIMS Mathematics, 8 (2023), 28051–28070. http://doi.org/10.3934/math.20231435 doi: 10.3934/math.20231435
|
| [30] |
S. R. Grace, R. P. Agarwal, R. Pavani, E. Thandapani, On the oscillation of certain third order nonlinear functional differential equations, Appl. Math. Comput., 202 (2008), 102–112. http://doi.org/10.1016/j.amc.2008.01.025 doi: 10.1016/j.amc.2008.01.025
|
| [31] |
A. Essam, O. Moaaz, M. Ramadan, G. AlNemer, I. M. Hanafy, On the Monotonic and Asymptotic Properties of Positive Solutions to Third-Order Neutral Differential Equations and Their Effect on Oscillation Criteria, Axioms, 12 (2023), 1086. http://doi.org/10.3390/axioms12121086 doi: 10.3390/axioms12121086
|
| [32] |
I. Jadlovská, T. Li, A note on the oscillation of third-order delay differential equations, Appl. Math. Lett., 167 (2025), 109555. http://doi.org/10.1016/j.aml.2025.109555 doi: 10.1016/j.aml.2025.109555
|
| [33] |
J. Dzurina, I. Jadlovska, Oscillation of nth order strongly noncanonical delay differential equations, Appl. Math. Lett., 115 (2020), 106940. http://doi.org/10.1016/j.aml.2020.106940 doi: 10.1016/j.aml.2020.106940
|
| [34] |
O. Moaaz, S. Elsaeed, A. Al-Jaser, S. Ibrahim, A. Essam, Investigation of the Oscillatory Properties of Fourth-Order Delay Differential Equations Using a Comparison Approach with First- and Second-Order Equations, Axioms, 13 (2024), 652. http://doi.org/10.3390/axioms13090652 doi: 10.3390/axioms13090652
|
| [35] |
B. Almarri, O. Moaaz, A. Abouelregal, A. Essam, New comparison theorems to investigate the asymptotic behavior of Even-Order neutral differential equations, Symmetry, 15 (2023), 1126. http://doi.org/10.3390/sym15051126 doi: 10.3390/sym15051126
|
| [36] |
R. P. Agarwal, M. Bohner, T. Li, C. Zhang, A new approach in the study of oscillatory behavior of even-order neutral delay differential equations, Appl. Math. Comput., 225 (2013), 787–794. http://doi.org/10.1016/j.amc.2013.09.037 doi: 10.1016/j.amc.2013.09.037
|
| [37] |
H. Salah, O. Moaaz, C. Cesarano, E. M. Elabbasy, Oscillation of higher-order canonical delay differential equations: Comparison theorems, Phys. Scripta, 98 (2023), 024003. http://doi.org/10.1088/1402-4896/acb17f doi: 10.1088/1402-4896/acb17f
|
| [38] |
T. Li, Y. V. Rogovchenko, Oscillation criteria for even-order neutral differential equations, Appl. Math. Lett., 61 (2016), 35–41. http://doi.org/10.1016/j.aml.2016.04.012 doi: 10.1016/j.aml.2016.04.012
|
| [39] |
J. Alzabut, S. R. Grace, G. N. Chhatria, New oscillation results for higher order nonlinear differential equations with a nonlinear neutral terms, J. Math. Comput. Sci., 28 (2022), 294–305. http://doi.org/10.22436/jmcs.028.03.07 doi: 10.22436/jmcs.028.03.07
|
| [40] |
J. Džurina, Oscillation of the second order advanced differential equations, Electron. J. Qual. Theory Differ. Equ., 2018 (2018), 20. http://doi.org/10.14232/ejqtde.2018.1.20 doi: 10.14232/ejqtde.2018.1.20
|
| [41] |
W. Alhaysuni, A. S. Almohaimeed, O. Moaaz, A. Essam, Oscillatory features of nonlinear advanced differential equations, Appl. Math. Inf. Sci., 18 (2024), 1117–1123. http://doi.org/10.18576/amis/180517 doi: 10.18576/amis/180517
|
| [42] |
G. Purushothaman, K. Suresh, E. Thandapani, E. Tunç, Second-Order Noncanonical Delay Differential Equations with Sublinear and Superlinear Terms: New Oscillation Criteria via Canonical Transform and Arithmetic–Geometric Inequality, Qual. Theory Dyn. Syst., 23 (2024), 269. http://doi.org/10.1007/s12346-024-01130-9 doi: 10.1007/s12346-024-01130-9
|
| [43] |
I. Jadlovská, G. E. Chatzarakis, E. Tunç, Kneser-type oscillation theorems for second-order functional differential equations with unbounded neutral coefficients, Math. Slovaca, 74 (2024), 637–664. http://doi.org/10.1515/ms-2024-0049 doi: 10.1515/ms-2024-0049
|
| [44] |
S.-Y. Zhang, Q.-R. Wang, Oscillation of second-order nonlinear neutral dynamic equations on time scales, Appl. Math. Comput., 216 (2010), 2837–2848. http://doi.org/10.1016/j.amc.2010.03.134 doi: 10.1016/j.amc.2010.03.134
|
| [45] |
B. Baculíková, J. Džurina, Oscillation of third-order neutral differential equations, Math. Comput. Modell., 52 (2010), 215–226. http://doi.org/10.1016/j.mcm.2010.02.011 doi: 10.1016/j.mcm.2010.02.011
|
| [46] |
O. Moaaz, New criteria for oscillation of nonlinear neutral differential equations, Adv. Differ. Equ., 2019 (2019), 484. http://doi.org/10.1186/s13662-019-2418-4 doi: 10.1186/s13662-019-2418-4
|
| [47] |
B. G. Zhang, Y. Zhou, The Distribution of Zeros of Solutions of Differential Equations with a Variable Delay, J. Math. Anal. Appl.s, 256 (2001), 216–228. http://doi.org/10.1006/jmaa.2000.7309 doi: 10.1006/jmaa.2000.7309
|