We introduce a novel definition of periodicity on arbitrary time scales, dependent on a strictly increasing and differentiable function. This removes the commonly used and restrictive assumption of a periodic time scale to define periodic functions. Our new definition furthermore allows for a wider class of functions to be studied using the theory of periodic systems. After providing crucial properties of these periodic functions, such as the translation invariance of integrals of periodic functions, we apply the concept of this new periodicity to linear dynamic equations. We provide necessary and sufficient conditions for a linear dynamic equation to have such a periodic solution and discuss its uniqueness.
Citation: Martin Bohner, Jaqueline G. Mesquita, Sabrina H. Streipert. A unified concept of periodicity on any time scale and applications[J]. AIMS Mathematics, 2025, 10(9): 21512-21532. doi: 10.3934/math.2025956
We introduce a novel definition of periodicity on arbitrary time scales, dependent on a strictly increasing and differentiable function. This removes the commonly used and restrictive assumption of a periodic time scale to define periodic functions. Our new definition furthermore allows for a wider class of functions to be studied using the theory of periodic systems. After providing crucial properties of these periodic functions, such as the translation invariance of integrals of periodic functions, we apply the concept of this new periodicity to linear dynamic equations. We provide necessary and sufficient conditions for a linear dynamic equation to have such a periodic solution and discuss its uniqueness.
| [1] | M. Bohner, A. Peterson, Dynamic equations on time scales: an introduction with applications, Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0201-1 |
| [2] | M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-0-8176-8230-9 |
| [3] | M. Humi, W. Miller, Equations with periodic coefficients, In: Second course in ordinary differential equations for scientists and engineers, Universitext, Springer, 1988,210–227. http://dx.doi.org/10.1007/978-1-4612-3832-4_6 |
| [4] |
J. M. Cushing, S. M. Henson, Global dynamics of some periodically forced, monotone difference equations, J. Differ. Equ. Appl., 7 (2001), 859–872. http://dx.doi.org/10.1080/10236190108808308 doi: 10.1080/10236190108808308
|
| [5] |
D. R. Anderson, Multiple periodic solutions for a second-order problem on periodic time scales, Nonlinear Anal., 60 (2005), 101–115. http://dx.doi.org/10.1016/j.na.2004.08.024 doi: 10.1016/j.na.2004.08.024
|
| [6] |
D. Agrawal, S. Dhama, M. Kostić, S. Abbas, Periodicity, stability, and synchronization of solutions of hybrid coupled dynamic equations with multiple delays, Math. Methods Appl. Sci., 47 (2024), 7616–7636. http://dx.doi.org/10.1002/mma.9993 doi: 10.1002/mma.9993
|
| [7] |
C. Wang, R. P. Agarwal, A classification of time scales and analysis of the general delays on time scales with applications, Math. Methods Appl. Sci., 39 (2016), 1568–1590. http://dx.doi.org/10.1002/mma.3590 doi: 10.1002/mma.3590
|
| [8] | V. Kac, P. Cheung, Quantum calculus, Universitext, Springer, 2002. http://dx.doi.org/10.1007/978-1-4613-0071-7 |
| [9] |
A. Lavagno, A. M. Scarfone, N. P. Swamy, Basic-deformed thermostatistics, J. Phys. A: Math. Theor., 40 (2007), 8635. http://dx.doi.org/10.1088/1751-8113/40/30/003 doi: 10.1088/1751-8113/40/30/003
|
| [10] |
A. Lavagno, N. P. Swamy, $q$-deformed structures and nonextensive statistics: a comparative study, Phys. A, 305 (2002), 310–315. http://dx.doi.org/10.1016/S0378-4371(01)00680-X doi: 10.1016/S0378-4371(01)00680-X
|
| [11] | M. Bohner, R. Chieochan, Floquet theory for $q$-difference equations, Sarajevo J. Math., 8 (2012), 1–12. |
| [12] |
M. Bohner, J. G. Mesquita, S. Streipert, Periodicity on isolated time scales, Math. Nachr., 295 (2022), 259–280. http://dx.doi.org/10.1002/mana.201900360 doi: 10.1002/mana.201900360
|
| [13] |
M. Bohner, J. Mesquita, S. Streipert, Generalized periodicity and applications to logistic growth, Chaos Soliton. Fract., 186 (2024), 115139. http://dx.doi.org/10.1016/j.chaos.2024.115139 doi: 10.1016/j.chaos.2024.115139
|
| [14] |
M. Adivar, A new periodicity concept for time scales, Math. Slovaca, 63 (2013), 817–828. http://dx.doi.org/10.2478/s12175-013-0127-0 doi: 10.2478/s12175-013-0127-0
|
| [15] |
M. Bohner, H. Warth, The Beverton–Holt dynamic equation, Appl. Anal., 86 (2007), 1007–1015. http://dx.doi.org/10.1080/00036810701474140 doi: 10.1080/00036810701474140
|
| [16] |
M. Bohner, R. Chieochan, The Beverton–Holt $q$-difference equation, J. Biol. Dyn., 7 (2013), 86–95. http://dx.doi.org/10.1080/17513758.2013.804599 doi: 10.1080/17513758.2013.804599
|