Research article

Investigating string cloud spacetimes with energy-momentum tensor constraints in general relativity

  • Published: 17 September 2025
  • MSC : 53B30, 53C25, 53C44, 53C50, 53C80

  • The objective of this study was to investigate the behavior of relativistic G(QE)$ _{n} $ string cloud spacetime endowed with various forms of the string cloud energy-momentum tensor $ \mathcal{T} $, which includes the string cloud fluid density $ \alpha $ and string tension $ \beta $. A G(QE)$ _{n} $ string cloud spacetime with a covariantly constant energy-momentum tensor satisfies the equation of state $ \frac{\alpha}{\beta} = -1 $, and represents either a massive string cloud spacetime or a bulk viscous fluid spacetime. Moreover, when a string cloud spacetime is coupled with a covariantly constant energy-momentum tensor, the equation of state $ \frac{\alpha}{\beta} = -1 $ coincides with the state equation for a cloud of geometric strings or represents the quintessence era. G(QE)$ _{n} $ string cloud spacetimes with Codazzi-type and pseudo-symmetric energy-momentum tensors were investigated. Furthermore, we characterized $ \mathcal{T} $-recurrent, weakly $ \mathcal{T} $-symmetric, specially weakly $ \mathcal{T} $-symmetric, generalized $ \mathcal{T} $-recurrent, semi-generalized $ \mathcal{T} $-recurrent, and quadratic Killing-type energy-momentum tensors on a string cloud spacetime with a Killing velocity vector field, and concluded that the string cloud spacetime either represents a massive string cloud spacetime or corresponds to the quintessence era.

    Citation: Sunil Kumar Yadav, Sameh Shenawy, Nasser Bin Turki, Yanlin Li. Investigating string cloud spacetimes with energy-momentum tensor constraints in general relativity[J]. AIMS Mathematics, 2025, 10(9): 21492-21511. doi: 10.3934/math.2025955

    Related Papers:

  • The objective of this study was to investigate the behavior of relativistic G(QE)$ _{n} $ string cloud spacetime endowed with various forms of the string cloud energy-momentum tensor $ \mathcal{T} $, which includes the string cloud fluid density $ \alpha $ and string tension $ \beta $. A G(QE)$ _{n} $ string cloud spacetime with a covariantly constant energy-momentum tensor satisfies the equation of state $ \frac{\alpha}{\beta} = -1 $, and represents either a massive string cloud spacetime or a bulk viscous fluid spacetime. Moreover, when a string cloud spacetime is coupled with a covariantly constant energy-momentum tensor, the equation of state $ \frac{\alpha}{\beta} = -1 $ coincides with the state equation for a cloud of geometric strings or represents the quintessence era. G(QE)$ _{n} $ string cloud spacetimes with Codazzi-type and pseudo-symmetric energy-momentum tensors were investigated. Furthermore, we characterized $ \mathcal{T} $-recurrent, weakly $ \mathcal{T} $-symmetric, specially weakly $ \mathcal{T} $-symmetric, generalized $ \mathcal{T} $-recurrent, semi-generalized $ \mathcal{T} $-recurrent, and quadratic Killing-type energy-momentum tensors on a string cloud spacetime with a Killing velocity vector field, and concluded that the string cloud spacetime either represents a massive string cloud spacetime or corresponds to the quintessence era.



    加载中


    [1] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, 1983.
    [2] P. S. Letelier, Clouds of strings in general relativity, Phys. Rev. D, 20 (1979), 1294. https://doi.org/10.1103/PhysRevD.20.1294 doi: 10.1103/PhysRevD.20.1294
    [3] S. G. Ghosh, U. Papnoi, S. D. Maharaj, Cloud of strings in third order Lovelock gravity, Phys. Rev. D, 90 (2014), 044068. https://doi.org/10.1103/PhysRevD.90.044068 doi: 10.1103/PhysRevD.90.044068
    [4] E. Herscovich, M. G. Richarte, Black holes in Einstein-Gauss-Bonnet gravity with a string cloud background, Phys. Lett. B, 689 (2010), 192–200. https://doi.org/10.1016/j.physletb.2010.04.065 doi: 10.1016/j.physletb.2010.04.065
    [5] A. Ganguly, S. G. Ghosh, S. D. Maharaj, Accretion onto a black hole in a string cloud background, Phys. Rev. D, 90 (2014), 064037. https://doi.org/10.1103/PhysRevD.90.064037 doi: 10.1103/PhysRevD.90.064037
    [6] M. G. Richarte, C. Simeone, Traversable wormholes in a string cloud, Int. J. Mod. Phys. D, 17 (2008), 1179–1196. https://doi.org/10.1142/S0218271808012759 doi: 10.1142/S0218271808012759
    [7] A. K. Yadav, V. K. Yadav, L. Yadav, Cylindrically symmetric inhomogeneous universes with a cloud of strings, Int. J. Theor. Phys., 48 (2009), 568–578. https://doi.org/10.1007/s10773-008-9832-9 doi: 10.1007/s10773-008-9832-9
    [8] L. Mandel, E. Wolf, Optical coherence and quantum optics, Cambridge University Press, 1995.
    [9] J. Satish, R. Venkateswarlu, Bulk viscous fluid cosmological models in $f(R, T)$ gravity, Chin. J. Phys., 54 (2016), 830–838. https://doi.org/10.1016/j.cjph.2016.08.008 doi: 10.1016/j.cjph.2016.08.008
    [10] M. Novello, M. J. Rebouças, The stability of a rotating universe, Astrophys. J., 225 (1978), 719–724. https://doi.org/10.1086/156530 doi: 10.1086/156530
    [11] U. C. De, C. A. Mantica, S. Shenawy, B. Unal, Ricci solitons on singly warped product manifolds and applications, J. Geom. Phys., 166 (2021), 104257. https://doi.org/10.1016/j.geomphys.2021.104257 doi: 10.1016/j.geomphys.2021.104257
    [12] U. C. De, S. K. Chaubey, S. Shenawy, Perfect fluid spacetimes and Yamabe solitons, J. Math. Phys., 62 (2021), 032501. https://doi.org/10.1063/5.0033967 doi: 10.1063/5.0033967
    [13] S. Guler, S. A. Demirbag, A study of generalized quasi Einstein spacetimes with applications in general relativity, Int. J. Theor. Phys., 55 (2016), 548–562. https://doi.org/10.1007/s10773-015-2692-1 doi: 10.1007/s10773-015-2692-1
    [14] R. Jackiw, V. P. Nair, S. Y. Pi, A. P. Polychronakos, Perfect fluid theory and its extensions, J. Phys. A Math. Gen., 37 (2004), R327. https://doi.org/10.1088/0305-4470/37/42/R01 doi: 10.1088/0305-4470/37/42/R01
    [15] M. C. Chaki, On generalized quasi Einstein manifolds, Publ. Math. Debrecen, 58 (2001), 683–691.
    [16] K. A. Bronnikov, S. W. Kim, M. V. Skvortsova, The Birkhoff theorem and string clouds, Class. Quantum Grav., 33 (2016), 195006. https://doi.org/10.1088/0264-9381/33/19/195006 doi: 10.1088/0264-9381/33/19/195006
    [17] M. D. Siddiqi, M. A. Khan, I. Al-Dayel, K. Masood, Geometrization of string cloud spacetime in general relativity, AIMS Math., 8 (2023), 29042–29057. https://doi.org/10.3934/math.20231487 doi: 10.3934/math.20231487
    [18] P. S. Letelier, String cosmologies, Phys. Rev. D, 28 (1983), 2414. https://doi.org/10.1103/PhysRevD.28.2414
    [19] G. P. Singh, T. Singh, String cosmological models with magnetic field, Gen. Relativity Gravitation, 31 (1999), 371–378. https://doi.org/10.1023/A:1026644828215 doi: 10.1023/A:1026644828215
    [20] J. Stachel, Thickening the string. I. The string perfect dust, Phys. Rev. D, 21 (1980), 2171. https://doi.org/10.1103/PhysRevD.21.2171 doi: 10.1103/PhysRevD.21.2171
    [21] P. K. Sahoo, B. Mishra, String cloud and domain walls with quark matter for plane symmetric cosmological model in bimetric theory, J. Theor. Appl. Phys., 7 (2013), 1–5.
    [22] V. U. M. Rao, D. Neelima, Dark energy cosmological model coupled with perfect fluid in a theory of gravitation, Afr. Rev. Phys., 8 (2013), 429–436.
    [23] A. M. Blaga, Solitons and geometrical structures in a perfect fluid spacetime, Rocky Mountain J. Math., 50 (2020), 41–53. https://doi.org/10.1216/rmj.2020.50.41 doi: 10.1216/rmj.2020.50.41
    [24] A. M. Blaga, Remarks on almost Riemann solitons with gradient or torse-forming vector field, Bull. Malays. Math. Sci. Soc., 44 (2021), 3215–3227. https://doi.org/10.1007/s40840-021-01108-9 doi: 10.1007/s40840-021-01108-9
    [25] H. Sotani, K. Kohri, T. Harada, Restriction quark matter models by gravitational wave observation, Phys. Rev. D, 69 (2004), 084008. https://doi.org/10.1103/PhysRevD.69.084008 doi: 10.1103/PhysRevD.69.084008
    [26] S. H. H. Tye, Brane inflation: string theory viewed from the cosmos, In: String theory and fundamental interactions, Springer, 2008,949–974. https://doi.org/10.1007/978-3-540-74233-3_28
    [27] M. C. Chaki, S. Ray, Space-times with covariant-constant energy-momentum tensor, Int. J. Theor. Phys., 35 (1996), 1027–1032. https://doi.org/10.1007/BF02302387 doi: 10.1007/BF02302387
    [28] S. Weinberg, Gravitation and cosmology: principles and applications of the general theory of relativity, New York: John Wiley and Sons, 1972.
    [29] T. Takabayasi, Theory of one-dimensional relativistic elastic continuum for the model of particles and resonances, In: Quantum mechanical determinism, causality and particles, Dordrecht: Springer, 1976,179–216. https://doi.org/10.1007/978-94-010-1440-3_13
    [30] Y. Nambu, Quark model and the factorization of the Veneziano amplitude, In: Proceedings of the International Conference on Symmetries and Quark Models, 1969,269–277.
    [31] L. P. Eisenhart, Riemannian geometry, Princeton University Press, 1950. https://doi.org/10.1515/9781400884216
    [32] PHENIX Collaboration, K. Adcox, S. S. Adler, S. Afanasiev, C. Aidala, N. N. Ajitanand, et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX Collaboration, Nucl. Phys. A, 757 (2005), 184–283. https://doi.org/10.1016/j.nuclphysa.2005.03.086 doi: 10.1016/j.nuclphysa.2005.03.086
    [33] C. A. Mantica, L. G. Molinari, U. C. De, A condition for a perfect-fluid space-time to be a generalized Robertson-Walker space-time, J. Math. Phys., 57 (2016), 022508. https://doi.org/10.1063/1.4941942 doi: 10.1063/1.4941942
    [34] M. Gutiérrez, B. Olea, Global decomposition of a Lorentzian manifold as a generalized Robertson-Walker space, Differ. Geom. Appl., 27 (2009), 146–156. https://doi.org/10.1016/j.difgeo.2008.06.015 doi: 10.1016/j.difgeo.2008.06.015
    [35] F. Melia, Cosmological redshift in Friedmann-Robertson-Walker metrics with constant space-time curvature, Mon. Not. R. Astron. Soc., 422 (2012), 1418–1424. https://doi.org/10.1111/j.1365-2966.2012.20714.x doi: 10.1111/j.1365-2966.2012.20714.x
    [36] S. Mallick, U. C. De, Y. J. Suh, Spacetimes with different forms of energy-momentum tensor, J. Geom. Phys., 151 (2020), 103622. https://doi.org/10.1016/j.geomphys.2020.103622 doi: 10.1016/j.geomphys.2020.103622
    [37] B. S. Guilfoyle, B. C. Nolan, Yang's gravitational theory, Gen. Relativity Gravitation, 30 (1998), 473–495. https://doi.org/10.1023/A:1018815027071 doi: 10.1023/A:1018815027071
    [38] U. C. De, A. Sardar, K. De, Ricci-Yamabe solitons and 3-dimensional Riemannian manifolds, Turkish J. Math., 46 (2022), 1078–1088. https://doi.org/10.55730/1300-0098.3143 doi: 10.55730/1300-0098.3143
    [39] H. Singh, Q. Khan, On special weakly symmetric Riemannian manifolds, Publ. Math. Debrecen, 58 (2001), 523–536.
    [40] K. L. Duggal, R. Sharma, Symmetries of spacetimes and Riemannian manifolds, Dordrecht: Kluwer Academic Publishers, 1999.
    [41] U. C. De, A. K. Gazi, On almost pseudo symmetric manifolds, Ann. Univ. Sci. Budapest. Sect. Math., 51 (2008), 53–68.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(549) PDF downloads(38) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog