Research article Special Issues

Estimation of the integral funnel for solutions of equations of perturbed motion with uncertain parameters

  • Published: 17 September 2025
  • MSC : 34A34, 34B09, 34B15

  • In this article, for scalar nonlinear equations with uncertain parameters, a new approach has been proposed for studying the integral funnel (antifunnel) of a family of their solutions. Efficient conditions for a family of solutions to remain in an integral funnel (antifunnel) and conditions for narrowing of the integral funnel were established. The proposed approach is based on a comparison scheme and a set of regularized differential equations. The obtained results contribute to the development of the qualitative theory of uncertain systems and to the expansions of the appropriate applications.

    Citation: Anatoliy Martynyuk, Ivanka Stamova, Yulya Martynyuk–Chernienko. Estimation of the integral funnel for solutions of equations of perturbed motion with uncertain parameters[J]. AIMS Mathematics, 2025, 10(9): 21581-21594. doi: 10.3934/math.2025959

    Related Papers:

  • In this article, for scalar nonlinear equations with uncertain parameters, a new approach has been proposed for studying the integral funnel (antifunnel) of a family of their solutions. Efficient conditions for a family of solutions to remain in an integral funnel (antifunnel) and conditions for narrowing of the integral funnel were established. The proposed approach is based on a comparison scheme and a set of regularized differential equations. The obtained results contribute to the development of the qualitative theory of uncertain systems and to the expansions of the appropriate applications.



    加载中


    [1] A. Yu. Alexandrov, A. V. Platonov, Comparison method and stability of motions of nonlinear systems, (in Russian), Saint Petersburg University Press, 2012.
    [2] S. A. Chaplygin, New method of approximate integration of differential equations, (in Russian), Moscow: GITTL, 1950.
    [3] S. W. Director, R. A. Rohrer, Introduction to systems theory, New York: McGraw-Hill, 1971.
    [4] A. F. Filippov, Differential equations with discontinuous righthand sides, Dordrecht: Springer, 1988. https://doi.org/10.1007/978-94-015-7793-9
    [5] J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng, et al., A survey of uncertainty in deep neural networks, Artif. Intell. Rev., 56 (2023), 1513–1589. https://doi.org/10.1007/s10462-023-10562-9 doi: 10.1007/s10462-023-10562-9
    [6] Kh. G. Guseinov, V. N. Ushakov, Differential properties of integral funnels and stable bridges, J. Appl. Math. Mech., 55 (1991), 61–67. https://doi.org/10.1016/0021-8928(91)90062-Y doi: 10.1016/0021-8928(91)90062-Y
    [7] J. H. Hubbard, B. H. West, Differential equations: A dynamical systems approach, Part 1, New York: Springer-Verlag, 1991. https://doi.org/10.1007/978-1-4612-0937-9
    [8] G. S. Ladde, V. Lakshmikantham, A. S. Vatsala, Monotone iterative techniques for nonlinear differential equations, Boston: Pitman, 1985.
    [9] V. Lakshmikantham, Uncertain systems and fuzzy differential equations, J. Math. Anal. Appl., 251 (2000), 805–817. https://doi.org/10.1006/jmaa.2000.7053 doi: 10.1006/jmaa.2000.7053
    [10] V. Lakshmikantham, S. Leela, A. A. Martynyuk, Stability analysis of nonlinear systems, Birkhäuser Cham, 1989. https://doi.org/10.1007/978-3-319-27200-9
    [11] G. Leitmann, G. Leitmann, Deterministic control of uncertain systems via a constructive use of Lyapunov stability theory, In: System modelling and optimization, Heidelberg: Springer, 143 (2005). https://doi.org/10.1007/BFb0008354
    [12] Y. N. Lin, H. C. Cai, C. Y. Zhang, H. Y. Yao, C. L. Philip Chen, Fuzzy neural network for representation learning on uncertain graphs, IEEE Trans. Fuzzy Syst., 32 (2024), 5259–5271. https://doi.org/10.1109/TFUZZ.2024.3418902 doi: 10.1109/TFUZZ.2024.3418902
    [13] B. Liu, X. Liu, X. Liao, Robust stability of uncertain impulsive dynamical systems, J. Math. Anal. Appl., 290 (2004), 519–533. https://doi.org/10.1016/j.jmaa.2003.10.035 doi: 10.1016/j.jmaa.2003.10.035
    [14] Y. H. Liu, C. Y. Su, Q. Zhou, Funnel control of uncertain high-order nonlinear systems with unknown rational powers, IEEE Trans. Syst. Man. Cybern., 51 (2021), 5732–5741. https://doi.org/10.1109/TSMC.2019.2956672 doi: 10.1109/TSMC.2019.2956672
    [15] A. A. Martynyuk, Novel bounds for solutions of nonlinear differential equations, Appl. Math., 6 (2015), 182–194. https://doi.org/10.4236/am.2015.61018 doi: 10.4236/am.2015.61018
    [16] A. A. Martynyuk, Yu. A. Martynyuk–Chernienko, Uncertain dynamical systems: Stability and motion control, Boca Raton: Chapman and Hall/CRC, 2011.
    [17] A. Martynyuk, G. Stamov, I. Stamova, Y. Martynyuk–Chernienko, Regularization scheme for uncertain fuzzy differential equations: Analysis of solutions, Electron. Res. Arch., 31 (2023), 3832–3847. https://doi.org/10.3934/era.2023195 doi: 10.3934/era.2023195
    [18] A. Martynyuk, G. Stamov, I. Stamova, Y. Martynyuk–Chernienko, On the analysis of regularized fuzzy systems of uncertain differential equations, Entropy, 25 (2023), 1010. https://doi.org/10.3390/e25071010 doi: 10.3390/e25071010
    [19] I. N'Doye, Generalisation du lemme de Gronvall-Bellman pour la stabilisation des systemes fractionnaires, Université Henri Poincaré-Nancy, 2011.
    [20] C. C. Pugh, Funnel sections, J. Differ. Equ., 19 (1975), 270–295. https://doi.org/10.1016/0022-0396(75)90006-6
    [21] D. D. Šiljak, Large-scale dynamic systems: Stability and structure, Dover Publications, 2007.
    [22] I. Stamova, G. Stamov, Integral manifolds for impulsive differential problems with applications, London: Academic Press, 2025.
    [23] A. Tolstonogov, Integral funnel of the differential inclusion, In: Differential inclusions in a Banach space, Dordrecht: Springer, 524 (2000), 185–234. https://doi.org/10.1007/978-94-015-9490-5_4
    [24] J. X. Zhang, T. Chai, Proportional-integral funnel control of unknown lower-triangular nonlinear systems, IEEE Trans. Autom. Control, 69 (2024), 1921–1927. https://doi.org/10.1109/TAC.2023.3330900 doi: 10.1109/TAC.2023.3330900
    [25] V. Zhermolenko, A. Poznyak, Criteria of robust stability for time-varying 2D Wang-Mitchel differential systems: Integral funnel method, Int. J. Control, 89 (2016), 2297–2310. https://doi.org/10.1080/00207179.2016.1155752 doi: 10.1080/00207179.2016.1155752
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(427) PDF downloads(14) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog