This paper establishes a successive approximation method designed to compute a point belonging simultaneously to the fixed-point set of a given mapping (relatively nonexpansive) and to the solution set of a nonconvex equilibrium problem within a Banach space. Our present findings provide a unifying generalization of numerous previously obtained results, beginning with the transition from Hilbertian structures to the more general Banach framework, and further encompassing the passage from convex analytical settings to their considerably more delicate nonconvex counterparts. We mainly extend the results proved in [
Citation: Messaoud Bounkhel. Contributions to the convergence analysis of nonconvex equilibrium problems[J]. AIMS Mathematics, 2025, 10(9): 21468-21491. doi: 10.3934/math.2025954
This paper establishes a successive approximation method designed to compute a point belonging simultaneously to the fixed-point set of a given mapping (relatively nonexpansive) and to the solution set of a nonconvex equilibrium problem within a Banach space. Our present findings provide a unifying generalization of numerous previously obtained results, beginning with the transition from Hilbertian structures to the more general Banach framework, and further encompassing the passage from convex analytical settings to their considerably more delicate nonconvex counterparts. We mainly extend the results proved in [
| [1] |
S. Adly, F. Nacry, L. Thibault, Prox-regularity approach to generalized equations and image projection, ESAIM: COCV, 24 (2018), 677–708. https://doi.org/10.1051/cocv/2017052 doi: 10.1051/cocv/2017052
|
| [2] | Y. Alber, I. Ryazantseva, Nonlinear Ill-posed problems of monotone type, Dordrecht: Springer, 2006. |
| [3] | Y. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, In: Theory and applications of nonlinear operators of accretive and monotone type, New York: Marcel Dekker, 1996, 15–50. |
| [4] | J. P. Aubin, H. Frankowska, Set-valued analysis, Boston: Birkhäuser Boston, 2009. |
| [5] | M. Bounkhel, Regularity concepts in nonsmooth analysis, theory and applications, New York: Springer, 2012. |
| [6] |
M. Bounkhel, Calculus rules for $V$-proximal subdifferentials in smooth Banach spaces, J. Funct. Spaces, 2016 (2016), 1917387. https://doi.org/10.1155/2016/1917387 doi: 10.1155/2016/1917387
|
| [7] |
M. Bounkhel, M. Bachar, $V$-proximal Trustworthy spaces, J. Funct. Spaces, 2020 (2020), 4274160. https://doi.org/10.1155/2020/4274160 doi: 10.1155/2020/4274160
|
| [8] |
M. Bounkhel, R. Al-Yusof, Proximal analysis in reflexive smooth Banach spaces, Nonlinear Anal., 73 (2010), 1921–1939. https://doi.org/10.1016/j.na.2010.04.077 doi: 10.1016/j.na.2010.04.077
|
| [9] |
M. Bounkhel, M. Bachar, Primal lower nice functions in reflexive smooth Banach spaces, Mathematics, 8 (2020), 2066. https://doi.org/10.3390/math8112066 doi: 10.3390/math8112066
|
| [10] |
M. Bounkhel, M. Bachar, Generalised-prox-regularity in reflexive smooth Banach spaces with smooth dual norm, J. Math. Anal. Appl., 475 (2019), 699–729. https://doi.org/10.1016/j.jmaa.2019.02.064 doi: 10.1016/j.jmaa.2019.02.064
|
| [11] |
M. Bounkhel, D. Bounekhel, Iterative schemes for nonconvex quasi-variational problems with V-prox-regular data in Banach spaces, J. Funct. Spaces, 2017 (2017), 8708065. https://doi.org/10.1155/2017/8708065 doi: 10.1155/2017/8708065
|
| [12] |
M. Bounkhel, Iterative Methods for nonconvex equilibrium problems in uniformly convex and uniformly smooth Banach spaces, J. Funct. Spaces, 2015 (2015), 346830. http://doi.org/10.1155/2015/346830 doi: 10.1155/2015/346830
|
| [13] | M. Bounkhel, J. Bounkhel, Inégalités variationnelles nonconvexes, in French, ESAIM Control Optim. Calc. Var., 11 (2005), 574–594. |
| [14] | M. Bounkhel, B. R. Al-Sinan, An iterative method for nonconvex equilibrium problems, J. Ineq. Pure Appl. Math., 7 (2006), 75. |
| [15] | E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123–145. |
| [16] |
H. H. Bauschke, J. M. Borwein On projection algorithms for solving convex feasibility problems, SIAM Rev., 38 (1996), 367–426. https://doi.org/10.1137/S0036144593251710 doi: 10.1137/S0036144593251710
|
| [17] |
J. Fan, A Mann type iterative scheme for variational inequalities in noncompact subsets of Banach spaces, J. Math. Anal. Appl., 337 (2008), 1041–1047. https://doi.org/10.1016/j.jmaa.2007.04.025 doi: 10.1016/j.jmaa.2007.04.025
|
| [18] |
S. Kamimura, W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim., 13 (2002), 938–945. https://doi.org/10.1137/S105262340139611X doi: 10.1137/S105262340139611X
|
| [19] |
J. Li, On the existence of solutions of variational inequalities in Banach spaces, J. Math. Anal. Appl., 295 (2004), 115–126. https://doi.org/10.1016/j.jmaa.2004.03.010 doi: 10.1016/j.jmaa.2004.03.010
|
| [20] | Y. Liu, Strong convergence theorems for variational inequalities and relatively weak nonexpansive mappings, J. Global Optim. 46 (2010), 319–329. https://doi.org/10.1007/s10898-009-9427-x |
| [21] | A. Moudafi, Second-order differential proximal methods for Equilbrium problems, J. Inequal. Pure Appl. Math., 4 (2003), 15. |
| [22] |
M. A. Noor, Iterative schemes for nonconvex variational inequalities, J. Optim. Theory Appl., 121 (2004), 385–395. https://doi.org/10.1023/B:JOTA.0000037410.46182.e2 doi: 10.1023/B:JOTA.0000037410.46182.e2
|
| [23] | M. A. Noor, K. I. Noor, On equilibrium problems, Appl. Math. E-Notes (AMEN), 4 (2004), 125–132. |
| [24] |
M. A. Noor, K. I. Noor, S. Zainab, Some iterative methods for solving nonconvex bifunction equilibrium variational inequalities, J. Appl. Math., 2012 (2012), 280451. https://doi.org/10.1155/2012/280451 doi: 10.1155/2012/280451
|
| [25] | J. P. Penot, Calculus without derivatives, New York: Springer, 2013. |
| [26] | W. Takahashi, Nonlinear functional analysis, Yokohama: Yokohama Publishers, 2000. |
| [27] |
W. Takahashi, K. Zembayashi, Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Nonlinear Anal., 70 (2009), 45–57. https://doi.org/10.1016/j.na.2007.11.031 doi: 10.1016/j.na.2007.11.031
|
| [28] |
H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16 (1991), 1127–1138. https://doi.org/10.1016/0362-546X(91)90200-K doi: 10.1016/0362-546X(91)90200-K
|