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Abstract: This paper studies the oscillatory behavior of a class of second-order neutral delay
differential equations (NDDEs). Using comparison principles and Riccati transformation techniques,
we derived new sufficient conditions for oscillation. A recursive framework was introduced to enhance
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demonstrate the applicability and improvements over existing results, positioning our findings within
a broader context relevant to engineering and biological models.
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1. Introduction

Second-order functional differential equations, especially neutral delay differential equations
(NDDE?), arise naturally in the modeling of dynamic systems with memory and after-effects, such as
mechanical vibrations, feedback-controlled circuits, and biological processes [1-3]. Unlike retarded
equations, NDDEs involve delays in both the function and its derivative, leading to more complex
dynamics and analytical challenges [4,5]. Understanding the oscillatory behavior of their solutions is
essential in assessing system stability, particularly in engineering and biological contexts [6—8]. This
work focuses on developing oscillation criteria for NDDEs that can predict qualitative behavior
without requiring explicit solutions.

In this study, we focus on analyzing the oscillatory nature of solutions to a class of second-order
differential equations that feature a superlinear neutral term. The main equation under consideration is
given by
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(rs) (@ ) +q()x° (0 (s) =0, (1.1)

where s > 57 and the function z (s) is defined as

2(8) == x(5) + p(8) x(1(9)).

This equation encompasses a wide range of neutral terms by incorporating both the state variable
x(s) and its delayed form x(7(s)) through the function p(s). In order to establish the theoretical results,
the following assumptions are made throughout the paper:

(H;) The parameters x and ¢ are assumed to be ratios of odd positive integers;
(H,) The coefficient function r € C! ([5, ), R*), ¥’ > 0, and satisfies the integral condition

f Oz = o

50
(H3) The functions g and p belong to C ([sy, ), [0, 00)), with 0 < p(s) < 1 and a constant py > p(s)

for all s > s9. Moreover, g does not vanish identically on any half-line [s., o), for some s, > s;
(Hy4) The delay functions 7,0 € C([s9, 00), R) satisfy 7(s) < s, o(s) < s, and both limits

lim 7(s) = o0, lim o (s) = 00

5—00

hold.

A solution x of Eq (1.1) is understood as a real-valued function x € C ([s,, o), R), where s, > s,

satisfying the conditions that r ('(s))* € C!([s,, o), R) and that Eq (1.1) holds on the interval [s,, co).
We restrict our attention to nontrivial solutions, that is, those for which

sup {|x(s)| : s > 5.} > 0.

Such a solution x is said to be oscillatory if it has arbitrarily large zeros; otherwise, it is called
nonoscillatory. This classification is critical in understanding the qualitative behavior of solutions,
particularly in determining whether oscillatory phenomena dominate the long-term dynamics of the
modeled system.

The study of oscillatory behavior in differential equations plays a pivotal role in analyzing the
stability and dynamic response of numerous systems in physics, biology, and engineering. Oscillation
reflects the system’s inherent sensitivity to initial conditions and external disturbances, which is a
critical factor in anticipating long-term system behavior. Rather than solving the equations directly,
researchers often employ powerful analytical tools—such as comparison theorems and Riccati
transformation techniques—to derive sufficient conditions for oscillation. These methods provide
valuable insight into the qualitative nature of solutions. The importance of oscillation theory is
particularly evident in real-world applications such as population dynamics, automatic control
systems, and mechanical vibration analysis [9, 10].

The exploration of oscillatory phenomena in differential equations involving delays, particularly
neutral delays, has seen significant advancement over the past decades. Foundational work laid down
essential criteria to determine the existence of oscillatory solutions in systems governed by various

AIMS Mathematics Volume 10, Issue 9, 21595-21616.



21597

forms of delayed arguments [11-13]. As the field progressed, attention turned toward neutral
differential equations—systems in which delays affect not only the function but also its
derivative—thereby introducing additional analytical challenges and complexities [14, 15]. To address
these, mathematicians developed a suite of refined analytical tools, including comparison principles,
integral averaging methods, and Riccati-type transformations, which allow oscillatory behavior to be
investigated without the need for explicit solutions [16—18]. More recent studies have aimed to
generalize and sharpen these criteria, establishing more comprehensive and flexible conditions—both
sufficient and necessary—for oscillation in increasingly complex and realistic models [19,20].

In a seminal contribution from 1978, Brands [21] investigated a class of delay differential equations
(DDEs) of the form

X'(s)+q(s)x(s—0) =0,

and demonstrated that the oscillatory nature of its solutions is equivalent to the oscillatory behavior of
solutions to the corresponding non-delayed second-order equation:

X" (s)+q(s)x(s) =0.

This equivalence provided a foundation for subsequent studies into more general forms of delay
differential equations. A notable advancement was introduced by Ladas et al. [22], who extended the
oscillation theory from first-order to second-order DDEs of the form

X" (s)+q(s)x(o(s) =0,

offering refined criteria that improved the understanding of when such equations exhibit oscillatory
solutions.

As research progressed, Riccati transformation techniques gained prominence due to their
effectiveness in converting higher-order delay differential equations (DDEs) into equivalent first-order
forms. This simplification facilitates the application of classical oscillation theory to more complex
equations. Utilizing this method, DZurina and Stavroulakis [23] developed an oscillation criterion
tailored for half-linear DDEs of the form

(r () (¥ (9)) +q(5) X* (0 () = 0,

where the oscillatory nature of solutions was characterized in terms of integral conditions involving
the delay function o (s) and the coeflicient function g (s). Their approach provided a critical link
between the structure of the equation and its qualitative behavior. By the mid-2000s, the investigation
of neutral delay differential equations (NDDEs) evolved toward more generalized formulations. Xu
and Meng [24] broadened earlier oscillation criteria by considering the neutral DDE

(r(s) (@ () +q(s) X (o (s) =0, (1.2)

which allowed both the delay function o (s) and the neutral coefficient p (s) to vary with time. This
generalization marked a significant step toward capturing more realistic dynamics in complex systems.

Further progress was made by Grace et al. [25], who improved the oscillation criteria associated
with Eq (1.2) by introducing new sufficient conditions that account for variable delays and
coeflicients. Concurrently, Baculikova and DZurina [26] focused on second-order Emden-Fowler-type
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NDDEs, employing comparison theorems to derive oscillation results. Their work provided insight
into solution behavior, particularly in the case when both parameters « and ¢ equal one in Eq (1.1),
thus addressing an important subclass of nonlinear delay models.

More recently, Chatzarakis et al. [27] contributed to the theory of oscillation by developing results
for non-canonical DDEs, particularly in scenarios where the reciprocal power r~'/%(s) is integrable
over an infinite interval. These results advanced the understanding of how the integrability of
coefficient functions affects solution behavior. Building upon this foundation, Bohner et al. [28]
extended the analysis to include both canonical and non-canonical forms of second-order NDDE:s.
Their work introduced significant refinements to existing oscillation criteria, emphasizing the role of
new functional constructs and integral conditions that guarantee oscillatory behavior of solutions.

The most recent advancements in this area were made by Essam et al. [29], who broadened the
oscillation framework further by examining equations of the form

(r& @)Y + > 4i(9) (:(s) =0,

i=1

for m € Z*. Their study introduced additional delay-dependent terms and conditions, resulting in
sharper and more comprehensive oscillation criteria. These refinements enhance the applicability of
the theory to more complex dynamical systems with multiple interacting delays.

Beyond the broad classifications of differential equations, many researchers have concentrated
their efforts on the oscillatory nature of solutions across various orders and structural types. For
instance, the works in [30-32] investigated third-order delay differential equations, emphasizing how
time-dependent delays influence the onset of oscillations. Meanwhile, studies such as [33,35] focused
on even-order neutral delay differential equations, delivering essential findings that deepen our
understanding of oscillation mechanisms in these more intricate frameworks. The contributions
of [36] further extended the theoretical landscape by tackling higher-order equations and proposing
novel oscillation criteria applicable to nonlinear dynamical systems. Additionally, the investigations
in [37-40] addressed differential equations with advanced arguments, offering a comprehensive
theoretical structure to capture the dynamic behaviors unique to such equations. Collectively, these
studies underscore the breadth and depth of oscillation theory, with each contribution enriching the
analytical tools and criteria used to characterize solution behaviors across diverse classes of
differential equations.

In this work, we aim to broaden the existing literature by analyzing the oscillatory behavior of
solutions to Eq (1.1) through multiple methodological perspectives. Specifically, we apply comparison
techniques with first-order equations alongside the Riccati transformation approach. Following this,
we introduce refined analytical conditions that deepen the relationship between the dependent variable,
its derivatives, and the associated functional terms. These refinements establish a recursive structure
within the oscillation criteria, enhancing their robustness over time and ensuring their effectiveness
across broader settings.

The remainder of this paper is structured as follows. Section 2 provides key definitions, auxiliary
functions, and lemmas refining solution and derivative relations. In Section 3, we establish a series of
oscillation theorems for second-order neutral delay differential equations (NDDEs), employing both
comparison principles and Riccati transformation techniques. Building upon these core results, we
enhance the oscillation criteria by introducing recursive constructs and refined functional estimates
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that incorporate the interplay between delay terms and their derivatives. In Section 4, we present a
detailed discussion of our theoretical findings alongside a collection of illustrative examples designed
to validate and highlight the novelty of the proposed results. The paper concludes with Section 5,
which offers a synthesis of our contributions and outlines potential directions for future research in
the theory of NDDEs. Compared to previous studies (e.g., [12,21,25]), our approach provides greater
flexibility through the use of non-constant delays and neutral coefficients. The integration of recursive
inequalities and integral averaging techniques reflects a methodological advancement aligned with
recent developments in the field of oscillation theory.

2. Preliminaries and foundational lemmas

To facilitate the development of our main results, we introduce several auxiliary functions and
constructs that simplify expressions and highlight key qualitative features of the solutions. These tools
are essential for deriving foundational estimates and lemmas that support the analytic framework of
the NDDE under study. We begin by defining the following quantities:

R(s) := fs rolx (¢) d¢,

S1

Q(s) := (1 = p(0(5)))’ q(s),

- e = 0
Ry(s) 1=R(S,51)+?f (?) R™ (¢, s)m(DQQ) dL,

0—K

- K s
Ru(o) = R(s,5) + - f R ) R (), 51) Q) L,

51

. I’ )
R(s) := Q(s)n(s)exp( Kv[r(s) 70 dz|,

for all s > s; > sy and for any € € (0, 1).

Lemma 1. [Lemma 2.3, [44]] Let g(u) = Au— Bu®™*V/* where A and B > 0 are constants, and « is the
quotient of two odd natural numbers. Then g attains its maximum value on R at

L kA
v ((K+ 1)3) ’

K~ AK+1
(k+ D1 B

and the maximum value is given by

max g(u) = g(u’) = 2.1)

Lemma 2. [Lemma 3, [45]] Suppose that x is a positive solution of (1.1) on [sy, ) such that the
associated function z is positive and increasing, and 7' is positive and non-increasing. Then, there exist
€ € (0,1) and s, > sy such that

5-2(0(s)) 2 €-0(9) - 2(9), (2.2)

for all sufficiently large s.
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Lemma 3. [Theorem 2.1, [46]] Assume that x is an increasing positive solution of (1.1) on [sg, o).
Then it holds that

27(s) = (o),

where the function n(s) is defined as

nmi, lfK < 5,
m(s) =41, ifk =6,
myR™(s,50), ifk>6,

with my and m, being positive real constants.
Now, we proceed to classify the positive solutions x of Eq (1.1).

Lemma 4. Assume that x is a positive solution of Eq (1.1) on the interval [s(, o) and that hypothesis
(Hy) holds eventually. Then, there exists a constant s; > sy such that, for all s > s, the following
inequalities are satisfied:

25) >0, Z(5)>0, and (r(s)(Z(s)) <0. (2.3)
Proof. Let x be a positive solution of Eq (1.1) on [s, c0). Then, from (1.1), we have
(r(s) (Z(9))) = =q(5)x’(o(5)) < 0.

This shows that the function r(s) (z'(s))" is non-increasing. As a consequence, z’'(s) must eventually
be of constant sign—either strictly positive or strictly negative.

Suppose, for the sake of contradiction, that z’(s) < 0 eventually. Then there exists a constant K; > 0
such that

r'“(s)7'(s) < -K,'~.

Integrating this inequality over the interval [s;, 5] yields

2s)—z2(s1) < —K* | Q) de.

S1

Taking the limit as s — oo and applying condition (H;), we observe that the integral diverges,
leading to z(s) — —oo, which contradicts the positivity of z on [sy, 00). Therefore, z’(s) must be
eventually positive, completing the proof. O

Lemma 5. Assume that x is a positive solution of Eq (1.1) on the interval [ s, o). Then, the following
inequalities hold eventually:

(P1) x(s) = (1 — p(9)) z(s);
(P2) (r(s) (Z'(8))) + Q()2°(07(3)) < 0;
(P3) Z(s) = r" KR (5, 51)2(5) < 0;

(P4) The function R(ZS;)

S non-increasing.
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Proof. Let x be a positive solution of Eq (1.1) on [sy, o). For s > s;, using the definition of z, we have:

x(5) = 2(5) = p(8)x(7(9)) = 2(s) = p(s)2(7(s)) = (1 = p(9))z(9),

completing the proof of (Py).
Substituting into (1.1) and using the result from (P;), we obtain:

(r(s) (Z(9)) = —g(9)x"(0(s))
< =q(s) (1 = p(0(5)))° (0 (5))
= —Q(9)2°(0(5)).

To prove (Ps3), observe that the monotonicity of r'/*(s)z’(s) implies:
0= [ Z@dez [ rIOMOQd > ORGSO,
S1 S1

which gives
Z(s) — r % (s)R7! (s, 51)z(s) < 0.

For (P4), consider the derivative:

s) ' R(s, 57 () — 2()r”¥(s)

(R(s, 51)) B R2(s, 51)
()
"~ R%(s, )

| "(8)2 (9R(s, 1) = 2(5)| < 0,

2(s)

S, 91

which confirms the non-increasing nature of and thus proves (Py). O

Lemma 6. Assume that x is a positive solution of Eq (1.1) on the interval [sy, 00), and that hypothesis
(Hy) is satisfied. Suppose further that o is a strictly increasing function and u > 0. If the inequality

. QR (o(¢)) A > (2.4)

holds, and the sequence { fi(u)}2, is defined recursively by

fO(/J) = 1’ ﬁ+l(/~l) = exp(,uf,(,u)), I = 0’1’2"-" (25)
then the following inequality is satisfied eventually:
r(0(s)) (2 (0(9))"
(). 2.6
FEYETS A (20

Proof. Assume that x is a positive solution of (1.1) on [sy, o). Consequently, x(7(s)) and x(o(s)) are
also positive for all s > s;. For simplicity, define

Wi = z2(s) — R(s, s)r'(s)Z(s).
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It is straightforward to compute its derivative:
Wi == (r"®)2 () R, 5).
Applying the chain rule and using part (P,) of Lemma 5, we obtain:

— Q(9R(s,51)2°(0(5)) = (r()Z'(5)) R(s, 51)
= (r*(9)2(5)) R(s,s0)r' () (2 (9)) ",
which implies that
(P ©26) 2 106 (M ©7@) " o)

Substituting this inequality into (2.7), we get:
’ 1 K ’ 1-«
Wiz —QERG. ) (r(92(9) 2@ (s).
Now, by invoking hypothesis (H,) and Lemma 2, we deduce
’ 0-( ) K ’ 1«
Wiz — ( ) Q)R (s,51) (r“(9)7'(8)) (o),

and by applying part (P;) of Lemma 5, we find:

o(s)

Wiz — (_) QSR (s, 5)r' ()7 (5)2*(5).

Furthermore, using Lemma 3, we obtain:

Wi~ (”(5)) QSR (s, 5)r ") m(5)7'(5),

eventually. Integrating both sides of the above inequality over [s;, 5], we get:

2(s) 2 R(s, s)r'*(9)7'(s)

S 5
+ f 2 (”if)) OOR™ (L, )P (Om(OZ () d¢

¢

> ) (9) [R(s s+ S f ("@)) R, s)m()0Q) dz |

Thus, 5
2() 2 (RirM )7 ) .

Substituting this result into part (P,) of Lemma 5, we arrive at:

’ K\’ D 1/« ’ 0
(@ ()) + 0) (Ri(a(s)r' ™ (0(9))7 (0°())) < 0.

2.7)

(2.8)

(2.9)

(2.10)

Finally, Lemma 4 guarantees that r(s)(z'(s))“ is a positive solution of (2.10). The rest of the proof

follows identically from Lemma 1 in [47], which completes the argument.

O
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3. Main oscillation results

In this section, we present our main oscillation theorems, which are derived using two principal
methods: the comparison principle applied to associated first-order DDEs, and the Riccati
transformation technique. These foundational results establish baseline oscillation criteria.

The following results refine and generalize earlier criteria by incorporating variable delays and
constructing sharper bounds based on novel functional transformations.

Theorem 1. Suppose that r'(s) > 0. If the first-order delay differential equation
U'(s) + Q&R (0 () U (0()) = 0 (3.1)

is oscillatory, then every solution of the second-order Eq (1.1) is also oscillatory.

Proof. Assume, for contradiction, that x is a positive solution of (1.1) on [sy, o). Define U(s) :=
r(s)(Z'(s))€. Substituting into inequality (2.10) from Lemma 6 yields

U'(s) + Q)R () U (0(5)) < 0.

However, according to Theorem 1 in [11], this inequality admits a positive solution, which
contradicts the assumed oscillatory nature of Eq (3.1). Hence, the assumption must be false, and all
solutions of (1.1) must be oscillatory. This completes the proof. O

To capture a wider range of oscillatory behaviors, we consider different sets of hypotheses for
the Riccati equation. Each framework allows for the derivation of distinct criteria suited to various
structural forms of the NDDEs, thereby enhancing the generality and applicability of the results.

Theorem 2. Let K, > 0. If the first-order delay differential equation
U'(s) + Q)RS (0 () U (0 (s)) = 0

is oscillatory, then every solution of Eq (1.1) also oscillates.

Proof. Suppose, on the contrary, that x is a positive solution of (1.1) on [sy, o). Then x(7(s)) and
x(o(s)) are also positive for all s > s;. Using inequality (2.8) and part (P3) of Lemma 5, we obtain:

1-

1 K
Wi 2 —Q@E)R(s, s)R (@(s), 1) (r(9)2/(5)) (P )7 (o))’ (3.2)

\%

%

1 +0—K
—OER(s, sDR((5),50) (M 0)7() ™

Since r'/*7 is a positive, non-increasing function, there exists a constant K, > 0 such that

r'/%(s)7(s) < K,. If k > 8, then
0—K
(I’l/K(S)Z’(5)) > Kg—K’

and inequality (3.2) becomes:

0—K
2

Wi > O(5)R(s, s)R* (), s1)r' ()2 (5). (3.3)

K
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On the other hand, if « < ¢, the monotonicity of z implies that there exists K3 > 0 such that z(s) > K3,
and we obtain:

0—K -k
Wi 2 ——0(R(s, 5) (r"(5)(9) 2 (0(9) (3.4)
0—K
> ——Q(s)R(s, sDR (). s1)r'"(5)2/ ().

Define K, := min{K,, K3}. Then, combining both cases, we deduce:

0—K

Wi 2 = Q(s)R(s. 5)R ((5). s0)r' (5)2/(5)

Proceeding analogously to the proof of Lemma 6 and Theorem 1, we conclude that the original
Eq (1.1) must oscillate. This contradiction completes the proof. O

Theorem 3. Assume that o’ > 0, condition (2.4) holds for all u > 0, and let 6 be a differentiable and
continuous real-valued function on [sy, ). If

. : A T S W 4 (9) _
hl?ii?pfsl (Q@Q@ i (K - 1) (66(5)0'(5)) ﬁ(u)n(a(é))) = G

where 0',(s) := max{0, ¢'(s)}, fi(w) is defined by (2.5), andi = 0, 1,2, ..., then all solutions of Eq (1.1)
are oscillatory.

Proof. Suppose, on the contrary, that x is a positive solution of (1.1) on [y, 00). Then x(7(s)) and
x(o(s)) remain positive for s > s;. Define the auxiliary function:

,_ @ ()"
Ws(s) = G(S)r(s)z(s(o_(s)).
Differentiating W, and applying part (P,) of Lemma 5, we get:
RO (r(s)@'(5)))" , @) Z(0(9)
Wi(s) = o) Wa(s) + 9(5)—z5(0'(s)) 00(s)o (5)r(s)z6+1(0_(5)) 7@

Applying Lemma 3, we obtain:

) <als) = Wa(s) < H(S)r(S)(&) ! (s).
(o (%))

Also, it follows that:

gy Vr gy SV A ()"
6 ST W, (e < TS Wals) = KOS s
Thus, the inequality becomes:
W) < ZOW(6) ~ 090009 0@ (o o e Wi (o T
5) Z(s)
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From Lemma 6, we know:
Z(0(s)
()

Substituting into the previous inequality, we obtain:

r(s) )”K

1/«
= 1w (F(O'(S))

Wi(s) < (())Wz()—9(5)Q(5) oo (S)(

Now, by applying Lemma 1 with:

Jiwr(o(s)) e (1+1/k)
mwmﬁ W ).

L0 [ for(o(sn) "
" 0s) Bdﬂ%mwmm)’

we get:

()y“( K )“ r(or(s))
+1 50(s)0”(s) | fi(p)m(o ()’

Wi(s) < -0(s)Q(s) + (

Integrating from s, to s, we conclude that

5 0.\ K RACA09)
Wa(s)) > L (9(§)Q(§)—(K+1) (59@)0'(5)) f,-(/u)ﬂ(rf(é))]dg'

This contradicts the assumption in (3.5), completing the proof. m|

Inspired by the Riccati-based techniques of Bohner et al. [12], we present a new oscillation criterion
that emphasizes the role of exponential damping and functional bounds.

Theorem 4. Assume that there exists a differentiable and continuous real function 6 on [sy, o). If

S . 1 o Kk+1
lim sup f (9(§)R(§)_ (K+1)K+1( gé()g) r(g))dg:oo, (3.6)

$—00

where 0'(s) = max{0, §'(s)}, then all solutions of Eq (1.1) are oscillatory.

Proof. Assume, for contradiction, that x is a positive solution of (1.1) on [sy, ). Define the Riccati-
type function

Wi(s) := H(s)r(z)(zz((j))) . 3.7)

Differentiating W3, we obtain:

(3.8)

GO0 (@('y“}
#(9) |

Wi(s) = 9’(5)r(5)( ) +6( )|

Using the inequality:

2s) fs 7)) fs _I/K({)
1 = d 1)
H(Z(U (5))) o ) £= o5 Ri(0) 4«
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we obtain:

7(s) < exp (f r‘l/’((f)dg)
20 (s) ~ oo RiQ) )

Now, using part (P,) of Lemma 5, we have:

(r(s)(Kz’(s))K)' <o (S)(Z(O-(S))) P (0(s)
7(s) 2(s)
— _ ) ,,.—l/K(() ) O—K
< Q(s)exp( Kfo‘(s) 70 dZ )z (o(s))

S —1/k
< —Q0(s)n(s) exp (—K fa(s) rﬁl(g)d{) = —R(s).

Substituting this into (3.8) and using (3.7), we find:

Wi(s) < 6(s) [%%@ —R(s) - Kr_l/K(s)Q_l/K_l(5)W31+1/K(s)] :
Now, applying Lemma 1 with
_ 706 . K
ORI EN

we get:

1 (@)
(k + Dl 0x(s)
Integrating both sides over [sy, 5], we obtain:

Wj(s) < r(s) — O(s)R(s).

) 5 Q!
W. > O(OR() - d¢Z.
(o) 2 f ( ORO = e (0ot
This contradicts the assumption in (3.6). Hence, all solutions of (1.1) must be oscillatory. O

4. Illustrative examples and discussion

Through this paper, we have investigated the oscillatory behavior of the second-order neutral delay
differential equation (NDDE) (1.1), and, moreover, we have established several monotonic properties
for its positive solutions. In Section 3, we introduced various oscillation criteria derived via multiple
approaches, including the comparison method and Riccati transformation techniques, each relying on
different auxiliary functions. These criteria were subsequently refined by incorporating recurrence
properties that enhance their effectiveness.

In the subsequent section, we offered an analytical perspective on these results, presenting
comparative remarks that highlight the novelty and improvements over previous works. Furthermore,
we provided additional oscillation theorems that strengthen the theoretical framework. Finally, we
applied our results to special cases of second-order differential equations, demonstrating the
applicability and originality of our criteria through direct comparison.

In alignment with methodologies presented in [41, 47], the following corollaries summarize the
oscillation conditions derived from the main theorems and serve as the theoretical backbone for the
subsequent examples.

AIMS Mathematics Volume 10, Issue 9, 21595-21616.
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Corollary 1. Equation (1.1) is oscillatory if either of the following conditions holds:

f‘moﬂw@»@:w @.1)

or
j‘MD@WG»@=w (4.2)
provided that k > 6.

Corollary 2. Equation (1.1) is oscillatory if either of the following inequalities is satisfied:

: - 1
lim inf g@ﬂw@mp; (4.3)
$—00 o (s
or
s ~ 1
hgy(g@@w@mo; (4.4)
for k > 6.

Corollary 3. Let k < 6 and suppose there exists a differentiable, continuous real function ¢ on [sy, ©0)
such that 9’ > 0 and lim,_,, 9(s) = oo. If

. 09 (0 (s)) 0’ (9)
lnsllillp 0 (5 <1, 4.5)
and .
lim inf fo_ . ﬁ%@)e-mg (R (o (0)) dZ > 0, (4.6)

then Eq (1.1) is oscillatory.
Corollary 4. Assume that o’ > 0 and that condition (2.4) holds for any u > 0. If
. s/ K VL Nk a ()
hmmmfﬂ@ﬂa@DQ@%«——ﬁ () - A=, (A7)
e Jo U7 k1) N6/ fiwr (o (@) s (@ () Rz (o (©))
where f;(u) is defined by (2.5) andi = 0,1,2,..., then Eq (1.1) is oscillatory.

In the following, we present illustrative examples to demonstrate the applicability of our main
results and oscillation theorems established in Section 3. These examples serve to validate the
sharpness and usability of the criteria developed for the second-order neutral delay differential
equation (1.1).

Example 1. Consider the second-order delay differential equation:
, 1
(" (W)Y + ¥ =0, s=1, (4.8)

where a,8 > 0, k is a ratio of two positive odd integers, 6 = k, and o(s) = s — h for some constant
h e (0,1).
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Then the auxiliary functions become:

1
r(s) =s%  q(s) =

d-py
7

Q(s) = (1 = p)’q(s) =
R(s) = f 5 Cvxde.
1

If a/k < 1, then R(s) — oo as s — oo. Consequently, by Corollary 1, if

fl QR (0({)) d¢ = oo,

then all solutions of (4.8) are oscillatory.
Leta=1,8=05«=1,and p =0.5. Then R(s) = fls 7'dZ = log(s), and

“(1-0.5)

T (log(¢ — h))dd = oo.

Then, (4.8) is oscillatory. To better support the theoretical findings of Example I, we provide a
graphical representation of two critical functions involved in the oscillation criterion. The first is the
auxiliary function R(s) = log(s), which appears in the integral condition. The second is the integrand
QR — h), where Q({) = ((;:f); and R({ — h) = log({ — h). The plot shown in Figure 1 demonstrates
their behavior over a selected interval.

3

25 ]

[\9]
T
|

Function value
[e—
|9,
I
|

1 - ]
0.5 :
O l l l l l l l l
2 3 4 5 6 7 8 9 10
S
—R(9) = log(s)
QR ~ h)

Figure 1. Behavior of the auxiliary function R(s) and the integrand Q({)R({ — h) used in the
oscillation criterion of Example 1. Parameters: « = 1, =05, k=1, p=0.5,h =0.5.
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As seen in Figure 1, the function R(s) = log(s) increases monotonically and diverges as s — oo.
The integrand Q({)R({ — h) also remains positive and exhibits growth, confirming that the integral

fl OOR( — hydi = oo

diverges. This satisfies the condition of Corollary I and validates the oscillatory nature of all solutions
to the given equation.

Example 2. Consider the following delay differential equation:
203, 108(8) 5
(s (()*) + ——x'(s-1)=0, 22, (4.9)

withk = 6 = 3, r(s) = &%, q(s) = log(s)/s, and o(s) = s — 1. We choose the auxiliary function:
0(s) = log(s).

Then, 1
1 0 (s))" 1 1
=2 T o) = :

res) = S .
0 (s) st log’(s) 52 log*(s)

Now, the integral condition from Theorem 4 becomes:

0 n 1 1
log(@) - RQ) - — - ————|d¢.
f2 (og@) O3 Fog {)) ¢

Assuming from lemma definitions and earlier calculations that:

RO~ "D 4w,
¢
we get:
R log?
log(@) - RQ) ~ ng).
Thus,

©(log’(0) 1 1 )
—— ———|d¢ = o0,
fz ( ¢ 27 log’(©) ¢

because the first term dominates and diverges. Therefore, the condition of Theorem 4 is satisfied, and
Eq (4.9) is oscillatory. Example 2 involves a second-order neutral delay differential equation with
logarithmic growth in the delay coefficient. To better understand the oscillation criterion applied, we
graph two essential expressions: the auxiliary function

(9/(5))K+1 o) = 1
64(s) slog?(s)’

and the asymptotic form

2
log(s) - R(s) ~ logs(s ),
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Their comparison is shown in Figure 2 to illustrate the divergence of the corresponding integral

condition.

[u—
()]
T

|

Function value
[
1
|

©

W
I

|

| | | | I
02 3 4 5 6 7 8 9 10
s
logh(s)
I
slog’(s)
9 and the auxiliary term in the

Figure 2. Comparison of the dominant term m

oscillation condition of Example 2.

S

2
As illustrated in Figure 2, the function bg% dominates the auxiliary term - glz =

that the integrand remains positive and divergent. This confirms that the integral

© N 1 1
1 ‘R -_—— e —— |d{ =
fz (Og({) O3 tog0)®

for large s, ensuring

satisfies the oscillation condition from Theorem 4, and therefore the solution to the equation is

oscillatory.
Example 3. Consider the delay differential equation:
|
’ 3 3 _
(s(x(s)’) + 5 (Vo) =0, s>1, (4.10)

with parameters: k = 6 = 3, r(s) = s, q(s) = s /2, and delay function o(s) = /s. Simple calculations
imply that
0(s) = (1 = p(o(s))’gq(s) = (1 - 0.3)* - 572 = 0.343 - 572,

We assume from previous results that
Ry(o(0) ~ ', as & — oo,
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and

r(o@) =o' =" ae@) ~ 1.
Now, we examine the integral condition in Corollary 4:

| ')
F(@@)r o @)RA( (D)

fl (Ri(a@))Q(é) -C de,

K+l

Using: Ry(o(0)) ~ ¢'1%, Q) ~ &', we find:

where C = ( - )KH (g)K.

RO ~ ¢ - M=

Also:
o’'({) 1 1 1

PO (ORNo(Q) 24T (PR T 20

Thus, the integrand behaves like:

41/2_ C 4—1.16_”)0,

2fi(w)
and the integral diverges:

flm (¢ = o(1))d{ = o.

Hence, by Corollary 4, Eq (4.10) is oscillatory.

This example illustrates the impact of nonlinear damping and nontrivial delay structure, revealing
richer oscillatory dynamics than previously captured by linear models as discussed in [37, 46]. In
Example 3, we examine a nonlinear second-order neutral delay differential equation with a square
root delay. To support the analytical verification of the oscillation criterion, we graph the two main
terms in the integrand from Corollary 6:

o
PR Q) 20T

Ry(a(0))0) ~ {'7?

Their comparison in Figure 3 visually confirms the divergence of the integral required by the
oscillation condition.
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Function value

— R e ~ ¢
Figure 3. Comparison of the dominant integrand term ('/? and the subdominant correction
term T}” in the oscillation condition of Example 3.

As shown in Figure 3, the leading term [''* grows while the correction term (=" rapidly decays.
This visual evidence supports the divergence of the integral

o’ (4)

= dg,
r' (o (DR (o (0))

f (R%«r(g))Q(g) -C-
1
thereby satisfying the oscillation condition from Corollary 6. Consequently, the equation is oscillatory.

5. Conclusion and future directions

In this work, we studied the oscillatory behavior of a class of second-order neutral delay
differential equations. By combining Riccati transformations with a recursive approach, we
established new criteria that extend and generalize several known results in the literature.

The analysis relied on auxiliary lemmas that describe the qualitative behavior of positive solutions,
and the recursive formulation allowed us to better capture long-term dynamics influenced by delays.
The examples provided illustrated how the conditions can be applied effectively, even in cases involving
nonlinear or nonuniform delays.

While the results presented here offer a solid theoretical foundation, there are several directions
for future work. Extending the approach to higher-order equations, incorporating more general delay
types, or using numerical simulations to explore borderline cases could all provide valuable insights.

Overall, the findings contribute to the ongoing development of oscillation theory for delay
differential equations and may support further research in both theory and applications.
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