A prime graph of a ring $ R $, denoted by $ PG^*(R) $, is a graph whose vertex set is the set of the strong zero divisors $ S(R) $ of $ R $, and its edge set is either $ E(PG^*(R)) = \{ (x, y) : xRy = 0 $ or $ yRx = 0, x \neq y $ and $ x, y \in S(R) \} $. This graph is a subgraph of the prime graph $ PG(R) $. In this paper, we investigate the chromatic numbers of the prime graphs of Artinian rings that satisfy certain conditions. In particular, if $ R $ is an Artinian ring with a unique prime ideal, then we prove that $ \chi(PG(R)) \leq n+1 $, where $ n $ is the order of the prime ideal. Moreover, we explore the chromatic number of the prime graph of $ M_2(\mathbb{Z}_n) $.
Citation: Walaa Alqarafi, Alaa Altassan, Wafaa Fakieh. The chromatic numbers of prime graphs of polynomials and power series over rings[J]. AIMS Mathematics, 2025, 10(9): 21061-21079. doi: 10.3934/math.2025941
A prime graph of a ring $ R $, denoted by $ PG^*(R) $, is a graph whose vertex set is the set of the strong zero divisors $ S(R) $ of $ R $, and its edge set is either $ E(PG^*(R)) = \{ (x, y) : xRy = 0 $ or $ yRx = 0, x \neq y $ and $ x, y \in S(R) \} $. This graph is a subgraph of the prime graph $ PG(R) $. In this paper, we investigate the chromatic numbers of the prime graphs of Artinian rings that satisfy certain conditions. In particular, if $ R $ is an Artinian ring with a unique prime ideal, then we prove that $ \chi(PG(R)) \leq n+1 $, where $ n $ is the order of the prime ideal. Moreover, we explore the chromatic number of the prime graph of $ M_2(\mathbb{Z}_n) $.
| [1] |
I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208–226. https://doi.org/10.1016/0021-8693(88)90202-5 doi: 10.1016/0021-8693(88)90202-5
|
| [2] |
D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434–447. https://doi.org/10.1006/jabr.1998.7840 doi: 10.1006/jabr.1998.7840
|
| [3] |
D. F. Anderson, S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra, 210 (2007), 543–550. https://doi.org/10.1016/j.jpaa.2006.10.007 doi: 10.1016/j.jpaa.2006.10.007
|
| [4] |
H. F. Ghazi, A. Omran, The radius, diameter and chromatic number of some zero divisor graph, Int. J. Nonlinear Anal. Appl., 13 (2022), 3891–3896. http://dx.doi.org/10.22075/ijnaa.2022.6189 doi: 10.22075/ijnaa.2022.6189
|
| [5] |
T. G. Lucas, The diameter of a zero divisor graph, J. Algebra, 301 (2006), 174–193. https://doi.org/10.1016/j.jalgebra.2006.01.019 doi: 10.1016/j.jalgebra.2006.01.019
|
| [6] |
M. Axtell, J. Coykendall, J. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings, Commun. Algebra, 33 (2005), 2043–2050. https://doi.org/10.1081/AGB-200063357 doi: 10.1081/AGB-200063357
|
| [7] |
M. J. Park, E. S. Kim, J. W. Lim, The zero-divisor graph of $\mathbb{Z}_n[x]$, Kyungpook Math. J., 60 (2020), 723–729. https://doi.org/10.5666/KMJ.2020.60.4.723 doi: 10.5666/KMJ.2020.60.4.723
|
| [8] | S. Bhavanari, S. P. Kuncham, N. Dasari, Prime graph of a ring, J. Comb. Inf. Syst. Sci., 35 (2010), 27–42. |
| [9] | S. Kalita, K. Patra, Directed prime graph of non-commutative ring, Alg. Struc. Appl., 8 (2020), 1–12. |
| [10] | K. F. Pawar, S. S. Joshi, Study of prime graph of a ring, Thai J. Math., 17 (2019), 369–377. |
| [11] |
T. P. Nepal, A study on primitive ring, Int. J. Recent Innov. Trends Comput. Commun., 4 (2016), 292–293. https://doi.org/10.17762/ijritcc.v4i5.2174 doi: 10.17762/ijritcc.v4i5.2174
|
| [12] |
S. Kalita, K. Patra, Prime graph of cartesian product of rings, Int. J. Comput. Appl., 69 (2013), 13–16. http://dx.doi.org/10.5120/11877-7681 doi: 10.5120/11877-7681
|
| [13] |
K. Patra, S. Kalita, Prime graph of the commutative ring $\mathbb{Z}_n$, Matematika, 30 (2014), 59–67. https://doi.org/10.11113/matematika.v30.n.663 doi: 10.11113/matematika.v30.n.663
|
| [14] |
M. Behboodi, R. Beyranvand, H. Khabazian, Strong zero-divisors of non-commutative rings, J. Algebra Appl., 08 (2009), 565–580. https://doi.org/10.1142/S0219498809003540 doi: 10.1142/S0219498809003540
|
| [15] | R. Balakrishnan, K. Ranganathan, A textbook of graph theory, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-4529-6 |
| [16] | W. Alqarafi, W. Fakieh, A. Altassan, Prime graphs of polynomials and power series over non-commutative rings, Int. J. Math. Comput. Sci., 18 (2024), In press. |
| [17] |
S. Bhavanari, S. Devanaboina, S. Thota, N. Thandu, M. Bhavanari, Prime graph vs. zero divisor graph, IOSR J. Math., 12 (2016), 75–78. http://dx.doi.org/10.9790/5728-1205067578 doi: 10.9790/5728-1205067578
|
| [18] | J. Gallian, Contemporary abstract algebra, 7Eds., Cengage Learning, 2009. |