Research article Special Issues

A sixth-order compact finite difference framework for solving nonlinear reaction-diffusion equations: application to FitzHugh-Nagumo model

  • Published: 12 September 2025
  • MSC : 35K57, 65M06, 65M12

  • This paper proposes a sixth-order compact finite difference framework to numerically solve nonlinear reaction-diffusion equations, with a particular focus on the FitzHugh-Nagumo (FHN) model. First, for the second-order spatial derivatives in the FHN equation, a five-point sixth-order compact difference scheme is used for internal points, and a asymmetric six-point compact difference scheme is used for boundary points to achieve spatial discretization, thereby transforming the problem into an ordinary differential equation; then, this is and then combined with the semi-implicit Crank-Nicholson method for the time discretization to obtain a numerical solution scheme for the FHN equation. We establish the stability and convergence of the method and validate it through numerical experiments. The feasibility and accuracy of the method were verified by conducting an error analysis on the numerical results and comparing them with other algorithms. It is proven that this method is an effective tool to solve the numerical solutions of nonlinear reaction-diffusion equations.

    Citation: Jiang Fu, Xiao-Yu Zhang, Qing Fang. A sixth-order compact finite difference framework for solving nonlinear reaction-diffusion equations: application to FitzHugh-Nagumo model[J]. AIMS Mathematics, 2025, 10(9): 21040-21060. doi: 10.3934/math.2025940

    Related Papers:

  • This paper proposes a sixth-order compact finite difference framework to numerically solve nonlinear reaction-diffusion equations, with a particular focus on the FitzHugh-Nagumo (FHN) model. First, for the second-order spatial derivatives in the FHN equation, a five-point sixth-order compact difference scheme is used for internal points, and a asymmetric six-point compact difference scheme is used for boundary points to achieve spatial discretization, thereby transforming the problem into an ordinary differential equation; then, this is and then combined with the semi-implicit Crank-Nicholson method for the time discretization to obtain a numerical solution scheme for the FHN equation. We establish the stability and convergence of the method and validate it through numerical experiments. The feasibility and accuracy of the method were verified by conducting an error analysis on the numerical results and comparing them with other algorithms. It is proven that this method is an effective tool to solve the numerical solutions of nonlinear reaction-diffusion equations.



    加载中


    [1] Q. Xu, X. J. Chen, B. Chen, H. G. Wu, Z. Li, H. Bao, Dynamical analysis of an improved FitzHugh-Nagumo neuron model with multiplier-free implementation, Nonlinear Dyn., 111 (2023), 8737–8749. https://doi.org/10.1007/s11071-023-08274-4 doi: 10.1007/s11071-023-08274-4
    [2] J. Bisquert, A frequency domain analysis of the excitability and bifurcations of the FitzHugh-Nagumo neuron model, J. Phys. Chem. Lett., 12 (2021), 11005–11013. https://doi.org/10.1021/acs.jpclett.1c03406 doi: 10.1021/acs.jpclett.1c03406
    [3] H. Bao, W. B. Liu, M. Chen, Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh-Nagumo circuit, Nonlinear Dyn., 96 (2019), 1879–1894. https://doi.org/10.1007/s11071-019-04890-1 doi: 10.1007/s11071-019-04890-1
    [4] A. R. Seadawy, S. T. R. Rizvi, S. Ahmed, Multiple lump, generalized breathers, Akhmediev breather, manifold periodic and rogue wave solutions for generalized Fitzhugh-Nagumo equation: applications in nuclear reactor theory, Chaos Solitons Fract., 161 (2022), 112326. https://doi.org/10.1016/j.chaos.2022.112326 doi: 10.1016/j.chaos.2022.112326
    [5] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445–466. https://doi.org/10.1016/s0006-3495(61)86902-6 doi: 10.1016/s0006-3495(61)86902-6
    [6] J. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE, 50 (1962), 2061–2070. https://doi.org/10.1109/jrproc.1962.288235 doi: 10.1109/jrproc.1962.288235
    [7] G. Hariharan, K. Kannan, Haar wavelet method for solving some nonlinear Parabolic equations, J. Math. Chem., 48 (2010), 1044–1061. https://doi.org/10.1007/s10910-010-9724-0 doi: 10.1007/s10910-010-9724-0
    [8] M. Namjoo, S. Zibaei, Numerical solutions of FitzHugh-Nagumo equation by exact finite-difference and NSFD schemes, Comput. Appl. Math., 37 (2018), 1395–1411. https://doi.org/10.1007/s40314-016-0406-9 doi: 10.1007/s40314-016-0406-9
    [9] H. S. Shekarabi, M. Aqamohamadi, J. Rashidinia, Tension spline method for solution of FitzHugh-Nagumo equation, Trans. A. Razmadze Math. Inst., 172 (2018), 571–581. https://doi.org/10.1016/j.trmi.2018.02.001 doi: 10.1016/j.trmi.2018.02.001
    [10] B. İnan, A finite difference method for solving generalized FitzHugh-Nagumo equation, AIP Conf. Proc., 1926 (2018), 020018. https://doi.org/10.1063/1.5020467 doi: 10.1063/1.5020467
    [11] B. İnan, K. K. Ali, A. Saha, T. Ak, Analytical and numerical solutions of the FitzHugh-Nagumo equation and their multistability behavior, Numer. Methods Partial Differ. Equ., 37 (2021), 7–23. https://doi.org/10.1002/num.22516 doi: 10.1002/num.22516
    [12] G. A. Al-Juaifri, A. J. Harfash, Finite element analysis of nonlinear reaction-diffusion system of FitzHugh-Nagumo type with Robin boundary conditions, Math. Comput. Simul., 203 (2023), 486–517. https://doi.org/10.1016/j.matcom.2022.07.005 doi: 10.1016/j.matcom.2022.07.005
    [13] K. M. Agbavon, A. R. Appadu, Construction and analysis of some nonstandard finite difference methods for the FitzHugh-Nagumo equation, Numer. Methods Partial Differ. Equ., 36 (2020), 1145–1169. https://doi.org/10.1002/num.22468 doi: 10.1002/num.22468
    [14] N. Hilal, S. Injrou, R. Karroum, Exponential finite difference methods for solving Newell-Whitehead-Segel equation, Arab. J. Math., 9 (2020), 367–379. https://doi.org/10.1007/s40065-020-00280-3 doi: 10.1007/s40065-020-00280-3
    [15] Z. Y. Fan, K. K. Ali, M. Maneea, M. Inc, S. W. Yao, Solution of time fractional FitzHugh-Nagumo equation using semi analytical techniques, Results Phys., 51 (2023), 106679. https://doi.org/10.1016/j.rinp.2023.106679 doi: 10.1016/j.rinp.2023.106679
    [16] S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103 (1992), 16–42. https://doi.org/10.1016/0021-9991(92)90324-r doi: 10.1016/0021-9991(92)90324-r
    [17] D. P. Gui, A fourth-order compact finite difference scheme to the numerical solution of FitzHugh-Nagumo equation, Appl. Mech. Mater., 873 (2017), 337–341. https://doi.org/10.4028/www.scientific.net/amm.873.337 doi: 10.4028/www.scientific.net/amm.873.337
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(588) PDF downloads(43) Cited by(1)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog