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1. Introduction

In 1915, Einstein formulated the general theory of relativity (GTR), providing a framework in which
gravity emerges as a consequence of the curvature of spacetime induced by the presence of mass. The
spacetime structure is governed by the gravitational field equations, expressed through the renowned
Einstein field equations (EFEs) without the inclusion of the cosmological constant, formulated as [1]

Ric—%g:K‘T. (1.1)

Here, g represents the semi- (or pseudo-) Riemannian metric, while 7 denotes the energy-momentum
tensor. The Ricci tensor Ric and the scalar curvature R of spacetime are very important for realizing
Einstein’s goal of a static universe. The universal gravitational constant, G, is incorporated into the
EFEs as «, the gravitational constant, defined as « = 87G. To explore the relationship between string
state counting and black hole entropy, Letelier was the first to provide comprehensive solutions for
string clouds characterized by spherical symmetry [2]. These solutions were subsequently generalized
to incorporate third-order Lovelock gravity [3] and Einstein-Gauss-Bonnet theory in the Letelier
spacetime [4]. Many additional extended solutions have also been studied in this context, see [5-7].
An intriguing phenomenon in quantum optics [8] reveals that atomic motion in light radiation, within
the framework of optical molasses, resembles the behavior of a particle in a viscous fluid. Drawing an
analogy, one could conceptualize gravitational molasses as arising from quantum fluctuations in the
spacetime bulk viscosity, which is associated with the cosmological constant (abbreviated as CC).
This effect may be attributed to such fluctuations.

An alternative approach, as suggested in the literature, is to interpret the CC as the energy density
of quantum vacuum fluctuations, expressed as A = S”CG4H°, where H, represents the vacuum expectation
value. Under this interpretation, a nonzero CC would induce a dissipative process analogous to matter
energy, with the bulk viscosity of spacetime determined by a constant scalar curvature. Conversely, a
vanishing CC would result in a Ricci-flat spacetime [9].

Within the framework of both the GTR and cosmology, spacetime is modeled as a time-oriented,
four-dimensional, connected Lorentzian manifold. This specific category of pseudo-Riemannian
manifolds is distinguished by a Lorentzian metric possessing the signature (—, +, +,+) and plays a
fundamental role in the GTR [1, 10]. The geometry of Lorentzian manifolds is formulated to
characterize the behavior of vectors within these manifolds, rendering them a powerful framework for
exploring the GTR. When the Ricci tensor assumes a particular form, such manifolds are termed
quasi-Einstein manifolds. In the context of spacetimes, they are specifically referred to as perfect fluid
spacetimes [11-14]. The Ricci tensor Ric of type (0, 2) is given by

Ric =y1g +yn®n, (1.2)

where y; and vy, are scalars, and 7 is a 1-form corresponding to the velocity vector field &, such that
n() = —1, i.e., the velocity vector field € is a unit timelike vector field. A non-flat Riemannian or
pseudo-Riemannian manifold (#,, g), where n > 2, is said to be a generalized quasi-Einstein manifold
(briefly, G(QE),) if its Ricci tensor is non-zero and satisfies the condition [15]:

Ric=y1g+y.n®n+vy;0®480, (1.3)
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where 1, ¥,, and y; are non-zero scalars, and 7 and 6 are two non-zero 1-forms defined by

gD, &) =n(D), gD,s) = 6(D),

for any vector field D € X(H",g). ¢ and { are metrically equivalent to the 1-forms n and 6, and
g(&,0) = 0. (H*, g) is a perfect fluid spacetime if y; = 0.

This paper aims to analyze the behavior of relativistic G(QE), string cloud spacetime, which is
endowed with various forms of the string cloud energy-momentum tensor 7 . This tensor includes both
the string cloud fluid density @ and the string tension S, key components in describing the dynamics
of string cloud spacetimes. A G(QE), string cloud spacetime with a covariantly constant energy-
momentum tensor satisfies the equation of state ;—; = —1, a condition that signifies the spacetime either
represents a massive string cloud or behaves like a bulk viscous fluid. In the scenario where the string
cloud spacetime is coupled with a covariantly constant energy-momentum tensor, the equation of state
% = —1 aligns with the state equation for a cloud of geometric strings or can be interpreted as marking
the quintessence era in cosmology.

The study also investigates more intricate configurations of G(QE), string cloud spacetime,
focusing on energy-momentum tensors of Codazzi-type and pseudo-symmetric forms. Furthermore,
this paper characterizes various types of energy-momentum tensors, such as 7 -recurrent, weakly
7 -symmetric, specially weakly 7 -symmetric, generalized 7 -recurrent, semi-generalized
7 -recurrent, and quadratic Killing-type tensors in the context of a string cloud spacetime equipped
with a Killing velocity vector field. The analysis concludes that such string cloud spacetimes either
correspond to a massive string cloud configuration or are associated with the cosmological
quintessence era. Through these investigations, we establish a comprehensive understanding of the
properties and implications of energy-momentum tensors in determining the nature of relativistic

string cloud spacetimes.
2. String cloud spacetime

String cloud spacetime (briefly, SCS) is the spacetime filled with the energy-momentum tensor
of the string cloud type [16, 17]. String cloud spacetimes are theoretical solutions to Einstein’s field
equations, inspired by concepts from string theory. They describe a gravitational field influenced by a
distribution of strings in a particular region of spacetime. These strings can be considered as a cloud or
a collection with specific density and tension properties. The matter content in these models consists
of a collection of strings spread over the spacetime. The density of the strings and their orientation
impact the metric of the spacetime. The energy-momentum tensor of the string cloud is derived from
the dynamics of strings and provides the source term in Einstein’s field equations. It typically has
anisotropic characteristics due to the tension along the string’s length. Solutions to Einstein’s equations
for string cloud models are obtained under specific assumptions about the distribution of strings. These
can lead to different geometries such as static, spherically symmetric, or even cosmological solutions.
In standard cosmological models, the universe’s material composition is often modeled as a string cloud
spacetime, where the energy-momentum tensor associated with the string cloud plays a significant role
in shaping the spacetime dynamics [16, 18-20]. A novel type of string cosmological model, both with
and without magnetic fields, was presented by the authors in [19], within the context of a spacetime
exhibiting G3 symmetry. To achieve this, an additional term for the magnetic field is incorporated into

AIMS Mathematics Volume 10, Issue 9, 21492-21511.



21495

the standard energy-momentum tensor for cosmic strings using the methods developed by Letelier [18]
and Stachel [20]. Within the framework of Rosen’s bimetric theory, Sahoo and Mishra [21] investigated
plane-symmetric spacetime involving quark matter, which is connected to both the string cloud and the
domain wall. They found that, within this theory, string clouds and domain walls do not exist, and
bimetric relativity fails to provide an explanation for the early universe. Using both general relativity
and Barber’s second self-creation theory, Rao and Neelima [22] studied the anisotropic Bianchi type-
VI spacetime with strange quark matter attached to the string cloud. They found that the presence of a
scalar field modifies the matter distribution but does not alter the spacetime geometry. In conventional
cosmological models, the energy-momentum tensor of string clouds holds significant importance, as it
is widely believed that the universe’s material structure reflects the properties of a spacetime influenced
by string clouds [16,23-25].
The energy-momentum tensor (briefly, EMT) of a string cloud spacetime is given by [16]

7 (D, E) = an(D)n(E) - BO(D)O(E), 2.1)

where D, E € X(H*, g), and a, B are the energy density and the string tension for the string cloud fluid.

6 is a unit spacelike covector in the direction of the string, and 7 is a unit timelike covector where

n(D) = g(D, &), 6(D) = g(D,{), and € and ¢ are orthogonal vector fields. Taken together, Eqs (1.1),

(1.3), and (2.1) imply that

k(a +pB)
5

Now, the cloud fluid’s energy density a and the string tension (3 are related by [16,26]

Y1 = Y2 = ka, Y3 = —KkB. (2.2)
a=ay+p, (2.3)

where @ denotes the rest energy density of the particle. In light of Eqgs (2.1) and (2.3), the EFEs for a
relativistic string cloud spacetime are derived as follows:

Ric(D,E) = % g(D, E) + kan(D)n(E) — kBO(D)O(E). (2.4)
3. String cloud spacetimes with covariantly constant EMT

In [27], Chaki and Ray studied general relativistic spacetimes whose energy-momentum tensor is
covariantly constant. Motivated by this, we now examine string cloud spacetimes with a covariantly
constant energy-momentum tensor.

From the EFEs, we obtain

VI =0 = VRic=0, 3.1

which immediately implies that the scalar curvature 7 must be constant.
Next, contracting Eq (1.3), we find

T=ny -y +7s. (3.2)

Using this relation, we set
n')/l _7’2"'73 :5-5

AIMS Mathematics Volume 10, Issue 9, 21492-21511.



21496

where 7 is a constant. Then, substituting the expressions for yy, y,, y3 from (2.2), we deduce

%(n -2k +pB) =0, kla+p) =o, (3.3)

where o7 = 2.
n-2

In the special case o = 0, Eq (3.3) reduces to

p—— 34
F; (3.4

Theorem 3.1. A G(QE), string cloud spacetime with a covariantly constant energy-momentum
tensor satisfies the state equation a = constant — . In particular, if the constant vanishes, then « is

proportional to B, and hence % =-1.

Corollary 3.1. In a G(QE), string cloud spacetime with a covariantly constant energy-momentum
tensor, the string is a massive string and the string cloud spacetime becomes a massive string cloud
spacetime.

As per Eq (3.3), we state the following outcome:

Corollary 3.2. If a G(QE), string cloud spacetime satisfies the EFEs with a covariantly constant
energy-momentum tensor, then the spacetime reduces to that of a bulk viscous fluid spacetime.

According to [28], the energy density &, and the particle density « exhibit a direct relationship with
the specific energy E;, and the volume V of the fluid. Specifically, the energy density is expressed as

8d = Esp,
where the particle density « is inversely proportional to the volume,
1
a=—.
vV

Therefore, in view of Eqgs (3.2) and (3.3), we obtain the following outcome:

Corollary 3.3. If a G(QE), string cloud spacetime, obeying the EFEs with a covariantly constant
energy-momentum tensor, satisfies the state equation @ = constant — 3, then the specific energy is

2kE,
Esp = £ >
Ky — O
and the volume of the fluid is
2
y=—"
Ky — o

As in [29], the equation of state (EoS) for the Takabayashi string is
a = (1+ w)p, (3.5

where w is a constant. This resembles the EoS connecting matter density and string tension, v, = wp,
which characterizes the Takabayashi string [29]. For w < 0, geometric strings (Nambu strings [30])
dominate, whereas for w > 0, particles prevail over strings.

Comparing Eq (3.3), @ = ¢ — 8, with Eq (3.5), we observe that the correspondence requires w < 0.
In particular, when the constant ¢ = 0, we obtain @ = —f, which coincides with the EoS of a cloud of
geometric strings. This leads to the following results:
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Theorem 3.2. If a G(QE), string cloud spacetime satisfies the EFEs with a covariantly constant
energy-momentum tensor, and if the constant in (3.3) vanishes, then the relation « = —f3 coincides
with the state equation of a cloud of geometric strings.

Corollary 3.4. In such a spacetime, the relation o = —f3 precisely reproduces the state equation of
Nambu strings.

Corollary 3.5. If a G(QE), string cloud spacetime obeys the EFEs with a covariantly constant energy-
momentum tensor and satisfies the state equation @ = —f3, then the spacetime necessarily reduces to
the quintessence era corresponding to w = —1.

Again, if VRic = 0, then from Eq (1.3), we obtain
0 = dyi(D)(E,F) + dy:(Dyn(En(F) + y2 [(Vom)E n(F) + n(E)(Vpm)F ]
+ dy3(D)O(E)I(F) +y3 [(VpO)E O(F) + 6(E)(VpO)F] . (3.6)
After contracting over E and F, we obtain
4dy,(D) = dy»(D) + dys(D) = 0. 3.7

Substituting E = ¢ into Eq (3.6), we deduce
dy1(D)n(F) = dy2:(D)n(F) = y2(Vpo)F +y3(VpO)F = 0. (3.8)
By setting F' = £ in Eq (3.8), we obtain
—dy1(D) + dyy(D) = 0. 3.9)

In particular, if 3 is constant, then from Eqs (3.7) and (3.9), it follows that y; and 7y, are also constants.
Consequently, Eq (3.8) reduces to

Y2(VomF = y3(VpO)F. (3.10)

If the 1-form 6 is closed, then Eq (3.10) implies that either v, = 0, or the 1-form 7 is closed.
Furthermore, if v, = 0, then from Eqs (2.2) and (3.5) we obtain w = —1, which indicates that the
string cloud spacetime corresponds to the quintessence era, or that the velocity vector field & is
irrotational. Consequently, we present the following result:

Theorem 3.3. A G(QE), string cloud spacetime with a covariantly constant energy-momentum tensor
either represents a quintessence era, or the spacetime has zero vorticity.

It is well known from [31] that on (H*, g), we have
(divC)(D, E)F = % [f(VpRic)(E)F — (VgRic)(D)F] - % [dr(D)g(E,F)—dr(E)g(D,F)], (3.11)

where div denotes divergence, C is the Weyl conformal curvature tensor, and g(QD, E) = Ric(D, E).
This implies
Ric is of Codazzi-type <= divC = 0 and 7 is constant. (3.12)

According to [32], the behavior of a perfect fluid of quark matter, and as stated in [33], an n-
dimensional perfect fluid spacetime satisfying divC = 0 is a generalized Robertson-Walker (GRW)
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spacetime. Moreover, the conformal curvature tensor satisfies C(D, E)¢é = 0 whenever the flow vector
field ¢ is irrotational. Furthermore, every GRW spacetime with n = 4 is a perfect fluid spacetime if and
only if it is a Robertson-Walker (RW) spacetime [34]. Thus, in this case, the spacetime reduces to an
RW spacetime. RW spacetimes with constant scalar curvature are further described in [35]. Hence, we
state the following:

Theorem 3.4. A G(QE), string cloud spacetime obeying the EFEs with a covariantly constant energy-
momentum tensor is necessarily an RW spacetime.

4. String cloud spacetime endowed with EMT of the Codazzi type

According to [36], a spacetime endowed with a Codazzi-type energy-momentum tensor represents
a Yang pure space. Let the energy-momentum tensor be of Codazzi type in a (SCS)s, that is,

(VT )E, F) = (VET )(D, F). 4.1)
In view of (1.1) and (2.4), Eq (4.1) reduces to
(VpRic)(E, F) — %dT(D) = (VeRic)(D, F) — %dT(E). 4.2)

Contracting (4.2) along D and E yields d7(F) = 0, which implies that 7 is constant. Therefore,
from (4.2) we obtain
(VpRic)(E, F) = (VeRic)(D, F), 4.3)

that is, the Ricci tensor Ric is of Codazzi type.
Guilfoyle and Nolan [37] defined a Yang pure space as a Lorentzian manifold (7*, g) in which the
metric tensor solves Yang’s equation:

(VpRic)(E, F) — (VgRic)(D, F) = 0.

They further observed that a perfect fluid spacetime with p + v # 0 is a Yang pure space if and only if
the spacetime is an RW spacetime. Based on this discussion, we may now state the following result:

Theorem 4.1. A string cloud spacetime obeying the EFEs coupled with a Codazzi-type
energy-momentum tensor is an RW spacetime.

Again, from Eq (1.3), we have
dy\(D)E(E, F) + dy>(Dyn(En(F) + dy3(D)8(E)O(F)
+ 72 [(VomEn(F) + n(EY(VpmF] + y3 [(VpO)E O(F) + (E)(VpO)F]
= dy((E)8(D, F) + dy,(Eyn(D)n(F) + dys(E)0(D)(F)
+ 72 [(VemD n(F) + n(D)Y(Vem)F] + v3 [(VeO)D n(F) + 6(D)(VEO)F] . (4.4)

After contracting Eq (4.4) over E and F, we obtain

4dy1(D) = dy>(D) + dy3(D) + 72 [(Vom)é + (Vom)é] + 3 [(VpO)S + (VpO){]
= dyi(D) + dy:(§) n(D) + dy3({) 6(D)
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+ 72 [(VapD + (D) div €] + 3 [ (V0D + 6D) div . 4.5)

where the divergences of £ and £ are denoted by div & and div , respectively.
Fixing D = ¢ in Eq (4.5), we get

3dyi(&) + dys3(&) + y2div(E) = 0. (4.6)

In particular, if the scalars y; and y; remain invariant under the velocity vector field &, Eq (4.6)
implies that either y, = 0 or divé = 0.

Now, if v, = 0 and divé # 0, then from [29], an EoS for Takabayashi string (i.e., P-string) is
w = —1. Therefore, the spacetime recovers the quintessence era.

Moreover, for v, # 0 and div £ = 0, it means that the expansion scalar vanishes [1]. Hence, we have
the following result:

Theorem 4.2. A G(QE),, string cloud spacetime coupled with a Codazzi-type energy-momentum tensor
represents either a quintessence era or a vanishing expansion scalar, provided that the scalars y, and
v3 remain invariant under the velocity vector field &.

5. SCS with Ricci semi-symmetric and pseudo-symmetric EMT

Chaki’s concept [24] is fundamentally different from the notion of a pseudo-symmetric manifold,
as introduced in [14]. We define the endomorphism (D A, E) by

(DN, E)F =g(E,F)D - g(D,F)E, 5.1

where D, E, F € X(H).
Thus, we define the tensors R - R, R - Ric, Q(g, R), and Q(g, Ric) as follows:

(R(G,H) - R)(D, E)F = R(G,H)R(D, E)F — R(R(G,H)D, E)F
- R(D,R(G,H)E)F — R(D, EYR(G, H)F, (5.2)

(R(G, H) - Ric)(D, E) = —Ric(R(G, H)D, E) — Ric(D, R(G, H)E), (5.3)
Q(g,R)(D, E)F = (G Ay HYR(D, E)F — R(G A, H)D, E)F
— R(D, (G Ay HYE)F — R(D, E)(G A, H)F, (5.4)

Q(g, Ric)(D, E) = —Ric((G A, H)D, E) — Ric(D, (G A, H)E), (5.5)

where G,H,D, E,F € X(H).
A semi-Riemannian manifold is said to be pseudo-symmetric [14] if R - R and Q(g, R) are linearly
dependent at each point of the manifold. Hence, we have

R-R= fRQ(g’ﬂ),

for some smooth function fg.
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Also, a semi-Riemannian manifold is said to be Ricci pseudo-symmetric [14] if
R - Ric = fricQ(g, Ric),

which holds on the set
Agic ={D € H : Ric # Ig},

where fr;c is some function on Ag;.. Every pseudo-symmetric manifold is Ricci pseudo-symmetric, but
the converse is not necessarily true.

In [13], the author investigated spacetimes with pseudo-symmetric energy-momentum tensors in
the sense of Chaki [24]. Here, we study Deszcz’s notion of pseudo-symmetry.

Let (H*, g) admit Ricci semi-symmetry, that is,

(R(G, H))Ric(D,E) =0,

which implies
—Ric(R(G, H)D, E) — Ric(D, R(G, H)E) = 0. (5.6)

Using Eq (1.3) in (5.6), we obtain
~y2[nRG. H)D)n(E) + n(D)(R(G, H)E)| = 3| 6(R(G, H)D)(E) + 6DYR(G. H)E)| = 0. (5.7)
Putting E = & in (5.7), we obtain

Y2 8R(G,H)D,¢) =0, (5.8)

which implies that either y, = 0 or Ric(G, &) = 0.

Therefore, from [29], an EoS for Takabayashi string (i.e., P-string) is w = —1. Thus, the spacetime
corresponds to a quintessence era.

We now state our finding:

Theorem 5.1. A G(QE), pseudo-symmetric string cloud spacetime is a quintessence era.

Next, we suppose that (H*, g) admits a pseudo-symmetric energy-momentum tensor, that is,
R-T =f0@&.7T), (5.9)
where f is a smooth function. In view of Eqs (1.1) and (2.4), we have

R-Ric=«kR-T = fQ0(g,T)
= —«7 (g(H,D)G — g(G,D)H, E) — k7 (D, g(H, E)G — g(G, E)H)
= —g(E,G)Ric(D, H) + g(D, G)Ric(E, H) — g(E, H)Ric(D, G) + g(D, H)Ric(G, E)
= Ric (g(E,G)D - g(D,G)E, H) — Ric (G, g(E, H)D — g(D, H)E)
= 0(g, Ric), (5.10)

which means that
Ric - Ric = fQ(g, Ric). (5.11)
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By virtue of (1.3), Eq (5.11) takes the form
—72[n(R(D, EYG)n(H) + n(G)n(R(D, E)H)]
— 73 [0R(D, EYG)I(H) + n(G)O(R(D, E)H)]
= —flg(E,G)Ric(D, H) — g(D,G)Ric(E, H)
+ g(E, H)Ric(D, G) — g(D, H)Ric(G, E)]. (5.12)
Putting G = E = £ 1in (5.12) and using Eq (2.4), we yield

f [Ric(D, H) + (725 - K) g(D, H)] = 0. (5.13)

Thus, either f = 0 or the spacetime is Einstein, which is not possible, as it contradicts the definition of
a proper Ricci pseudo-symmetric spacetime. Hence, R-7 = 0 = R - Ric = 0, that is, the spacetime is
Ricci symmetric. So, our finding is that:

Theorem 5.2. A G(QE), string cloud spacetime coupled with a pseudo-symmetric energy-momentum
tensor represents the quintessence era.

6. String cloud spacetimes with a recurrent EMT

Let (H,, g) admit an energy-momentum tensor of recurrent type, that is,
(VpT))E, F) = n(D)T (E, F). (6.1)
From Eqgs (1.1) and (6.1), we obtain

(VpRic)(E, F) — Lg(E F) = n(D)Ric(E, F) - —U(D)g(E F). (6.2)

Now, by substituting Eq (1.3) into (6.2), we obtain
dy1(D)g(E, F) + dy:(Dn(E(F) + y2 [(Vom)En(F) + n(E)(Vpn)F]
D
+ dy;(D)O(E)O(F) + 73 [(VpO)EO(F) + O(E)(VpO)F] — ar( )g(E F)

) T
= ND)Ric(E, F) - Sn(D)g(E. F). (6.3)
Contracting over the vector fields £ and F, we obtain

4dy1(D) — dy»(D) — dy3(D) + 2y>(Vpm)é + 2y3(Vpb){ = (D). (6.4)
According to [38], if £ is a Killing vector field, then £:a = 0 and €8 = 0, where £ denotes the Lie
derivative operator. Hence, we deduce
dy\(§) = dy2(&) = dy3(§) =0

Moreover, from Eq (3.2), we obtain d7(¢) = 0. Thus, setting D = ¢ in Eq (6.4) and using (3.3),
we find

a
— =-1, 6.5
i (6.5)

which shows that the spacetime corresponds to a quintessence era.

Theorem 6.1. A 7 -recurrent G(QFE), string cloud spacetime represents a quintessence era, provided
that the velocity vector field is Killing.
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7. String cloud spacetimes admitting a weakly symmetric EMT

We assume that the energy-momentum tensor of (SCS), is of weakly symmetric type, that is,
(VpT)(E,F) =n(D)T (E,F)+ 0(E)T (D, F)+ 6(F)T (E, D). (7.1)
Using (1.1) and (1.3), Eq (7.1) leads to

dy1(D)8(E, F) + dy>(D(EW(F) + y2 [(VomEn(F) + n(E)(Vpn)F]

dt(D
+ dy3(D)OE)I(F) + y3 [(VpOEOF) + O(E)(VpO)F] - %g(E , F)

. T . T
= n(D)Ric(E, F) - ETI(D)g(E, F) + 6(E)Ric(D, F) - EU(E)g(D, F)
+ 6(F)Ric(E, D) — %n(F)g(E, D). (7.2)
Contracting (7.2) over E and F, and using (2.4), we obtain

4dy,(D) — dy(D) + 2y,(Vpn)é + 2y3(Vpb){ — 2dR(D)

= —n(D)t + (% — k) 6(D) + (5 - k8) n(D) - (D) + 6(D)). (7.3)
On the other hand, if ¢ is a Killing vector field, then from [40] we have
dy(§) =dy,(§) =0 = dr(é) =0. (7.4)

Substituting D = £ into (7.3) and applying (7.4), we obtain
T = —-20. (7.5)
Moreover, from (2.2) and (3.2), it follows that
7 = k(a + ). (7.6)
Combining (7.5) and (7.6), we arrive at
k(a+36) =0, (7.7)

which implies that « # 0 and consequently % = —3 < 0. This leads to w < 0, which coincides with the
equation of state for a cloud of geometric strings (Nambu strings [30]). Hence, we obtain the desired
result.

Theorem 7.1. A weakly T -symmetric G(QE), string cloud spacetime that satisfies the EFEs
corresponds to the equation of state for a cloud of geometric strings, provided the velocity vector field
is a Killing vector field.

Corollary 7.1. If a G(QE), string cloud spacetime satisfying the EFEs is weakly T -symmetric, then
the equation of state @« = =30 reduces to that of Nambu strings, provided the velocity vector field is a
Killing vector field.

Corollary 7.2. If a G(QE), string cloud spacetime satisfying the EFEs is weakly T -symmetric, then
the string cloud represents a massive string, provided the velocity vector field is a Killing vector field.
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8. String cloud spacetimes with a special weakly symmetric EMT

The concept of a special weakly Ricci symmetric manifold was introduced and analyzed by Singh
and Quddus [39]. In a similar vein, we now define and examine a special weakly 7 -symmetric (SWTS)
manifold, that is,

(VpT)NE,F) =2n(D)T (E,F) + n(E)T (D, F) + n(F)T (D, E), 8.1

where 7 is a 1-form defined by n(D) = g(D, &), with £ the associated vector field.
Using (1.1) and (1.3) in (8.1), we get

(VpRic)(E, F) — gg(E, F) = 25(D)|Ric(E, F) - gg(E, F)| + n(E)|Rie(D, F) - gg(D, F)]

, T
+7n(F)|Ric(D, E) - 58(D. E)|. (8.2)
Contracting over E and F, we obtain

4dy\(D) — dy»(D) + dy3(D) + 2y»(Vpmé + 2y3(VpO) — 2 dt(D)
= 2n(D)r - 4n(D) + 2|Ric(D, £) - In(D))- (8.3)

If ¢ is Killing, then from [40] we have

dy((§) =dy(§) =dy;©) =0 = dr() =0. (8.4)
Putting D = £ in (8.3) and using (8.4), we obtain
k(a+pB) =0,

which implies k # 0 and hence

that is, w < 0, which coincides with the state equation for the cloud of geometric strings (Nambu
strings [30]). Thus, we arrive at the desired conclusion.

Theorem 8.1. A special weakly T -symmetric G(QE), string cloud spacetime that satisfies the EFEs
represents the state equation for a cloud of geometric strings, provided the velocity vector field is
Killing.

Corollary 8.1. If a G(QE), string cloud spacetime satisfying the EFEs is special weakly T -symmetric,
then the state equation @ = —f3 reduces to the state equation of Nambu strings, provided the velocity
vector field is Killing.

Corollary 8.2. If a G(QE), string cloud spacetime satisfying the EFEs is special weakly T -symmetric,
then the string represents a massive string, provided the velocity vector field is Killing.
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9. Generalized 7 -recurrent string cloud spacetimes

Let (H,, g) admit an energy-momentum tensor of generalized 7 -recurrent type, that is,
(VT )E, F) = n(D)T (E, F) + 6(D)T (E, F).
So, from Eqs (1.1) and (9.1), we have

(VpRic)(E, F) — P g(E, F)
=n(D)Ric(E, F) — %n(D)g(E, F)+ 60(D)Ric(E, F) — %0(D)g(E, F).

Now, utilizing Eq (1.3) in (9.2), we get

dyi(D) §(E, F) + dy2(D) n(En(F) + y2[ (Vom)(E) n(F) + n(E)(Vpm)(F)]
+ dy3(D) (EYO(F) + v3[(VpO)(E) O(F) + O(E)(V p)(F)] - 52 g(E, F)

= n(D)Ric(E, F) — In(D)g(E, F) + 6(D)Ric(E, F) — S0(D)g(E, F).

After contracting over the vector fields E and F, we obtain

4dy\(D) — dy»(D) — dy3(D) + 2y2(Vpn)é + 2y3(VpO){ — 2dv(D) = —7[n(D) + 6(D)].

If ¢ 1s a Killing vector field, then from [40] we have

dy1(§) = dy(§) =dy3(5) =0 = dr(é) = 0.

Substituting D = £ into (9.4), and using (3.2) together with (9.5), we obtain

which shows that the spacetime corresponds to a quintessence era.

9.1)

9.2)

9.3)

9.4)

9.5)

(9.6)

Theorem 9.1. A G(QE), generalized T -recurrent string cloud spacetime represents a quintessence

era, provided the velocity vector field is Killing.
10. String cloud spacetimes with a semi-generalized recurrent EMT

A Riemannian manifold H is said to be a semi-generalized 7 -recurrent if

(VT )E, F) = 2n(D)T (E, F) + 30(D)g(E, F),

(10.1)

where 77 and 6 are two 1-forms, 6 is non-zero, and & and £ are two vector fields such that n(D) = g(D, &),

6(D) = g(D, ?).
Using (1.1) and (1.3) in (10.1), we yield

dy\(D)g(E, F) + dy,(D)yn(En(F) + > [(Vom)En(F) + n(E)(Vpn)F]
+ dy3(D)O(E)O(F) + v3 [(VpOEO(F) + 6(E)VpO)F] - @g@ )
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= n(D)Ric(E, F) - %n(D)g(E, F) +30(D)g(E, F). (10.2)
Contraction (10.2) over E and F, we reflect

4dy\(D) — dy»(D) + dy3(D) + 2y2(Vpm)é + 2y3(VpO){ — 2d7(D)
= —2n(D)r + 126(D). (10.3)

If ¢ is Killing, then from [40] we have

dyi1(§) = dyx(§) = dy3(§) =0 = d1(£) = 0. (10.4)
Putting D = £ in (10.3) and using (10.4) yields
2k(a +B) =0, (10.5)

which implies that x # 0 and % = —1, that is, w < 0, which coincides with the state equation for the
cloud of geometric strings (Nambu strings [30]). We arrive at the outcome.

Theorem 10.1. A semi-generalized T -recurrent G(QE), string cloud spacetime satisfying the EFEs
represents the state equation for a cloud of geometric strings, provided the velocity vector field is
Killing.

Corollary 10.1. If a G(QE), string cloud spacetime satisfying the EFEs is semi-generalized
T -recurrent, then the state equation @« = —f3 corresponds to that of Nambu strings, provided the
velocity vector field is Killing.

Corollary 10.2. If a G(QE), string cloud spacetime satisfying the EFEs is semi-generalized
T -recurrent, then the string represents a massive string, provided the velocity vector field is Killing.

11. Almost pseudosymmetric EMT

The notion of an almost pseudo-Ricci symmetric non-flat Lorentzian manifold (n > 3) was
introduced in [41]. In contrast, in our study we consider the almost pseudosymmetric
energy-momentum tensor. A non-flat Lorentzian manifold is said to be an almost pseudosymmetric
energy-momentum spacetime if its energy-momentum tensor 7~ of type (0, 2) is not identically zero
and satisfies the following condition:

(VT XE, F) = [n(D) + 6(D)IT (E, F) + n(E)T (D, F) + n(F)T (D, E). (11.1)
Using (1.1) in (11.1), we obtain
(VpRic)(E, F) = [n(D) + §(D)IRic(E, F) + n(E)Ric(D, F) + n(F)Ric(D, E)
- %([U(D) + 0(D)IZ(E, F) + n(E)g(D, F) + n(F)g(D, E))

+ %dT(D) g(E,F). (11.2)
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Again, using (1.3) in (11.2), we obtain
dy\(D)g(E, F) + dy:(Dn(E(F) + y2 [(Vom)En(F) + n(E)(Vpn)F]

D
+ dy3(D)NE)IEF) +v3 [(VDOEOF) + O(E)VpO)F] — a )g(E, F)
= [n(D) + O(D)IRic(E, F) + n(E)Ric(D, F) + n(F)Ric(D, E)

dt(D
- Z10D) + HDYS(E, F) + n(E)e(F, D) + n(F)g(E, D)) + T2

g(E,F). (11.3)
After contracting over E and F, and taking a frame field, we get

4dy (D) — dy,(D) + dy3(D) + 2y2(Vpm)é + 2y3(Vpb)
= _[5(D) + 6(D)]r + 2Ric(D, &) — (D) — 2d7(D). (11.4)

As per [38], if ¢ is a Killing vector field, then £z = 0 and £,8 = 0, where £ denotes the Lie derivative
operator. Hence, we get

dy(€) = dy,(§) = dy3(€) = 0.
Moreover, from Eq (3.2), we obtain dR(¢) = 0. Thus, for D = £ in Eq (11.4), we yield

kl@+pB) =0, (11.5)

which implies that « # 0 and % = —1, that is, w < 0, which coincides with the state equation for the
cloud of geometric strings (Nambu strings [30]). We arrive at the outcome.

Theorem 11.1. If a G(QE), string cloud spacetime satisfying the EFEs admits an almost
pseudosymmetric energy-momentum tensor, then it corresponds to the EoS for a cloud of geometric
strings, provided the velocity vector field is Killing.

Corollary 11.1. If a G(QE), string cloud spacetime satisfying the EFEs admits an almost
pseudosymmetric energy-momentum tensor, then the EoS a = —f corresponds to that of Nambu
strings, provided the velocity vector field is Killing.

Corollary 11.2. If a G(QE), string cloud spacetime satisfying the EFEs admits an almost
pseudosymmetric energy-momentum tensor, then the string corresponds to a massive string, provided
the velocity vector field is Killing.

12. String cloud spacetimes with quadratic Killing EMT

The energy-momentum tensor of a string cloud spacetime is quadratic Killing if 7 satisfies the
condition:
(VpT)E, F) + (VgT)D, F) + (VT )(D, E) = 0. (12.1)

Using (1.1) in (12.1), we get

dT;D ) o(E. F) + (V4Ric)(D, F) - dT;D )

dT;D ) o(D.E). (12.2)

0 = (VpRIc)(E,F) -

gD, F)

+ (VyRic)(E, D) —
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Again, using (2.3) in (12.2), we have

0 = dyi(D)(E,F) + dy:(D(EN(F) + y2 [(VomEn(F) + n(EX(Vpn)F|
+ dy3;(D)OE)I(F) + v3 (VO EO(F) + O(E)(VpO)F] — Lg(E F)
+ dy1(E)g(D, F) + dy(Eyn(D)n(F) + 2 [(Vem)Dn(F) + n(E)(VEn)F |
+ dy;(E)O(D)I(F) + v3 [(VEO)DO(F) + O(D)(VEO)F] — Lg(D F)
+ dy1(F)g(D, E) + dy(F)n(D)n(E) + 2 [(Ven)Dn(E) + n(D)(VFn)E]

+ dy3(F)O(E)I(D) +v3 [(VFOEO(D) + 8(E)(VFO)E] - Lg(E D). (12.3)

Contracting over E and F, we acquire
0 = 5dyi(D) - dyx(D) + dys(D) + 2y2(Vpn)§ + 2y3(Vpb){ — 2dt(D)
+ dy2(EN(D) + o[ (Ve D + (Ve)én(D))
d
+ D)+ YTOD + divoDy] - T30
+dy (D) + dy(n(D) + y2[(Ven)(D) + divén(D)]

dr(D
+ dys(O)6D) + y3[(V.6)D + diHZO(D)] ~ Té ),

(12.4)

where divé and div{ denote the divergence of & and £, respectively. According to [38], if £ is a Killing
vector field, then £.a = 0 and £,8 = 0, where £ denotes the Lie derivative operator. Hence, we get

dyi(§) = dy,(§) = dys(&) =

Moreover, from Eq (3.2), we obtain d7(£) = 0. Thus, for D = £ in Eq (12.4), we have
adiv(é) = 0. (12.5)

We infer from (12.5) that either @ = 0 or divé = 0. Hence, from (3.5), we conclude that the string
cloud spacetime either recovers the quintessence era or the expansion scalar vanishes [1]. Therefore,
we state the following:

Theorem 12.1. A G(QE), string cloud spacetime endowed with a quadratic Killing-type
energy-momentum tensor either represents the quintessence era or exhibits a vanishing expansion
scalar, provided the velocity vector field is Killing.

13. Conclusions

In this work, we investigate the behavior of relativistic G(QE), string cloud spacetimes endowed
with various forms of the string cloud energy-momentum tensor 7, which incorporates the string
cloud fluid density « and string tension 5. For example, we demonstrate that a G(QE), string cloud
spacetime with a covariantly constant energy-momentum tensor satisfies the EoS £ = —1, which
corresponds to either a massive string cloud spacetime or a bulk viscous fluid spacetime.
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Additionally, when coupled with a covariantly constant energy-momentum tensor, this EoS coincides
with the state equation for a cloud of geometric strings or signifies the quintessence era. The paper
also explores G(QE), string cloud spacetimes with Codazzi-type and pseudo-symmetric
energy-momentum tensors, providing further insights into their geometric properties. Moreover, we
analyze various energy-momentum tensors, such as 7 -recurrent, weakly 7 -symmetric, special
weakly 7 -symmetric, generalized 7 -recurrent, semi-generalized 7 -recurrent, and quadratic
Killing-type, on string cloud spacetimes with a Killing velocity vector field. Our results show that
such spacetimes either represent a massive string cloud or align with the quintessence era, providing a
deeper understanding of the possible structures of G(QE), string cloud spacetimes in cosmological
models. Thus, we conclude that the analysis of these different energy-momentum tensors leads to
significant insights into the nature of G(QE), string cloud spacetimes, with important implications for
both theoretical and cosmological studies.
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