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1. Introduction

Consider a real Banach space X. One formulation of equilibrium problems commonly found in the
literature is:
Locate i € K so that ¥(iz,u) > 0, forall u € K, (1.1)

where K C X is closed and convex, and 1 : K X K — R is convex regarding the 2nd variable and
satisfiest =0 on K X K.

The study of equilibrium problems is primarily motivated by their role as a unifying framework
that generalizes several fundamental models, ranging from optimization paradigms and variational
inequality frameworks to fixed-point formulations and equilibrium configurations in the sense of Nash.

This generality makes them highly relevant for an extensive range of applications across diverse
domains of economic analysis, game theory, engineering, operations research, and physical sciences.
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Moreover, extending equilibrium theory beyond convex settings to nonconvex structures in more
general spaces, such as reflexive smooth Banach spaces, addresses the complexity of real-world
problems where convexity assumptions often fail. These investigations also pave the way for the
development of iterative algorithms and provide deeper theoretical insights into existence,
uniqueness, and stability properties of solutions, making equilibrium problems both practically
significant and mathematically rich. For further comprehensive exposition of the multifaceted
applications of equilibrium problems, the reader is referred to [15, 28] together with the extensive
bibliography therein.

In [15], the authors obtained a collection of existence results for solving (1.1), relying on the
coercivity of the bifunction t. Since then, significant research has focused on the analysis of
convergence of iterative schemes for solving (1.1). In the context of Hilbert spaces, Moudafi [21] and
Noor [22] proposed numerical algorithms and proved both weak and strong convergence of these
methods for solving (1.1).

In Banach space settings, the works by Li [19], Fan [17], and Liu [20] introduced different
approaches to solving (1.1) in this broader setting.

For the nonconvex case, Bounkhel and Al-Sinan [14] extended the equilibrium problem to Hilbert
spaces with the formulation:

Locate i € K so that ¥(i, u) + 6|ju — a||* > 0, forall u € K, (1.2)

where K C X is not necessarily convex, and t : K X K — R satisfies 1 = 0 on K X K, which is not
necessarily convex regarding the second variable. In [14], the authors demonstrated the convergence
of numerical algorithms for solving (1.2), by assuming some regularity assumptions of both K and
the bifunction t (regarding the second variable) over K. Subsequent works have explored both the
solution existence and the convergence behavior of numerical schemes to solutions of (1.2); see, for
instance, [11-13,23, 24].

The broadening of this problem (1.2) to Banach space settings was proposed in [11, 12] as follows:

Locate & € K so that 1(it, u) + OV(J(#1);u) > 0, forallu € K, (1.3)

where V is defined by V(J(it); u) = |[ul|> — 2(J(it), u) + ||it]|* and J is the duality mapping on X.
Some special cases of (1.3) include:

(1) When 6 = 0, problem (1.3) aligns with the classical equilibrium inequality studied in [15].

(2) When X is Hilbert, the proposed problem (1.3) aligns with (1.2).

(3) When t(it,u) = (T(it),u — u), the proposed problem (1.3) coincides with the problem studied
in [11].

The chief aim in this work is to investigate the convergence analysis of certain algorithms toward
solutions of (1.3) under consideration. Mainly, we extend Proposition 4.1 and Theorem 4.1 in [27]
from convex to nonconvex settings. The exposition of the present investigation is structured in the
following manner. In Section 2, we state the main definitions and results needed in our research. We
also establish new results on uniformly V-prox-regular sets (in short V-u.p.r.). Section 3 is focused on
our proposed equilibrium problems (1.3) in Banach spaces. In Section 4, we prove in Theorem 4.1 the
convergence in the strong topology of a considered iterative scheme toward solutions of (1.3). We also
prove the convergence in the weak topology in Theorem 4.3 toward solutions of (1.3).
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2. Preliminaries

Throughout the paper, X is a reflexive smooth Banach space, and we write B and B, for the closed
unit balls in X and X*, respectively. By (:,-) we denote the duality pairing connecting X and X*. We
also denote J and J* the duality mappings on X and X*, respectively. Our assumption on the space X
ensures the single-valuedness of J. Indeed, J is single-valued whenever X is a reflexive and smooth
Banach space (see [26]). The behavior and the features of J and J* are extensively documented; for
more information, consult [26]. We review several important concepts and definitions below.

Definition 2.1.

e For a l.s.c. function (lower semi-continuous) g : X — R U {+oo} and a point u € dom g :=
{veX: gl < oo}, we define the V-proximal subdifferential (see [8]) 0"g of g at u by the set all
vectors u* € 0"g(u) for which there are o > 0,6 > 0 so that

Wu —uy <g')—gu)+oV(IJ(u),u")), forallu' € u+ 6B. 2.1

We notice that Y1) C LB., whenever g is considered to be locally Lipschitz continuous at i
(see [6]).

e We define the V-proximal normal cone of a given closed subset ) # A C X atu € A by N"(A; u) :=
Y a(u), where Y4 is the indicator function of A, and so we write u* € N™(A;u) provided that
there are o > 0,0 > 0 in a way whereby

W u' —uy <oV(J(u),u)), forallu’ € (u+ 6B) N A. 2.2)

The global formulation of (2.2) was proved in [8] to be an equivalent characterization of N™(A; u)
as u* € N"(A; u) as long as there exists o > 0 so that

W u —uy <oV(Jw),u), forallu’ € A. (2.3)
Notice that N™(A; u) is also described (see [8]) with the help of 4 as follows:
u' € N“(Ayin) © da > 0, so that i € ng(Ji + au™).
We restate the concept of mq : X* — A as follows:
nen,(u) o neAwith Vu*;n) =infeq V(u*;a) =: dX(u*).
e The subdifferential 0*"g(i1) (called the limiting V-proximal) is described by (see [6])
u* € 0"g(in) © u, —* i and u’: € 0"g(u,) with u’, =" u*,
where u,, —* i means u, — i with g(u,) — g(it), and u, —" u* stands for the weak convergence
of u;, to u*.
e The normal cone N¥(A; i) (called the limiting V-proximal) is described as follows (see [6]):
u* € N"(A; i) © u, »* it and u’ € N"(A; u,) with u’, —" u*.
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o The space X is designated as V-proximal trustworthy (in short V-prox.-trust.) (see [7]) if Ve > 0,
any g1,8> : X = RU{oo}, and Yu € X so that g, is L.s.c. and g, is Lipschitz continuous around u,
we have

0"(g1 + g2)(2) CU{0"g1(z1) + 0"ga(22) : 7 € Uy (z,€),1=1,2} + €B,.

Here, U, (z,€) := {x € z + €B so that |gi(z) — gi(x)| < €}. It was proven in [7] that L” spaces
(p > 1) are V-prox.-trust..

Also, we state without proofs the following three important results required for this investigation.
Their proofs can be found in [2,7, 8], respectively.

Proposition 2.2.

(1) Consider that X is V-prox.-trust., u € X, g; is L.s.c., and g, is locally Lipschitz continuous around
u. Then, we have

0" (g1 + &)(it) € 0""g1 () + 9™ g2 ().

(2) Suppose the boundness of the set K and that X is a q-unif. convex space. Then, da > 0 in a way
lu—u'||" <aV(JI(u),u’), forallu,u €K.

(3) For p-unif. smooth spaces X, we have that J is unif. continuous over bounded sets.
The two nonconvex concepts (see [11, 12]) that will be used in our framework are:

Definition 2.3. A closed subset ) # K C X is refereed to as V-uniformly prox-regular (in short V-u.p.r.)
with constant r > 0 if for all u € K and all u* € N*(K; u), we have

"]l

r

W u —uy <

V(J(u),u’)), VYu' €K. 2.4)

Definition 2.4. A Ls.c. function g : X — R U {+oo} is referred to as V-uniformly-prox-regular (in short
V-u.p.r.) over a nonempty closed subset K C domg as long as for any u € K and any u* € 0" g(u), we
have

(' u' —uy < g’ — g(u) + %V(J(u), u')),Yu' € K. (2.5)

Example 2.5. According to [10], every closed convex set is V-u.p.r. for any constant r € (1,+0o0],
under the convention ﬁ = 0. In addition, Example 4.10 in the same work shows that the union of
two mutually disjoint, closed, and convex subsets satisfies the V-u.p.r. property for some positive value
r > 0. Extending this argument, one can verify that any finite union of pairwise disjoint closed convex
sets also enjoys the V-u.p.r. property for an appropriate positive constant.

Moreover, it was established in [12] that any proper lower semicontinuous convex function is V-
u.p.r. on every nonempty closed subset C of its domain with respect to any chosen r € (1,+c]. In
particular, both the indicator function ¢ together with the distance function dc corresponding to a
V-u.p.r. set C retain this property on C for the same constant r. Here, the notation d¢ stands for the
standard metric distance defined by the set C, that is, dc(x) := infc ||x—s||. Furthermore, any function
f belonging to the lower-C? class (as defined in [5]) over a convex, strongly compact subset K C X is
also V-u.p.r. on K.
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We recall from [9] that V-u.p.r. sets K satisfy the equality 7(K;u) = K(K;u), Yu € K. Here,
T¢(K;u) denotes the Clarke tangent cone, and K(K;u) denotes the contingent cone (see [5]). For
V-u.p.r. sets, we use the notation Tx(u) := T(K; u) = K(K; u), Vu € K.

The next proposition establishes an intersection rule for V-proximal normal cone which is required
in our next proofs.

Proposition 2.6. Consider a V-prox.-trust. space X and let C, and C, be two closed nonempty V-u.p.r.
setsin X. Let n € C; N Cy and assume that there are 6,0 > 0 so that

de,nc,(w) < olde,(u) +de,(w)], forallu € u+ 0B. (2.6)

Then,
N*(C; N Cy;in) € N (Cy; i) + N (Cy; ).

Proof. Lety* € N"(Cy N Cy;ii). By Theorem 4.13 in [8], there exists some @ > 0 so that y* = au™ with
u* € 0"dc,nc,(it). By the definition of d”, there exist 6; € (0,6) and oy > 0 so that

W u—uy <dc,nc,(w) —de,ne,(@) + o V(J(@);u), Yu € i+ 9,B. (2.7)
Fix any u € & + 6;B. Then, by combining (2.6) and (2.7), we obtain
uiu—uy < denc,(u)+ o V(I (@);u)
< olde,(w) + de, (W] + o V(I (@); ),

which ensures that u* € & o[dc, +dc,)(it) C 7o [dc, +dc,)(ir), and by using part (1) in Proposition 2.2,
we get
u* € 8"olde, + de,|(t) C 0% lde, + de,1(it) € 07 odc, (i) + 0% odc, (iv).

Thus,
Y =au' € acd”de () + acd”de,(it) € N¥(Ci;u) + N(Co; u).
Now, we use the fact that the sets C; and C, are V-u.p.r. to use Theorem 2 in [9], and write
NL”(CB u) = N*(Cy; u) and NL”(Cz; u) = N(Cy; u).

As a result, we obtain
y' € N'(Cy;u) + N"(Cy; u)

and then we are done. O

Remark 2.7. The condition (2.6) has been utilized in several prior works (see [1, 16, 25] and the
references therein), and it is called bounded linearly regular in [16], and called linear coherence
in [25].

In the following proposition, we follow the same lines in [1] to establish a sufficient tangential
condition for condition (2.6).
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Proposition 2.8. Consider a V-prox.-trust. space X and let Cy and C, be two V-u.p.r. sets in X.
Suppose that there are 8 > 0 and 6 > 0 so that for any it € C; N C, we have

BB CTc,(u) NB = Te,(up) NB, (2.8)
forany uy € Cy N (u + 6B) and any u, € C, N (it + 0B). Then there are 6" > 0 and o > 0 so that
dclmcz(u) < O'[dcl (X) + ng(u)]’ Yu € i1 + 0'B.

To start proving Proposition 2.8, we require the next proposition from [4].

Proposition 2.9. Consider two Banach spaces E| and E, and let M : E\=E, be with closed graph.
Consider (i1, V) be an element in the graph of M, i.e.,y € M(ii). Suppose that there are 3,6 > 0 so that

YueB,dveB: (v,fu) € Tonm(x,y), Y(x,y) € [(t +6B) X (y + 6B)| N gph M. (2.9)
Then, there are 61,0 > 0 in a way that
dy-1»)(X) < ody(y), Y(x,y) € [(@+6B) X (¥ +0:B)]. (2.10)

The coming lemma will also be required.

Lemma 2.10. Let C; and C, be two closed V-u.p.r. sets in X. Define M : E=E X E as M(x) =
(Cy —x) X (Cy — x). Then, Vx € X and ¥(y,z) € M(x),

Topnm(x,(y,2)) = {(u,v,w) € X:u+ve Te,(x+y)andu+w € Tc,(x + 2)}. 2.11)

Proof. The proofis is straightforward from the definition of tangent cones and can be found in [S5]. O

Proof of Proposition 2.8. Define M : E=E X E as in Lemma 2.10, that is, M(x) = (C; — x) X (C; — x).
Fix any point it € C; N C,. Letv,w € gB, so v —w € BB. Choose any real number i € (0, 9). Fix any
x € X and any (y,z) € M(x), (thatis, x +y € Cyand x + z € C;) with x € @ + B, y € B, and z € 7B.
Hence,

llx+z—ul <mpand|x+y—iul <n.

Therefore, by the tangential condition (2.8), there exist u; € T¢,(x+y) N B and u, € Te,(x +2) N B so

thatv —w = u; —up. Setu :=u; —v. Then,u+v=wu,andu+w =uy,sou+v € T¢,(x+y)NB and

u+w € Tc,(x+z)NB. Through the application of Lemma 2.10, one arrives at (u, v, w) € Tgpp u(X, (3, 2)).
2

Observe that v, w € §B and u € #B. Hence, Tl € B, %v € B, and %w € B, and so

([2/(2 +B)1u, [2/(2 +B)]

év] [2/2+B)]

2
BW]) S TgphM(x’ (y, Z))

Setf; :=[2/(2+p)]. Since the choice of (v, w) is arbitrary in gB, we conclude the following: V(v',w’) €

7o 2
BxB,du := mueBsothat

U B W) € Ton(x, (1,2)), V(x, (3,2)) € [(@ + gB> x <§B x an,

that is, the assumption in (2.9) in Proposition 2.9 is satisfied.
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Now, we are ready to use Proposition 2.9 to conclude the existence of o > 0 and 6 > 0 so that

Ay (%) < odyo(y,2), Yxeiu+ gB,Vy,z € gB.

Specifically, for every x € i1 + gB and for (y,z) = (0,0), we have
dy10,0)(%) < 0dy1(0,0).
On the other hand, we have

M~'(0,0) {ve X: sothat (0,0) e M(v) = (C; —v) X (C; —v)}

fveX:sothat veCyandveCi} =C;NCy,

and

dyx(0,0)

inf )Il(y, z) —(0,0)|

(v,2)EM(x

Iy, 2

inf
,2)€(C1=x)X(Cr~x)
= inf + inf ||z

yecl_xllyll zecz_xll I

= inf ||s; — x|| + inf ||sp — x||
s1€Cq 52€Co

= dC] (X) + dCZ(X).
Therefore, we obtain
de,ne, (%) < olde, (x) + dey(x)],  forall x € @ + gB,

and so the demonstration of Proposition 2.8 is finished. O

We use Propositions 2.6 and 2.8 to demonstrate the next stability result of V-u.p.r. under the
intersection operation. It will be needed in our proofs.

Proposition 2.11. Consider a V-prox.-trust. space X and consider two closed nonempty V-u.p.r. sets
C, and C, with ratios ry > 0 and r, > 0, respectively. Assume that

ﬁB C TC1 (X]) NB - TCZ(-XZ) N B,

for any x; € Cy N (it + 0B) and any x, € C, N (i + 6B). Then, the intersection C1 N C, is a closed

V-u.p.r. set with the ratio r := ﬂ—mi“g““}_

Proof. Assume that C; and C, are V-u.p.r. with the ratios r; > 0 and r, > 0, respectively. Let x €
CiNCyand x* € N*(C;NCy; x). Then, by Proposition 2.6 and Proposition 2.8, there are x] € N"(Cy; x)
and x3 € N"(C»; x) so that x* = x] + x3. So, by virtue of Definition 2.3, one may concisely articulate

Il

(X, y=—x) < 7 V({J(x),y), VYyeC (2.12)
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and

(X, y=x) < ”2—2”V(J( Y)Yy e Ca. (2.13)

On the other side, by the tangential condition, we have that for any v € B, there exist v; € T¢,(#) N B
and v, € T¢, (i) N B so that Sv = v; — v,. Thus,

Bx1;v) (X713 8v) = (x5 v1 = va) = X3 v — (X va) = (X v — (7 = X5510)
(XT3v1) + (X33 v2) + (X" ).

We take into consideration that x; € N"(C;; i) and v; € T¢, (i), i = 1,2, to write (see [5])
(xHviy<0,i=1,2.

Therefore, we get
Bx1;v) < (x5 —vp) < IXFll, Vv eB,

which ensures that §||x]|| < [|x*||. Similarly, we obtain g||x}|| < ||x*[|. Consequently, combining (2.12)
and (2.13), we obtain for any y € C; N C, that

<X*’y_-x> = (XT,)’_JQ + <X§,y— x>
< %V(J( ), ) + uV(J( ), )
< ||x || || ||
2pr 1 ﬁ
< I

with r = M Thus, Vx € C; N C, and Vx* € N*(C, N C,; x), we have

x*
||2r|| V(J(X), )’)), Vy € C] N Cz.

(x,y-x) <

,Bmm{r| r}

This means that C; N C; is V-u.p.r. with r = , and then the proof is finished. O

We restate from [27] the definition of relatively nonexpansive mappings (in short relativ.nonexp.)
and firmly nonexpansive mappings (in short firm. nonexp.). For more details and examples, we refer
to [27].

Definition 2.12. A given R : X — X is known as relativ. nonexp. from K to itself as long as Fg(R) # 0,
Fx(R) = Fx(R), and for any u € K and any u’ € Fg(R), we have V(J(R(u));u’) < V(J(u);u’). Here,
Fx(R) denotes the fixed-point collection of R on K, and Fx(R) stands for the fixed-point set of R on X,
and Fy(R) stands for the family of asymptotic fixed points of R on K, that is, the collection of points
X € K for which there is {x,} C K that is weakly convergent to X and satisfies lim,_,, ||x, — R(x,)|| = 0

Definition 2.13. A given R : X — K is known as firm. nonexp. as long as
(J(R(x) = J(ROY), R(x) = R(y)) < (J(x) = J(»), R(x) = R(y)), forall x,y € domR.
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We start by extending Lemma 2.3 in [27] from the convex sets to V-u.p.r. sets.

Theorem 2.14. Consider a V-prox.-trust. space X and let) # K C X be a closed set, andletR : X — X
be a relativ. nonexp. map. on X. Suppose that K is V-u.p.r. with constant r > 0. Assume that the
following tangential condition is verified: There are B > 0 and 6 > 0 so that for any u € Fg(R), we

have
BB C Tx(uy) NB = Tryr)(u2) NB, (2.14)

Yu, € KN (it + 0B) and Yu, € Fx(R) N (it + 6B). Then, Fg(R) is closed and V-u.p.r..

Proof. 1- We demonstrate first that Fg(R) is a closed set. Consider any sequence {x,} in Fg(R) (i.e.
R(x,) = x,) converging to some point iz, and we shall show that R(iz) = iz. Obviously, i € K. By virtue
of the fact that R is relativ. nonexp., we derive

V(J(R(®@)); x,) < V(J(); x,), Yn=>1.
So, since J and V are continuous, we deduce that

V(J(R(w)); ) = im V(J(R(&)); x,,) < lim V(J(@); x,,) = V(J(); ) = 0.

This guarantees that R(i1) = i1, and the demonstration of the first part is finished.

We shall prove that Fg(R) is V-u.p.r.. It is worth noting that Fx(R) = K N{x € X : R(x) = x}. Let
us establish the convexity of Fx(R) := {x € X : R(x) = x}. Fix any u;,u, € Fx(R) and any 4 € [0, 1].
Set z; := Auy + (1 — Du,. Then,

IRGE)IP = 2(J(R(z2); za) + llzall*

IRGE)IP = 2(J(R(z2); Ay + (1 = Duz) + ||zall*

IR = 2T (R(z2)); ur) — 2(1 = DI (R(z2)); u2) + llzall?

= [RE)IF + AVI(R(zD)); 1) — i F = AT RE))IP

+(1 = DVIRz); u2) — (1 = Dllual* = (1 = DIRE)IP + llzall.

V(J(R(z1)); z2)

By the relative nonexpansive property of R on X, we have

V(J(R(z2); z2) IRGDIP + AV(I(z2); 1) = Al |* = AIREDIP
+(1 = YV (@) u2) = (1 = Dllual* = (1 = DIREDIP + lIzall®
AV () w1) = AP + (1= DV I @)s u2) = (1 = Dlluaal® + [lzall®

A[lall = 272z ury + ] = Al |
+(1 = ) [llzall = 20J(z2); ) + ezl | = (1 = Dl + [zl

=24 (z)s ur) = 2(1 = I (z2); ) + 2izall?
~2(J(z2); Ay + (1 = Do) + 2l|zal* = =2 (z2); 22) + 2zl = 0.

IA

IA A

IAIA

This ensures that R(z;) = z,, that is, z; € Fx(R),Yu,u, € Fx(R),¥A € [0, 1], and so the set Fx(R) is
convex. Now, using the tangential condition (2.14) and the fact, proved in Proposition 2.11, that the
intersection of a convex set with a V-u.p.r. setis V-u.p.r., we conclude the proof. i

The coming lemma extends the result in Alber [3] from convex to nonconvex settings within Banach
spaces.
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Lemma 2.15. Consider a V-prox.-trust. space X which is smooth reflexive and strictly convex, and
consider a closed V-u.p.r. subset ) # K C X with constant r > 0. Then,

1
(1- ;)V(J(FK(J(Mz))); up) + VU (u2); g (J(u2))) < V(J(u2); uy), (2.15)
Yu, € K and Yu, € X with ng(J(u,)) # 0.
Proof. Fix any u, € X with mg(J(up)) # 0. Let it := mx(J(up)). Then, for any u; € K we have

V(J(@@);ur) + V(I (u2); it) — V(J(u2); uy) =2(J(); ur) — 2(J(ua); i) + 2¢J(u2); uy)

XUJ(uz) = J(@); uy — ).

According to the definition of N*(K; ir), we have J(u,) — J(i1) € N*(K; i), and so by the V-u.p.r. of the
set K, we can write

1
J(up) — J(@);uy — ity < ZV(J(ﬁ);m).

Thus,
VI (@);ur) + V(I (u2); ) = V(I (u2); 1) < %V(J(ﬁ); u).
and so |
(1 = V@) ur) + V(I () 1) < V(I (u2); ur).
This achieves the end of the proof. O

Remark 2.16. By taking r = +oo, we get the convex case and so the conclusion of Lemma 2.15
coincides with Lemma 2.4 in Alber [3] and Proposition 5 in [18].

The following proposition states different characterizations of the V-u.p.r.

Proposition 2.17. Consider a closed set K # () in a V-prox.-trust. space X. The assertions listed below
are equivalent:

(1) K is V-u.p.r. with constant r > 0;

(2) Yu € K,Yu* € N*(K;u) with ||u*|| < 1, we have u € ng(J(u) + ru*);

(3) Yu e K,Yu* € N*(K;u) with u* # 0, we have u € ng(J(u) + rﬁ ;

(4) Yu € K,Vu* € N*(K;u) with ||u*|| < 1, we have u € nxg(J(u)+r'u”) forany r’ € [0, r]. Furthermore,
ax(Jw) +ru’) ={uy ¥r' € (0,r).

Proof. The equivalences (2.17) & (2.17) &<=(2.17) have been proved in Proposition 4.2 in [10]. We
have to prove (2.17) <= (2.17). Assume that (2.17) holds, that is, K is V-u.p.r. with constant r > 0.
Letu € K and u* € N*(K; u) with |[u*|| < 1. By virtue of Definition 2.3, we have

* 1
@'t —uy < Ny Gy < ~vuaw), Vi e k. (2.16)
2r 2r
Using the equality
VI +ru*;u) = VI +ru™;u’) = =V(IJ(w);u') — 2r{u";u — u'’). (2.17)
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We write
2rusu’ —uy = V(IJIW) + ru*su) — VI () + ru*;u’) + V(I (), u'). (2.18)

Combining (2.16) and (2.18), we obtain
VI +ru*;u) < V(IJ(u) +ru*;u’), Yu' €K, (2.19)

that is, u € mg(J(u) + ru*). Conversely, assume that (2.17) holds, that is, Yu € K and Yu* € N™(K; u)
with [|u*|| < 1, we have u € g (J(u) + ru*). Fix any u € K and any u* € N'(K;u). If u* =0, then (2.16)
holds, and so we assume that u* # 0. Fix any € > 0. Then, —— T Tre ”+6 € N*(K;u) with ||||u ||+E|| < 1. So, by

Part (2.17), we have u € nx(J(u) + r—+—). Therefore, by exploiting the definition of g, we derive

(17 ||+

3k *

V(J(u) +r “ ) < V() +r “ u'), Yu' €eK. (2.20)
el +e el +e
Using (2.18), we write
VU@ + r— ) = VU@ + r— i) = 2 — il — iy = V)it
u)+r U — u)+r ') =2r U —u) — u);u).
el +e el e el +e

Combining this inequality with the previous one (2.20), we obtain

*

2K su' —uy—=VUJw);u')<0, Vu €Kk,

llee*]| + €

which ensures
|78 || +€

Wu —u) < V(J(u);,u’), Yu' € K,¥Ye>0.

Taking € — 0 yields

W u' —u) < Yu' € K.

[[oe™ |
2r

Thus, the demonstration is finished. O

We will make use of the following results. Their proofs are available in the references [10, 28],
respectively.

Theorem 2.18. Consider a g-unif. conv. space X with smooth norm. Suppose that K is V-u.p.r. with
constant r > 0. Then, there is By > 0 so that VB > By and V1’ € (0, r), we have i is Holder continuous
single-valued over {u* € X* : ||lu*|| < B and dl‘g(x*) <r?).

Lemma 2.19. Consider a q-unif. conv. space X and consider > 0. Then, there is a convex cont.
function g : [0,2a] — R which is strictly increasing with g(0) = 0, and

lltwy + (1 = Dual* < fllug|P + (1 = Dlluall® = 1(1 = Hglluy — uall),
Yuy,u, € BB, and vVt € [0, 1].
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3. Nonconvex equilibrium problems in Banach spaces

We say that X satisfies the assumption (A) if it is a V-prox.-trust. space, which is g-unif. conv. and
p-unif. smooth. We have to mention that it has been established in [7] that L” spaces (p > 1) satisfy
this assumption (A). We propose the following nonconvex equilibrium problem:

Locate 1 € K so that (i, u) + OV(J(n);u) > 0, Vu € K. 3.1

Let us denote by EP(1, 8) the solution set of (3.1). For solving (3.1), we require the assumptions on t
and K.

(H1) 1=0o0on K X K;
(H2) For all y € K, the function 1(-, y) is u.s.c. (upper semicontinuity) on K;
(H3) tis strictly monotone with ratio o > 0, i.e.,

Yu,u') + 1 u) < —o [VUI(w); u') + VI W );w)], Yu,u' € K;

(H4) Yu € K, the function 1(u, -) is 1.s.c. on K
(H5) The reals ¢, 6, and o verify the inequality

1
0<a + —.
SOty

For ¢t > 0 and a nonnegative number 6 > 0, we introduce the mapping 7,4 : X — K as:

Tiy(u) ={z€ K:¥z,y) +0V(J(2);y) + %(J(z) -Ju),y—2z)>0, VyeK}

We need the following additional assumption on the mapping 7T 4: There is some > 0 and 6 > 0
so that for any &z € Fg(T,4) we have

ﬁB C TK(M]) NB - TFX(TI,H)(MZ) N B, (32)
for any u; € K N (2 + 0B) and any u, € Fx(T;y) N (it + 6B).

First, we start by establishing the main properties of the mapping 7.

Proposition 3.1. Consider X satisfying the assumption (A). Let K C X be a closed V-u.p.r. set, and
lett: K X K — R, satisfying (HI)—(H5). Suppose that (3.2) is fulfilled. Then, the listed properties are
valid:

(1) T,y is single-valued on its domain;
(2) Forall u,u’ € domT,4

(Tro(u) = Tyg(u'), J(Tyg(w) = J(TroW'))) < (Tyg(u) — Trg(u'), J(u) — J(u')),

i.e., Tiy is a firm. nonexp. mapping;
(3) Fx(Tip) = EP(1,0);
(4) Forany x € dom T,y and any u € Fx(T,p),

V(T p(x));u) < V(I (x); ).
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(5) If dom T,y is closed, then EP(1,0) is closed.
(6) EP1,0)isa V-u.p.r. setinX.

Proof. (1) Take t, 6, and o satisfy (0 — o) < % Letu € domT,yand let 71,2, € T, 4(u). Then,

1
Wz, u') + V(U (z)su') + ;(J(Zl) —Jwyu' —z1) 20, Yu' €K

and
1
Wz, ) + OV(J(20);u') + ;(J(Zz) —Jw;u' —2)>0, Vu' €K

It follows that )
W(z2,21) + OV(J(22);21) + ;(J(Zz) - JW);z1 -2 20

and q
Wz1,22) + OV(J(21):22) + ;(J(Zl) - JW);z2—21) 2 0.

Adding these two inequalities yields

1
Wz1,20) +H(z2,21) + OV(J(21);22) + OV (J(22); 21) + ;(J(Zl) - J(z2);22—21) 2 0.

The strong monotonicity of t implies

0 -V (z1);22) + VU (z2); 2] + %(J(Zl) —J@)sin-u)2
W21, 22) + 122, 21) + O[V(J(21); 22) + V(I (22)520)] + %(J(Zl) - J(22)i22-21)20
and hence
(J(z2) = J(z1);22 —21) < 10 — ) [V(J(21); 22) + V(I (22); 20)]-

Observe that
V(J(z1);22) + V(J(22); 21) = 2{J(22) = J(z1): 22 — 21)- (3.3)

Thus,
(1 =210 — 0){J(22) = J(z1);22 —21) < 0.

On the other hand, we have by (H5) the inequality 6 < o + %, which implies (1 — 2¢(6 — o)) > 0, and
hence

(J(z2) = J(z1);22 — 21y < 0.

This ensures by the strict convexity of X, that z; = z,, thatis, T, 4(u) is a singleton and so (1) is proved.

(2) Let u,u’ € domT,y. By (1), the sets T, 4(u) and T, 4(u’) are singleton. Then, according to the
definition of T,y we have T, 4(u), T,4(u") € K and so for any z € K we have

1
I(T15(). 2) + OV (T1p(w)): 2) + I (Trp(w)) = Jw): 2 = Tip(u)) 2 0
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and
1
WToo(u'),2) + OV(I(T,o(u')); 2) + ;(J (Trpu')) = J(u'); 2 — Trp(u)) > 0.

Substituting z = T, 4(1’) in the first inequality and z = T, ¢(u) in the second inequality, we obtain
KT o), Tro(u) + OV(I(T16(w)); Tro(u')) + %<J(Tt,9(u)) = JW); Typ(u') = Typ(u)) > 0
and
KT ('), Tro(w) + OV(I(T1o(u)); Trp(u)) + %(J (Tro") = JW'); Typ(u) = Tpp(u')) 2 0.
By virtue of the strong monotonicity of f, we deduce
o[V (Tro@); Tro(w)) + V(I(Tr0u)); Trpu' )] 2 WTrp("), Tyg(u) + H(Tr(u), Tro(u')).
Adding these three inequalities gives
(0 — ONVI(T1ou)); Tro)) + VI (Tro(u)); Tro(u')]+
%(J (Tro) = J(u) + J(u') = J(T16(u")); Ty p(u') = Ty p(u)) = 0.
Thus, by (3.3) we obtain

J@) = JW); Tigu) = Trou)) = [1+ 210 = OKI(Tro(w) = J(Tr0u"); Tro(u) — Trp(u'))

\%

J(Trp() = J(Tro(u")); Trp(u) — Tr(u)).

The last inequality is a consequence of 1 + 2#(o — 6) > 0, which is ensured by (HS) and the fact that
J(T1pm) = J(To(u')); T o(u) — T, 9(u’)) > 0. Therefore, Yu,u’ € domT,y, we have

J(Tow) = J(Tro'); Tro(u) — Tro(')y < (J(u) = J('); Tyg(u) — Tro(u)),
that is, 7} ¢ is firm. nonexp..
(3) Fx(T:y) = EP(1,0)? Observe that

ue Fg(Tp) © u=Teu) o Nu,u')+0V(IJ(u);u')>0,Vu' € K & ue EPY0).

(4) Let u,u’ € dom T, y. From part (2), we have
I (T o) = J(T1o(u)), Tro() — Trg(u')) < (J(u) = JW"), Tro(u) — Tro(u'));
Let w € Fx(T, ), that is, T, 4(w) = w. Then,
J(Trp()) = JW), Trg(u) —w) < (J(u) = JW), T;o(u) — w)

and so
(J(T;o(u)) — J(u), T;o(u) —w) < 0.
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Thus,
V(T o) w) = V(I w); w) = 1T, 6@)|> = 20J (T, 6(0)) = J(); wy = |IxII?
= T, o (I? + 2(I(Tyo(u)) = J(); Trp(t) = w) = 1l = 20 (T19(u)) = J(u); Ty ()
= IToo()IP + 20 (Ty6(w)) = J(w); Typu) = w) = xdll® = 20T, 0l + 2¢J (u); Ty p(u))
= 2J(Typ(w)) = J(w); Trg(u) = wh = |IxIP = T oI + 2 (w); T (u))
= 2J(T10(w) = J(); Ty p(u) = w) = V(J(u); Trp(u)) < 0.
This ensures that

V(T p(m);w) < V(IJw);w), YuedomT, g, Vw € Fg(T,p).

(5) If dom T, 4 is closed, then is EP(1, 0) closed in X? By (3), we have to prove that Fg(T,y) is closed
in X. Let {u,} be a sequence in Fg(T,y) (i.e. T,9(u,) = u,) converging to some point i, and we have to
demonstrate that 7, ¢(iz) = it. Obviously, i € dom T, 4 since dom T, is closed. By (4), we get

VIU(T1o(0)); u,) < V(J();u,), Yn = 1.
So, by continuity of J and V, we deduce that
V(T o()); it) = im V(J (T, 4()); u,) < lim V(J(@); u,) = V(J(i); 1) = 0.

This ensures that T, 4(it) = i, thatis, it € Fg(T,y).

(6) Is EP(1,6) V-u.p.r. in X? Once again, using (3) it is enough to prove that Fg(7,y) is V-u.p.r.
Thus, (6) follows from Lemma 2.14 and our assumptions and the part (1) of this proposition, and hence
the demonstration is finished. O

To demonstrate the first corollary, we require the following technical lemma. Its proof results from
the definition of V and simple computations.

Lemma 3.2. The following equality is always true:
2(J(uz) = J(u1), uz — uz) = V(J(u3); u2) + V(J(u1); u3) — V(J(u1); uz), Yuy, up, uz € X. (3.4)

Now, we extend Lemma 2.9 in [27] from convex to V-u.p.r. settings.

Corollary 3.3. Consider X satisfying the assumption (A). Let K C X be a closed V-u.p.r. and consider
t: K X K — Rsatisfying (HI)-(H5) and (3.2), and let t > 0. Then, Yu € dom T,y and Yu' € Fg(T;y)
we get

VI(Tp);u’) + V(I w); Trp(u) < V(I (), u').
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Proof. From Proposition 3.1 part (2), we have
J(Trou)) = J(Tro(u"), Trp(u) = Trp(u)) < (J(u) = JW'), Tro(u) — Tro(u')), Yu,u’ € domT,,.
Letu’ € Fx(T;y). Then, T,4(1") = u’, and so we have
J(Trpw) = J'), Trp(u) — 'y < (J(w) = J(u'), Typ(u) — u'),

which ensures
J(Tp(u) = J(Wu), Trp(u) —u'y < 0.

Using Lemma 3.2 with z = T, 4(u), we may write
AJ(T o) = J(u), Tro(u) —u") = V(T gw);u') + V(I (u); Tro(u)) = V(I (w); ).
Therefore,
VI (T o) u') + V(I(); Tro(m) — V(IJ(u);u') <0, VYuedomT,pand u’ € Fg(T,p),

which ends the proof. O
4. Convergence results

We assume that X satisfies assumption (A), and we rigorously establish a result characterizing
strong convergence for locating a mutual point between the fixed-point collection of the relativ. nonexp.
map. and the solution collection of our considered nonconvex problem.

Theorem 4.1. Consider X verifying assumption (A). Let K C X be a closed V-u.p.r. with constant
r>landlett: KX K — R verifying (HI)-(H5). Let S be a relativ. nonexp. map from K into K
so that Fg(S) N EP(1,0) # 0. Assume that dom T,y = X and that (3.2) is satisfied. Let xy € K with
d‘F/K(S)nEP(w)(J(xO)) < r%. Define the sequences {x,}, {ya}, and {u,} for n > 0 as follows:

Upi1 = J_l(an-](xn) + (1 - a’n)J(S (-xn)))’
Xn+l = Tr,l,e(un+1) and y,.1 = ”FK(S)mEP(LG)(-](an))-

Assume that a,, € [0, 1] and r, > 0, Yn > 0. Then, {y,} strongly converges to y € Fx(S) N EP(,0).

Proof. Let u € Fg(S)NEP(1,0) # (. Since the set Fg(S) N EP(,0) is not necessarily convex, the
generalized projection g (s)nepte(X,) does not exist necessarily. So, we have to show that
TTr(s)nEPto)(X,) 18 well-defined. In order to do so, we invoke a recent theorem proved in [10] on the
generalized projection onto V-u.p.r. sets and recalled in Theorem 2.18. We start for n = 0. We have
by assumption d}’K(SmEP(w)(J(xo)) < 1%, that is, J(xg) € U}’K(S)OEPM)(r), which ensures, by
Theorem 2.18, the existence of the generalized projection yy := g, (s)neprte)(J(X0)). Forn = 1, we use
the fact that J is one-to-one to define u; := J ™ (S (x0) + (1 — ap)J(S (x0))), and since dom T, = X
we have T, ¢(u;) # 0, and so by Proposition 3.1 the set T,,4(u;) is a singleton and so we can define
x; = Ty, ¢(u;). Assume now by induction that the sequences {x;} , {y}, and {u} are introduced for
k € {0,--- ,n}, and we shall prove that u,,;, x,,, and y,,; are well-defined. Obviously, u,,; is well
defined since J is one-to-one. By assumption, dom T, 4 = X, so T, ¢(u,r1) # 0, and so by
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Proposition 3.1 the set T, ¢(u,+1) 1s a singleton and so we can define x,. := T, ¢(ty+1). On the
other hand, we have from Proposition 3.1, the operator T, 4 is relativ. nonexp.. Also, by assumption,

we have that S is relativ. nonexp.. Then, we have for any u € Fx(S) N EP(,0) = Fg(S) N Fx(T,,4)
that

VUIGe)it) = VT, 0e0)): 1)
V(I (Ups1); 1)

Vi, J(x,) + (1 — @) J(S (x,)); u)

et d () + (1 = @) J(S Ce)IP +

=2 () + (1 = ) J(S (x,)); )

aullxall® + (1 = @IS (eI + flul?

=20 () + (1 = @) (S (,)); )

aullxl? + (1= @IS Gl + aulull® + (1 = @)l
=20, (T ()3 ) = 2(1 = @) (S (x,)); 1)

Il = 207 Cey); ) + ]

(1= ) [IIS e)I* = 24T(S (or)): 10) +
V(I (5); 1) + (1 = @) VI(S (5)); )

a, V(I (6); ) + (1 = @)V (55 10) = V(I(x); 1), 4.1)

IA A IA I

IA

2

IA

ININ +

Therefore, for all u € Fg(S) N EP(,60) and any n > 0, we derive
V(I (xpi1);u) < V(I (x0); 1),

which yields

\%4 .
dFK(S)mEP(Lé))(J(x’Hl ) ueFK(.y)lmEP(l,H) V(J(Xp41); 1)

< inf V(J(xp); 1)
ueFk(S)NEP(LH)

_ v )
= dpesneraeJ(X0)) <717,

which ensures that J(x,,;) € U;«“/K(s JE P(u))(”)’ and so by Theorem 2.18, the existence of the generalized
projection Y1 := mr(s)nerto(J(xn+1)). Thus, we obtained that the sequences {u,+1}, {X,+1}, and {y,41}
are well-defined. Now we proceed to the proof of the convergence regarding the strong topology of y,
toy € Fx(S) N EP(, 6). We substitute y, instead of  in inequality (4.1), we deduce

V(I (Xp41);90) < VI (X0)3y0),  Yn 2 0. 4.2)
On the other hand, by Lemma 2.15 and by the fact that r > 1 that

V(J(X4+1)s TrsnePA0) (S (Xnt1)))

1
V(J(x,);2) — (1 = ;)V(J(y,m);z),
V(J(x,):2), Vze Fg(S)n EPGY,8).

V(J(xn+l);yn+1)

IAIA

By taking z = y, in the previous inequality and by using (4.2) we obtain
VI Ene1); yne1) < VI (Xn11)3Y0)
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< VUG)iyn),  Ynz0.
Fix now any m > n > 0. Then, by induction from (4.1), we get

Once again, we use Lemma 2.15 and the assumption r > 1 to write

V(I (Xn): ym)

V(I (X)) FK(S)mEP(}iH)(J (X))
V(I (xm);2) — (1 = ;)V(J(ym);Z),

IA

Vz € Fg(S) N EP{,0). By taking z = y, in the previous inequality, we get

1
VU xn)sym) < V(J(xm);yn)—(l—;)V(J(ym);yn),

and so by inequality (4.3) we have

1
(- ;)V(J(ym);yn) V(I (X5 Yn) = VI (X)5 Vi)

<
< V(J(Xn),)’n) - V(J(xm);ym) = (I)n - (Dm’

where @, := V(J(x,);y,). Due to the fact that {x,} and {y,} are both bounded, we have by part (2) in
Proposition 2.2 and the fact that X is g-unif. convex with smooth norm

_ rc
”yn _ym”q < KV(J(Ym)’Yn) < :[‘Dn - (Dm]

Observe that the numerical sequence @, is convergent (since it is decreasing and nonnegative). Taking

n,m — oo, we obtain lim,, ;. ||y, — ymll = O, that is, the sequence {y,} has the Cauchy property in
Fx(S) N EP®{,6), so it is convergent to some limit y := limy,, and since the set Fg(S) N EP(,0) is
closed, we obtain y € Fg(S) N EP(, 6). O

Remark 4.2. It can be observed that in the demonstration of Theorem 4.1, we have demonstrated
only the convergence of {y,} to some point y in the set Fx(S) N EP(,6). However, we did not get
the convergence of {x,}. In the next theorem, with additional assumptions either on the set K or on
the duality mapping J, we prove that {x,} weakly converges to the same limit y of the sequence {y,}
obtained in Theorem 4.1.

Theorem 4.3. Consider X verifying assumption (A). Let K C X be closed V-u.p.r., and lett : KXK —
R satisfy (HI)—(HS). Consider a relativ. nonexp. mapping S defined from K into K so that Fg(S) N

EP{,0) # 0. Assume that dom T,y = X and that (3.2) is satisfied. Let xo € K with dXK(S)m E Pa,e)(J (x0)) <

r?. Define the sequences {x,}, {y,}, and {u,} for n > 0 as follows:

{ Up+1 = J_l(a’nj(xn) + (1 - a’n)J(S (xn)))»

Xn+l = Tr,l,é(un+l) and y,.1 = ”FK(S)ﬂEP(I,G)(J(an))-

Suppose that ,, € [0, 1] with liminf a,(1 —a,) > 0and r, > a > 0, Vn > 0. Then, the two assertions
are true:
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(1) If K is ball compact, then there are subsequences of {x,}, {u,}, and {y,} which all strongly converge
to some limit y € ¥(S) N EP(, 0).

(2) If K is weakly closed and f is weakly u.s.c. regarding the first variable over K, and J is weakly
sequentially cont., then there is a subseq. of {x,} that is weakly convergent to 'y € ¥(S) N EP(1, 0)
obtained in Theorem 4.1.

Proof. Proceeding analogously to the demonstration of Theorem 4.1, we derive the well definedness
of the sequences {u,}, {x,}, and {y,} and the boundedness of {x,} by some constant M and the following
inequality:

V(I (Xp41); 1) V(T 0(un1)); 1)

< V(U (ne1); 1)

< Vi@ J(x,) + (1 — a)J(S(x,)); u)

< e J () + (1= @) IS )P + [lull?

- 2a,J(x,) + (1 = a)J(S (x,)); u), 4.4)

for any u € Fg(S) N EP(,0). From another side, we take advantage of the fact that the dual space X*
is g-unif. convex (since X is ¢’-unif. smooth), and by Lemma 2.19 to write

llow” + (1 = *|> < Al (P + (1= DIV = A0 = Vgl =),

for any u*,v* € MB, and any A € [0, 1] and for some continuous convex function g which is increasing
and with g(0) = 0. Therefore, we obtain for all u € Fg(S) N EP(, ) that

V()i w) = llanJ(x,) + (1= a,)J(S )l + [lull®
= AapJ(x,) + (1 = a,)J(S (x,)); u)
< @l = a1 — @)g(lI(x) = J(S eI + (1 = @IS (x)IP
+alull® + (1 = @)lull® = 2a,(I(x,); 1) — 2(1 = @, JI(S (x,)); )
= @,V (x.)u) + (1 —a,)VI(S (x,)); u)
- a,(1 —a,)glJ(x,) = J(S (x))I)
< ay V(J(-xn)’ I/t) + (1 - an)v(-](xn); I/l)
— a1 —a,)g(lJ(x,) = J(S (x)ID
= VU(xp);u) — a,(1 — a,)g(lJ(x,) = J(S (xa))ID),

and so for any u € Fg(S) N EP(, ), we have
@, (1 = @,)g(1J(x,) = J(S (x )l < V(I (x0); 1) = V(I (X1); 10).

From the above reasoning the numerical sequence ®, := V(J(x,);u) is convergent in R, and since
liminf a,(1 — @,) > 0, we obtain
n—oo

lim g(1J(x,) = J(S () = 0.

This ensures by the specifications of g that lim,_, [|J(x,) — J(S(x,)|l = 0, and so by the Holder
continuity of J recalled in part (3) in Proposition 2.2, we can derive

lim ||x, — S (x,)]| = O. 4.5)
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21487

(1) Now, we use the assumption that K is ball compact to get {x,, } converging strongly to iz € K and
by continuity of J and 7p(s)nepte on U Xk(sm E P(w)(r) proved in Theorem 2.18, we obtain

y=limy, = ]11_210 Tres)nePto)(J(Xn)) = Trgs)nerae(J(i1)). (4.6)

k—o0

Also, by (4.5) we have
lli2 =S @l = lim |12, — S (x,)ll = 0,

and hence S (1) = iz and so it € Fg(S).

Now we demonstrate the convergence of the subsequence {u,, } to i. Indeed, since both sequences
{x,} and {u,} are both bounded, we have by part (2) in Proposition 2.2 and by virtue of the g-unif. conv.
of X that

”xn - un”q < [_{V(J(un)o xn)~ (47)
By Corollary 3.3, we also have for all z € Fg(S) N EP(1, 6) that

V(J(un)’ Tr,,_l,(i(un))
V(I (un); 2) = VT, o(un)); 2)
V(I (un); 2) = V(I (xn); 2). (4.8)

V(J(u,); x,)

IANIA I

Utilizing the relative nonexpansiveness of S, we get

V(J(uy); z) Via,J(xp-1) + (1 = a)J(S (x,-1))5 2)
@, V(J(x,-1);2) + (1 = ) V(J(S (x5-1)); 2)
@, V(J(x,-1);2) + (1 = a,)V(J(x,-1); 2)

V(J(Xn-1); 2) (4.9)

I IAIA

Combining inequalities (4.7)—(4.9), we obtain

< KV (u); %)
< K[V(U(up);2) = V(I (x0)52)]
< K[V x-10:2) = V(6391 = K [@e1 = D, ]

”xn - uan

Since the sequence {®,} is convergent, we obtain by taking n — +oco that
lim ||x, — u,|| = 0. (4.10)
n—+oo
Therefore, since the subsequence {x,, } is strongly convergent to i, by taking k — +o0, we get
lim |lu,, — @l < lim |ju,, — x|+ lim |[x, —#@||=0
k—+o0 k—+o0 k—+00
and hence the subsequence {u,, } converges strongly to it.
_ J(”nk)_‘/(xnk)

Set x,, := —~——"%. Then, by our assumption on r, and by the cont. of J, we obtain
"k

Lo 1
I, Il = r—IIJ(ynk) = J(x)ll < ;IIJ(ynk) = J(x)Il = 0 as k — oo,
ny,

AIMS Mathematics Volume 10, Issue 9, 21468-21491.



21488

On the other hand, by the way the sequence {x,} = {7, 4(,)} 1s constructed and by the definition of the
mapping 7', g, it follows that for all n > 0,

1
1, ) + OV (x); y) + —(J (%) = J(up);y — x,) 20, forally € K
I'n
and so the subsequences {u,, } and {x,,} satisfy for all k > O that
1
Mo, y) + OV(J(x4);y) 2 —(J () = J(X0); ¥ = X)) = (X, 5Y — X)), ¥y €C.

Nk

Now, by taking the limit in this inequality and by bearing in mind the u.s.c. of f regarding the 1st
variable and the continuity of both V and J, we conclude

Wi, y) + OV(J();y) > li]fn sup [Y(x,,, y) + OV(J(x,,); 9)]
— 400
limsup(x, ;y — x,) =0, VyeK,

k—+00

\%

and so we obtain
Wa,y) +0V(J@;y) = 0, VyeKk,

that is, # € EP(1,6). Consequently, we deduce that # € Fg(S) N EP(1,0). Using equality (4.6), we get
i =y, and so the proof under the ball compactness of K is complete.

(2) Assume now that K is weakly closed, / is weakly u.s.c. regarding the first variable, and J
is weakly sequentially continuous. Given that {x,} is bounded, there is {x, } weakly converging to
% € K. From (4.5) and Definition 2.12, we have ¥ € Fx(S) = Fx(S). We have to prove that the limit
X € EP1,6). From (4.10), we have

nl_i>IPoo I, — unll = 0.

By exploiting the unif. cont. of J over bounded sets, we get
lim [|J(x,) — J ()l = 0.
n—+oo

Utilizing the same reasoning above, we obtain

. . .1 1
im L = lim — [ (u,) = Sl < [0 = JGe)ll = 0,

that 1s, x;, strongly converges to 0 in X*. Consequently, we obtain by the boundedness of {x,} that

lim (x;y—x,) =0, VyeC.

n—+oo

Since x,, = T, o(uy), we deduce that for all k > 0,

1 ;
WX, y) + OV (x)5y) = —(J () — J(X0 )5y = X 2 X5 — Xy ), Yy €C.

ny

AIMS Mathematics Volume 10, Issue 9, 21468-21491.
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It follows from the weak sequential cont. of J that J(x,,) strongly converges to J(X), and hence, by the
weak u.s.c. of f regarding the first variable, we obtain

limsupi(x,,,y) <i(x,y), VyeC.

k—+o00

Therefore, the continuity of V concludes the following:

HX,y) + OV(J(X;y)

\%

lim sup }(x,,,, y) + 6 klim V(I (xn)5y)
k400 —+00
lim sup [}(x,,, y) + OV(J(x,,);y)]
k—+00
lim sup(x; 1y — X,,)
k—+co

0, Vyek,

vV v

\%

which entails that ¥ € EP(1,6), and hence we found a subseq. of {x,} weakly converging to ¥ €
Fg(S) N EP®1,0). By continuity of g (s)nepte ON UXK(S)Q Ep(w)(r) proved in Theorem 2.18 and the
convergence regarding the strong topology of J(x,,) to J(X), we may write

1}1_{?0 TresnEPto) (S (X)) =T FK(S)mEP(i,e)(]}i_{Elo J(xn)) = TrgsnEPEe)(J(X)).
and from the demonstration of Theorem 4.1, we see that {y,} is convergent to y, that is,
y= 21_{1; Yn = gl_)f(f)lo Trgs)NEPAH) (S (X)).

Hence, y = mpys)nera(J(X)) = X. Consequently, the argument is fully substantiated, and the proof
attains its conclusion. O
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