Research article Topical Sections

The chromatic numbers of prime graphs of polynomials and power series over rings

  • Published: 12 September 2025
  • MSC : 05C15, 05C25, 13F20, 13F25

  • A prime graph of a ring $ R $, denoted by $ PG^*(R) $, is a graph whose vertex set is the set of the strong zero divisors $ S(R) $ of $ R $, and its edge set is either $ E(PG^*(R)) = \{ (x, y) : xRy = 0 $ or $ yRx = 0, x \neq y $ and $ x, y \in S(R) \} $. This graph is a subgraph of the prime graph $ PG(R) $. In this paper, we investigate the chromatic numbers of the prime graphs of Artinian rings that satisfy certain conditions. In particular, if $ R $ is an Artinian ring with a unique prime ideal, then we prove that $ \chi(PG(R)) \leq n+1 $, where $ n $ is the order of the prime ideal. Moreover, we explore the chromatic number of the prime graph of $ M_2(\mathbb{Z}_n) $.

    Citation: Walaa Alqarafi, Alaa Altassan, Wafaa Fakieh. The chromatic numbers of prime graphs of polynomials and power series over rings[J]. AIMS Mathematics, 2025, 10(9): 21061-21079. doi: 10.3934/math.2025941

    Related Papers:

  • A prime graph of a ring $ R $, denoted by $ PG^*(R) $, is a graph whose vertex set is the set of the strong zero divisors $ S(R) $ of $ R $, and its edge set is either $ E(PG^*(R)) = \{ (x, y) : xRy = 0 $ or $ yRx = 0, x \neq y $ and $ x, y \in S(R) \} $. This graph is a subgraph of the prime graph $ PG(R) $. In this paper, we investigate the chromatic numbers of the prime graphs of Artinian rings that satisfy certain conditions. In particular, if $ R $ is an Artinian ring with a unique prime ideal, then we prove that $ \chi(PG(R)) \leq n+1 $, where $ n $ is the order of the prime ideal. Moreover, we explore the chromatic number of the prime graph of $ M_2(\mathbb{Z}_n) $.



    加载中


    [1] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208–226. https://doi.org/10.1016/0021-8693(88)90202-5 doi: 10.1016/0021-8693(88)90202-5
    [2] D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434–447. https://doi.org/10.1006/jabr.1998.7840 doi: 10.1006/jabr.1998.7840
    [3] D. F. Anderson, S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra, 210 (2007), 543–550. https://doi.org/10.1016/j.jpaa.2006.10.007 doi: 10.1016/j.jpaa.2006.10.007
    [4] H. F. Ghazi, A. Omran, The radius, diameter and chromatic number of some zero divisor graph, Int. J. Nonlinear Anal. Appl., 13 (2022), 3891–3896. http://dx.doi.org/10.22075/ijnaa.2022.6189 doi: 10.22075/ijnaa.2022.6189
    [5] T. G. Lucas, The diameter of a zero divisor graph, J. Algebra, 301 (2006), 174–193. https://doi.org/10.1016/j.jalgebra.2006.01.019 doi: 10.1016/j.jalgebra.2006.01.019
    [6] M. Axtell, J. Coykendall, J. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings, Commun. Algebra, 33 (2005), 2043–2050. https://doi.org/10.1081/AGB-200063357 doi: 10.1081/AGB-200063357
    [7] M. J. Park, E. S. Kim, J. W. Lim, The zero-divisor graph of $\mathbb{Z}_n[x]$, Kyungpook Math. J., 60 (2020), 723–729. https://doi.org/10.5666/KMJ.2020.60.4.723 doi: 10.5666/KMJ.2020.60.4.723
    [8] S. Bhavanari, S. P. Kuncham, N. Dasari, Prime graph of a ring, J. Comb. Inf. Syst. Sci., 35 (2010), 27–42.
    [9] S. Kalita, K. Patra, Directed prime graph of non-commutative ring, Alg. Struc. Appl., 8 (2020), 1–12.
    [10] K. F. Pawar, S. S. Joshi, Study of prime graph of a ring, Thai J. Math., 17 (2019), 369–377.
    [11] T. P. Nepal, A study on primitive ring, Int. J. Recent Innov. Trends Comput. Commun., 4 (2016), 292–293. https://doi.org/10.17762/ijritcc.v4i5.2174 doi: 10.17762/ijritcc.v4i5.2174
    [12] S. Kalita, K. Patra, Prime graph of cartesian product of rings, Int. J. Comput. Appl., 69 (2013), 13–16. http://dx.doi.org/10.5120/11877-7681 doi: 10.5120/11877-7681
    [13] K. Patra, S. Kalita, Prime graph of the commutative ring $\mathbb{Z}_n$, Matematika, 30 (2014), 59–67. https://doi.org/10.11113/matematika.v30.n.663 doi: 10.11113/matematika.v30.n.663
    [14] M. Behboodi, R. Beyranvand, H. Khabazian, Strong zero-divisors of non-commutative rings, J. Algebra Appl., 08 (2009), 565–580. https://doi.org/10.1142/S0219498809003540 doi: 10.1142/S0219498809003540
    [15] R. Balakrishnan, K. Ranganathan, A textbook of graph theory, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-4529-6
    [16] W. Alqarafi, W. Fakieh, A. Altassan, Prime graphs of polynomials and power series over non-commutative rings, Int. J. Math. Comput. Sci., 18 (2024), In press.
    [17] S. Bhavanari, S. Devanaboina, S. Thota, N. Thandu, M. Bhavanari, Prime graph vs. zero divisor graph, IOSR J. Math., 12 (2016), 75–78. http://dx.doi.org/10.9790/5728-1205067578 doi: 10.9790/5728-1205067578
    [18] J. Gallian, Contemporary abstract algebra, 7Eds., Cengage Learning, 2009.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(720) PDF downloads(48) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog