This paper proposes a sixth-order compact finite difference framework to numerically solve nonlinear reaction-diffusion equations, with a particular focus on the FitzHugh-Nagumo (FHN) model. First, for the second-order spatial derivatives in the FHN equation, a five-point sixth-order compact difference scheme is used for internal points, and a asymmetric six-point compact difference scheme is used for boundary points to achieve spatial discretization, thereby transforming the problem into an ordinary differential equation; then, this is and then combined with the semi-implicit Crank-Nicholson method for the time discretization to obtain a numerical solution scheme for the FHN equation. We establish the stability and convergence of the method and validate it through numerical experiments. The feasibility and accuracy of the method were verified by conducting an error analysis on the numerical results and comparing them with other algorithms. It is proven that this method is an effective tool to solve the numerical solutions of nonlinear reaction-diffusion equations.
Citation: Jiang Fu, Xiao-Yu Zhang, Qing Fang. A sixth-order compact finite difference framework for solving nonlinear reaction-diffusion equations: application to FitzHugh-Nagumo model[J]. AIMS Mathematics, 2025, 10(9): 21040-21060. doi: 10.3934/math.2025940
This paper proposes a sixth-order compact finite difference framework to numerically solve nonlinear reaction-diffusion equations, with a particular focus on the FitzHugh-Nagumo (FHN) model. First, for the second-order spatial derivatives in the FHN equation, a five-point sixth-order compact difference scheme is used for internal points, and a asymmetric six-point compact difference scheme is used for boundary points to achieve spatial discretization, thereby transforming the problem into an ordinary differential equation; then, this is and then combined with the semi-implicit Crank-Nicholson method for the time discretization to obtain a numerical solution scheme for the FHN equation. We establish the stability and convergence of the method and validate it through numerical experiments. The feasibility and accuracy of the method were verified by conducting an error analysis on the numerical results and comparing them with other algorithms. It is proven that this method is an effective tool to solve the numerical solutions of nonlinear reaction-diffusion equations.
| [1] |
Q. Xu, X. J. Chen, B. Chen, H. G. Wu, Z. Li, H. Bao, Dynamical analysis of an improved FitzHugh-Nagumo neuron model with multiplier-free implementation, Nonlinear Dyn., 111 (2023), 8737–8749. https://doi.org/10.1007/s11071-023-08274-4 doi: 10.1007/s11071-023-08274-4
|
| [2] |
J. Bisquert, A frequency domain analysis of the excitability and bifurcations of the FitzHugh-Nagumo neuron model, J. Phys. Chem. Lett., 12 (2021), 11005–11013. https://doi.org/10.1021/acs.jpclett.1c03406 doi: 10.1021/acs.jpclett.1c03406
|
| [3] |
H. Bao, W. B. Liu, M. Chen, Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh-Nagumo circuit, Nonlinear Dyn., 96 (2019), 1879–1894. https://doi.org/10.1007/s11071-019-04890-1 doi: 10.1007/s11071-019-04890-1
|
| [4] |
A. R. Seadawy, S. T. R. Rizvi, S. Ahmed, Multiple lump, generalized breathers, Akhmediev breather, manifold periodic and rogue wave solutions for generalized Fitzhugh-Nagumo equation: applications in nuclear reactor theory, Chaos Solitons Fract., 161 (2022), 112326. https://doi.org/10.1016/j.chaos.2022.112326 doi: 10.1016/j.chaos.2022.112326
|
| [5] |
R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445–466. https://doi.org/10.1016/s0006-3495(61)86902-6 doi: 10.1016/s0006-3495(61)86902-6
|
| [6] |
J. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE, 50 (1962), 2061–2070. https://doi.org/10.1109/jrproc.1962.288235 doi: 10.1109/jrproc.1962.288235
|
| [7] |
G. Hariharan, K. Kannan, Haar wavelet method for solving some nonlinear Parabolic equations, J. Math. Chem., 48 (2010), 1044–1061. https://doi.org/10.1007/s10910-010-9724-0 doi: 10.1007/s10910-010-9724-0
|
| [8] |
M. Namjoo, S. Zibaei, Numerical solutions of FitzHugh-Nagumo equation by exact finite-difference and NSFD schemes, Comput. Appl. Math., 37 (2018), 1395–1411. https://doi.org/10.1007/s40314-016-0406-9 doi: 10.1007/s40314-016-0406-9
|
| [9] |
H. S. Shekarabi, M. Aqamohamadi, J. Rashidinia, Tension spline method for solution of FitzHugh-Nagumo equation, Trans. A. Razmadze Math. Inst., 172 (2018), 571–581. https://doi.org/10.1016/j.trmi.2018.02.001 doi: 10.1016/j.trmi.2018.02.001
|
| [10] |
B. İnan, A finite difference method for solving generalized FitzHugh-Nagumo equation, AIP Conf. Proc., 1926 (2018), 020018. https://doi.org/10.1063/1.5020467 doi: 10.1063/1.5020467
|
| [11] |
B. İnan, K. K. Ali, A. Saha, T. Ak, Analytical and numerical solutions of the FitzHugh-Nagumo equation and their multistability behavior, Numer. Methods Partial Differ. Equ., 37 (2021), 7–23. https://doi.org/10.1002/num.22516 doi: 10.1002/num.22516
|
| [12] |
G. A. Al-Juaifri, A. J. Harfash, Finite element analysis of nonlinear reaction-diffusion system of FitzHugh-Nagumo type with Robin boundary conditions, Math. Comput. Simul., 203 (2023), 486–517. https://doi.org/10.1016/j.matcom.2022.07.005 doi: 10.1016/j.matcom.2022.07.005
|
| [13] |
K. M. Agbavon, A. R. Appadu, Construction and analysis of some nonstandard finite difference methods for the FitzHugh-Nagumo equation, Numer. Methods Partial Differ. Equ., 36 (2020), 1145–1169. https://doi.org/10.1002/num.22468 doi: 10.1002/num.22468
|
| [14] |
N. Hilal, S. Injrou, R. Karroum, Exponential finite difference methods for solving Newell-Whitehead-Segel equation, Arab. J. Math., 9 (2020), 367–379. https://doi.org/10.1007/s40065-020-00280-3 doi: 10.1007/s40065-020-00280-3
|
| [15] |
Z. Y. Fan, K. K. Ali, M. Maneea, M. Inc, S. W. Yao, Solution of time fractional FitzHugh-Nagumo equation using semi analytical techniques, Results Phys., 51 (2023), 106679. https://doi.org/10.1016/j.rinp.2023.106679 doi: 10.1016/j.rinp.2023.106679
|
| [16] |
S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103 (1992), 16–42. https://doi.org/10.1016/0021-9991(92)90324-r doi: 10.1016/0021-9991(92)90324-r
|
| [17] |
D. P. Gui, A fourth-order compact finite difference scheme to the numerical solution of FitzHugh-Nagumo equation, Appl. Mech. Mater., 873 (2017), 337–341. https://doi.org/10.4028/www.scientific.net/amm.873.337 doi: 10.4028/www.scientific.net/amm.873.337
|