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Abstract: This paper proposes a sixth-order compact finite difference framework to numerically
solve nonlinear reaction-diffusion equations, with a particular focus on the FitzHugh-Nagumo (FHN)
model. First, for the second-order spatial derivatives in the FHN equation, a five-point sixth-order
compact difference scheme is used for internal points, and a asymmetric six-point compact difference
scheme is used for boundary points to achieve spatial discretization, thereby transforming the problem
into an ordinary differential equation; then, this is and then combined with the semi-implicit Crank-
Nicholson method for the time discretization to obtain a numerical solution scheme for the FHN
equation. We establish the stability and convergence of the method and validate it through numerical
experiments. The feasibility and accuracy of the method were verified by conducting an error analysis
on the numerical results and comparing them with other algorithms. It is proven that this method is an
effective tool to solve the numerical solutions of nonlinear reaction-diffusion equations.
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1. Introduction

The FitzHugh-Nagumo (FHN) equation is an important nonlinear reaction diffusion equation
and a classical model used in neuroscience to describe the impulse behavior of neurons. Based
on its excitation-recovery and non-linear properties, it has also been widely used in fields such as
neurophysiology [1, 2], circuit theory [3], branching Brownian motion processes, logistic population
growth, nuclear reactor theory [4], and autocatalytic chemical reactions.
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Consider the following FHN equation:

2
%:%+u(l—u)(u—0), p<x<q 0<t<T, (1.1)

with the initial conditions

u(x,0) = up(x), p<x<gq, (1.2)

and the boundary conditions

u(p,t) = fi(),u(g, 1) = fo(1), 0<r<T, (1.3)

where 6 € (0, 1), and u(x, ¢) is an unknown function that depends on the time variable ¢ and the space
variable x. In particular, when 8 = —1, Eq (1.1) reduces to the real Newell-Whitehead equation, which
describes the dynamical behavior near the bifurcation point for the Rayleigh-Benard convection of
binary fluid mixtures.

The FHN equation originated from a simplification of the Hodgkin-Huxley model, and was initially
used as a simplified model to describe the excitatory conduction behavior of neurons; the equation was
proposed by FitzHugh [5] and improved by Nagumo [6] to form the classical FHN model. Since then,
the equation has been extensively studied and applied. Because the problem of not having an exact
solution or the exact solution being difficult to obtain is often encountered in practice, high-precision
numerical algorithms have been a hotspot of researchers’ attention in recent years.

There are many studies on the numerical solution of the FHN equation. Hariharan et al. [7]
introduced the Haar wavelet method to solve the FHN equation, and Namjoo et al. [8] provided
a numerical solution of the FHN equation based on a nonstandard finite difference format.
Shekarabi et al. [9] constructed a three-time-level implicit method using the tensor spline function.
Inan [10, 11] proposed the Crank-Nicolson exponential finite difference method to solve the FHN
equation [10], as well as an improved explicit exponential finite difference method using the Padé
approximation technique [11]. Al-Juaifri et al. [12] proposed the numerical approximation of the FHN
system based on the finite element method, which provides the bounds of the numerical solution.
Agbavon et al. [13] constructed a series of non-standard finite difference formats to solve FHN
equations with specified initial and boundary conditions in different cases. Hilal et al. [14] proposed
the implicit exponential finite difference method and the fully implicit exponential finite difference
method to compute numerical solutions of the Newell-Whitehead-Segel equation. Fan et al. [15] used
the residual power series method (RPSM), the homotopy perturbation method (HPM), and a modified
fractional Taylor expansion to solve the FHN equations.

Lele [16] proposed a class of compact finite difference formats to approximate the second-order
derivatives over a range of spatial scales, but did not apply them to nonlinear partial differential
equations. In this paper, we apply the sixth-order accuracy format from the reference [16] to the
spatial region of the discretized FHN equation, and then use the Crank-Nicolson method to discretize
the time region of the FHN equation, and construct a new Compact finite difference method to solve the
FHN equation. The numerical results show that the method has the advantages of easy implementation
and high accuracy.

AIMS Mathematics Volume 10, Issue 9, 21040-21060.



21042

2. Spatial discretization

We divide the spatial region into equidistant grids and construct M + 1 points to equally divide the
interval [ p, ¢|; we denote these points as follows:

—p+(-Dh (I<isM+1, h=2"Y9
M
We denote the symbols as follows:

2.,
)
For internal points, we use a five-point sixth-order compact difference scheme.

Let the second order derivative of u with respect to x have the following approximation:

; ou
u{ = u(xi,tj)’ u; = u(x;, 1), uzl' (X,,t) Lt (X,,t)

L PATHE TR T THE S T S T ) THE T
+b +c
h? 4h? Oh?
where @, 3, a, b and ¢ are constants to be determined.
Expand w1, wis2, w3, u,,, and u;,, into the Taylor series at x = x;, substitute them into Eq (2.1),
and then compare the coefficients of the Taylor series at different orders to obtain the following:

Bul, +aou | +ul +aul, +pu, =

, 2.1)

a+b+c=1+2a+2B (second order),

a+2°b+3% = 12(a +2°B) (fourth order),
a+2*b + 3% =30(e +2*8) (sixth order),

The more equations that the undetermined constants «, 3, a,b and c satisfy, the smaller the formal
truncation error of the approximation, and the last satisfied equation determines the formal truncation
error of the approximation.

Consider the following system of equations:

a+b+c=1+2a+2p4,
a+ 2% + 3% = 12(a + 2°B), (2.2)
a+ 2% + 3* = 30(a + 2°B).

Letc=8=0;solvea = %, b= %, a = 11 , and then obtain the second derivative approximation with
the sixth-order truncation error at the inner points x; (i = 3,4,--- , M — 1) as follows:
2 2 1 3 12 51 12 3
= + /"’ + — /'/ _ i U1 — —<U; i + i . 23
11 i-1 T U; 11u1+1 h2 (44 -2t 11 1 22” 11Lt+] 44M+2) ( )

wherei =3,4,--- ,M —1.
For the boundary points at x; and x,, we use an asymmetric six-point compact difference scheme.
Let the derivative of u with respect to x at x; and x, have the following approximation:

1
ul +auy = ﬁ(aul + buy + cus + duy + eus + fug). 2.4)
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Expand uf, u>, u3, us, us, and ue into the Taylor series at x = x;, substitute them into Eq (2.4), and then
compare the coeflicients of the Taylor series at different orders to obtain the following:

a+b+c+d+e+ f=0,
b+2c+3d+4e+5f =0,
b+2%+3%d+4%e+5f =2a+1),
b+2c+33d+ e+ 5f = 6a,
b+2% +3% +4% +5f = 12a,
b+2c+3d+4e+5f=20a,
b+ 2°¢ + 30d + 4% + 5 f = 30a.

By solving, we obtain the following:

0_137 a_1955 b__4057 6_1117 d__g e__g f_L
1377 1567 7 1567 78 T 78 15677 156

Thus, we obtain the following second derivative approximation scheme with a sixth-order truncation
error at the boundary points x; and x;:

- 137 ,, 1 (1955 4057 N 1117 55 29 7 ) (2.5)
Uy + —u) = — up — u Uz — —Uy — —Us + —U .
T3 TR 56 M T 156 2T 78 T 8™ T 156 T 156
Similarly, at the boundary points x,; and x,,,1, we have the following:

137 1 1955 4057 1117 55 29 7

144 124

T3t = a (st — gt gt~ gy — gty ¥ psgiti-s)

We summarize the spatial difference schemes as follows:

137 u = 1955 _ 4057 1117 55 29
”1 Tzl = h (1o 156 U1 — Tso U2 T g U3 — Fglla — j5cUs + 75 156 ),

2 ’” "o _ 3. 12 51 12 _

11 l l + l/l + Hul+l ]12(441/[1 2 + U1 — 22”1 + 11u1+l + ul+2) (l - 3 4 M 1)9
137, 1 1955 4057 1117 55 29

T3yt Uy = h2( 156 UM+1 — T3 UM T Zg-Um-1 = TgUM-2 — 156UM-3 T 156”M—4)'

3. Time discretization

We divide the temporal region into equidistant grids and construct N+1 points to equally divide the
interval [O, T]; we denote these points as follows:

T
=(-DAr (I<jsN+1 A=),

According to Eq (2.3), at the interior points x; (i = 3,4,--- , M — 1), we have the following:

28u| 8u| 28u|
11 9z =1 = gy e T g

2 2 2 2
- 1 U 1 + I/t T+ _Mz+1 + lgp(u)lx:x,q + Qa(u)lx:x; + H‘P(u)lx:xm

BT 11
NS S S S IO U DR B
T \agtie At T gt T e T gt ) T AU hme TOUD T T U0 b
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where (1) = u(1 — u)(u — 6). For convenience, we denote go{ = o(u) IZ)’;,..

Using the Crank-Nicolson scheme in time, we obtain the following:

2u z]+11 ~ ”{—1 N ”{H - ”zj 3”{:11 ~ ”z+1
1 At At 11 At
12 51 . 12
1 1 1 1 1
2h2 [( 44 1J+2 11”111—1 - Zulﬁ— + ﬁu{:—l 4 IJ:Z)
3 12 51 ; 12 3 2 . 2
+ (ﬂu{—Z + Hu{—l - Zull + 11u1+1 ﬂuzj+2)] + ﬁ"pt{—l + "Dlj 11()Ot+1
After simplification, the internal difference format is obtained as follows:
3 2 12 | 51 1 3 1
- @SMJ+ (— - ZS)MJ+ + (1 + ﬂ ) J+ +( - — ) l+1 - @ 1]12
3 2 12 51 12 3 2 2
—gsu +(H+Zs)u{ +(1——s)u +(—+—s)ul+1+gsul+2+At(1 e+ — T4 )

where s = %, i=3,4,--- ,M—1.

According to Eq (2.5), at the boundary points x;, x;, X3, X4, X5, and xg, we have the following:

0u| L 137 137 8u|
ot 13 9t "
’ ” 137
=u + FMZ + ¢(u)|x:x1 + ?‘P(”)h:n

1 1955 4057 1117 55 29

L 137
= 1561 T 16 2T IR 0 T 78 T 156 T 156 ) T #When * 3 el

Using the Crank-Nicolson scheme in time, we obtain the following:

u{+1_u{ 137uj+l_ué'
At 13 At
955 AT T 55 29 T
=2 (Tse ™ ~qse T g T 7gt T 15" T isghs )
1955 . 4057 . 1117 . 55

]

156 17 156 2 737 T 78" T 136"

After simplification, the difference scheme at the boundary is as follows:

1955 137 4057 HI7 jer 035 29 0 T

| | 29 7
ul u ] w— u + +
156 u)l+ ¢+ 137

1_ il Jj+l oo Bt j+1
=3 m +Gx+ 39 ~ 565 T 156" T3 ~ 3%
1955 137 4057 . 1117 , 55 29 7 137
= (1 + —)u! + (— — ——s)u + /- = I 4 I+ At(g] + —¢l).
I+ 3 m+ (G =~ 3 V0 156 96 ~ 156 ~ 312°% T 312 T A + 7379

Applying the same procedure at the boundary points x4, Xp-3, Xp—2, Xp-1, Xy, and xp,q, the
difference schemes are summarized as follows:

1955 .. 137 4057 ., 1117 55 29 7
1 - Jj+l - J+1 Jj+l ]+1 e & S Jj+l
(I=3pn + Gt 39 ~ 7565 T 1% T3~ 313%
1955 . 137 4057 1117 . 55 29 7 137
= (Lt S5 + (3~ 35 TR I56 %6~ 156”“‘/1 B 312”‘g M 312”‘é +Ailg] + 13 %)

(3.1)
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- gsug + (% - %s)ufll +(+ %s)uﬁrl + (% - gs)u{: - 83—8suf:21
= %su{_z + (% + %s)u{_l +(1 - %s)u{ + (% + %s)ul{rl + 83—8su{+2 (3.2)
+ Ar(12—1¢{_1 +¢l + 1—2190{;1), i=3,4,...,M-1,
(1- %s)uﬁil + (113—37 + égo%s)ugl - %suﬁll %suﬁlz + %su;}; - ;ﬁsuﬁ,&
=1+ 1391525 s)uiprl + (113—37 - 430%5)%4 + %sui’_l - %sui{_z - %suﬁl_3 + 373”‘5;4—4 3.3)
+ At + 137 7

13

Furthermore, it can be written in matrix form as follows:

At = Bu/ + C¢’ + D/,

where
Jo— T J\T
o = (0303 )
137 | 4057 1117 55 29
3 T 328 156 5 1565 3129
2 12 51 2 12 3
T ns l+gs g-38 88S
3 212 51 212
g8 75 1+us - %
A=
_3 2 _ 12
8% 1T 2
3
0 T
7 29
3RS 3%
137 4057 1117 55 29
3 312 % 156 5 1565 3129
2,12 51 2,12 3
Ttms l-3s g+5ns g8
3 2 12 51 12
g8 T+5ns 1-us g+5s
B =
3. 2,12
g8 TRy
3
0 55
7 29
3RS 32°

AIMS Mathematics

i — (1) 1
u' = (uy, u3, - -

J\T
Uy s
b
2 _ 12 _3
TR g8
51 2 12
L+3s -5
1117 137 | 4057
565 13t 328
b
2.1 3
TR 88"
51 2,12
I-3s G+5s
117 137 _ 4057
156 13~ 312
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(1= 5™ + (1 + 5F9u] + ke
' 0 s+ g
Poud 0
C=At . D/ =
Pod ’
0 0 & My + F Uy
—(1-22 ity + (1 + 55 ity + ke,

By solving the above equation, the value at each time step can be obtained.
4. Stability and convergence analysis

In this section, we study the stability and convergence of numerical solutions to the FHN equation
using the difference schemes (3.1)—(3.3) under the boundary value problems (1.2) and (1.3). To
facilitate the error analysis, we rewrite our difference schemes in terms of derivative approximations.

According to the previous derivation, and by taking ¢ = 8 = 0, the difference scheme (3.2) can also
be written as follows:

Jj+1 j Jj+1 Jj j+1

Wiy Uiy (M W Uiny ~ uz+1
@ + +a
k k k
! u{jll _ 2u{+1 * u’!: i ~ 2” + ul+1 uzjjzl —2u ]H + z]:zl u, ,— 2M + u1+2 “.1)
"2 h? * h2 +b 4h2 e
+tapl el tapl,, 3<i<M-1.

Looking back at Eq (2.2), the coefficients a, b, and « satisty the following relationship:

a+b=1+2a,
a+4b = 12a,
a+ 16b = 30a.

4.2)

4.1. Stability analysis

We define some operators and inner products as follows:

Uiy = 2U; + Ui
4h? ’

sy, Uiy — 2u; + Uiy

2),, —
o Ui i , 0 u;

xx T

— 450 (2)
Lv =ad[v+boyv,
M-1

wowy =h ) viwi, VI = (v,v),
i=3

(MV); = aviey +vi + avigy,

VW= My, wh, IR, = (v

AIMS Mathematics Volume 10, Issue 9, 21040-21060.



21047

Thus, the operator form of (4.1) is as follows:

Mt = Mwd 1, : :
e b - 4 :E(LMJ+1+LMJ)+M¢J (i=3,---,M-1). 4.3)
To prove the stability of this method, we need to use the following lemma.
Lemmad4.1. If0 < a < %, then M is symmetric and positive definite; additionally,
colMP < My < et VP, co=1-2a,¢; = 1+ 2a.
Proof. Expanding
M-1
VB =k > 07 + @viovi + avivin), (4.4)
i=3
from |ab| < 1(a* + b%), we obtain
ey <o < Loz a2
Vi +vi) S vivig < (Vi +vi ).
2 2
Summing Eq (4.4) fori =3,--- , M — 2, we obtain the following:
M-2 = 1 M-2 1 M-1
Z ViViel = —5 : (Vl2 + V?_'_l) = —Evg — Z V? - Evi/l—l > — : V?,
i=3 i=3 i=4 i=3
M-2 M-2 M-2 M-1
Z Vivier < % Z:(v,2 +vi) = %vi + > v+ %vﬁ,,_l < V7
i=3 i=3 i=4 i=3
Thus,
M-1 M=2 M-1
IR EIRLEDN (4.5)

i=3 i=3
Substituting (4.5) into (4.4), since @ > 0 and & > 0, we obtain the upper and lower bounds as follows:

MG =k > v+ 20 (<h Y vE) = (1= 2a)h Y v = (1= 2a0) IMP = ¢ VI,

MG < h > vE+ 20 (kD vE) = (1+20)h Y v = (1+2a) I = 1 VP

Furthermore, since a < %, we have ¢y = 1 — 2a > 0; therefore,
2 2
VIl = colVIl” > 0.

Thus, M is positive definite, and symmetry is obvious from the definition; thus, M is symmetric and
O

positive definite.
Lemma 4.2. Suppose that the sequence extends to zero at the boundary; then,

(nolv) = —DiP . (v 46v) = ~ 1D

where (Dv); = (viy1 — vi)/h and (D,v); = (viy1 — vi1)/(2h). Therefore,
v, Lv) = —al| DI = bl|Dyvl* < 0.
Volume 10, Issue 9, 21040-21060.
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Proof. For the first equation, since it extends to zero at the boundary, we have the following:
Z Vi(vier = 2vi + Vi) = Z [Vi = vie)Vier = (i —vivil = Z (Vi1 —

We multiply both sides by -5 to obtain

1 1
(noWv) = 5 D vl = 2t via) = =5 3 (i =) = =D

thus, the first equation is proven.
For the second equation, let A; = ~*5=t; then,

A1 — Ay _ Vipp— 2vi+vio

o ah = o
Thus,
Zhvi : iciﬁiﬁvi = Z thA'HQ—hA'I = %Z Vi(Ais1 — Ainr) = —% ZAi(vi+1 — Vi) = — Z hA,-z,
that is,
(v, 362v) = — 1Dy
The second equation is proven, and Lemma 4.2 is complete. O

Next, define the linear extension of each time layer based on the boundary conditions u(p, 1) = fi(f)
and u(g,t) = f>(¢) as follows:

g 1) = filt) + ’q“ — (b1~ )

It can also be written as follows: ' ' .
gl =1 =Wf] +Af,

where A; = g = % Thus, | | |
g1 =M Sy =h

and it is clear that g/ is linear with respect to x. Thus,
5(1)g = 5(2)g = £g =

Let v/ = u/ — g/; substitute u/ = v/ + g/ into (4.3), use Lg’ = 0, and organize to obtain the internal
equation with zero boundary as follows:

Mt — My 1 ) ) ] ) Mg/t — g/
\Y - Vo 5 (£u1+1 n LM]) + Mo(v + g') + (g#g) (4.6)
Denote " .
i M@ =g
k 9
where ,
. gﬁl gl . .
(R)); = a5tg + 5tg + a’ézgl“» 5tg, X =(- /1[)6tf]] + /1t5tfzj’

AIMS Mathematics Volume 10, Issue 9, 21040-21060.
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_ h@) = filtga)

6if = p _ f2(tj+l)_f2(tj+l).

s 6If21 - k

Note that
a(l-A_ D)+ =) +a(l =) +(@di; + A4 +adip) =1 + 2a.

We obtain a pointwise estimate as follows:
|(RM)| < (1 +20) max {|o.f/]. 6.4}

Taking the inner product of both sides of (4.6) with v/*! + 1/, and setting w/*2 = S(w* 4 v7), then by
the symmetry of M in Lemma 4.1 together with Lemma 4.2, we obtain the following:

[ el
M M _

k

5 <£W1+%, wﬁ%) + <Mg0(vf +gh, v+ VJ> + <RJ,v’+1 + v1> :
Moreover, the diffusion term satisfies the following:
2

<0.

2
DLt il L
<.£W]+2,W]+2> = —GHZ)1W]+2 - bHDQW”Z

Thus,

vl = o S
< (Mo + g v 40T} + (R 407 4.7)

Next, we decompose the nonlinear term into the Lipschitz part with respect to v and the pure data part
as follows:

eV + ) = |00/ + &) — (gh)| + w(g”). (4.8)
Denote
N’ = +¢") =g, G =p(g).
Let the amplitude upper bound be K > 0, which satisfies
Vi +g| <K, Vij<n,
and define

Ly = ’ = .
K Tﬁ?f?"p O, ¢k r&llg;gIQO(S)l

By the mean value theorem and ¢ € C!, we obtain |N,J | < Lg |V,J | Combining this with Lemma 4.1, we
have the following:

IV < 2] < 2l (4.9)
Since G’ = (g’) is completely determined by the boundary data, it follows that

|G| < Va=pox, ||MG| < (1 +20)Vg—p¢x.

Substituting (4.8) into (4.7), we obtain the following:

; 2 112
P = 1
vl = [l
k

< (MNT 14T ) £ (MG 4 07) + (R v 4 07 (4.10)

AIMS Mathematics Volume 10, Issue 9, 21040-21060.
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(1) For the first term on the right-hand side of the inequality, by the Cauchy-Schwarz inequality
and (4.9), we have the following:

(N7t l) < [N, I v < e W, (7 L, + L) -
Using 2ab < a* + b?, we have the following:
. ; . 1 ; .
7 Ol 1100 = 5 (I 1+ 3115
Lety = \/gLK; then, we have the following:
(M vty < (I 3 VL) (@.11)

(i1) For the second and third terms on the right-hand side of the inequality, by the Cauchy-Schwarz
inequality and Lemma 4.1, we have the following:

<MGj,vj+] + vj> < ||MGJ|| ||vj+] + vj” < |J*

€0

<Rj,ijrl + vj> < ||RJ|| ||ijr1 + vj” < ,/%

Applying 2ab < ga® + 7'b*, Ve € (0, 1] to the above two formulas, we obtain the following:

MG fmax {7 ]

max {7, IV,
R’|| max {||v e VT

(MG v+ (R ) < 2 (I + )+ éc% (MG +R). @12
Substituting (4.11) and (4.12) into (4.10), we obtain the following:

”vm”i" _ ||W||i4 Y (1117 Y+ (IR ), 12 e ilI2
< 2 30 + 5 (e VIR + £ (e + 7).

After simplification, we obtain the following:

k , , 12 . ,
(1= S0+ ) 7 < (04 G + ) G + 622 (MG + ). @)
For Ve € (0, 1], if
k< 2 ,
v+e&

then the coeflicient on the left-hand side of (25) is positive, and hence it can be written as
L+k(3y+1e)
1-3(r+e)

12 1
6C01—§(y+8)

e R, + (IMG7[F + [RF).

Denote 5 |
) 2 1 +k(5y + 58) 12 1
E/ = ”"]”M’ 0.(k) = kz 22 e =1= . .
1-5(y+e) ecl-3(y+e

AIMS Mathematics Volume 10, Issue 9, 21040-21060.
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Then, the above expression can also be written as follows:

EM < pu(K)E’ + kC, (

MG+ [RT).

For Vn < N, iterating for j = 1,--- , n, we obtain the discrete Gronwall-type estimate as follows:
E" < pu'E + )" koo IC (MG + R,
=1

By Gronwall’s lemma, the solution is exponentially bounded.

Therefore, as long as the time step satisfies k < 7%8 the energy of the numerical solution remains

bounded, which proves the stability of the difference scheme (3.2). Similarly, the stability of the
schemes (3.1) and (3.3) can be established.

4.2. Convergence analysis

Recalling (4.1),

Jj+1 J Jj+l J Jj+l J
a“i—l — Ui + u +a”i+1 — Ui
k k k
Jj+1 Jj+1 Jj+1 Jj Jj Jj Jj+1 Jj+1 Jj+1 J J Jj
_ l wy = 2u; +up, N w_y = 2u; +uy, +b W, —2u; +up,  u gy = 2w+,
2 h? h? 4h? 4h?
j j j ~
tap; |+t tap,,, 3<i<M-1
We use the following notation:
J J J J J J
= iy = 2u; +uy, B o= Uy = 2u; + Uy,
! h? ’ 2 4h? ’

w =a, wg=1, wy=a, me{-1,0,1}, §, = Zm"wm.
Then, we have the following: ’
So = Zwm =142a, S,= Zmzwm =2a, S4= Zm4w,n =2a, S;1=855=0.
Therefore, Eq (4.1) may be represented as follows:
% Z W (u(x,-+m, tis1) — W(Xitm, tj)) = % [a (H{Jrl + Hf) +b (Héurl + Hé)] + Z wmcp{;m.

For the left-hand side of the equation, by performing a Taylor expansion in time #;, we obtain the

following:
2

U(Xipms Lj1) = U Xy 1) = Kite(Xjgm, 1)) + E”zr(xnm, tj) + O(k3)-

AIMS Mathematics Volume 10, Issue 9, 21040-21060.
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Furthermore, expanding each time derivative in space with respect to x;, we obtain the following:

2h2 m3h3 414 s
ut(-xi+m’ tj) = U+ mhuxt + Uxxr + Uxxxr t Usxxxt T O(h )’
2 6 24
21,2 31,3 414
m°h m’h m*h
5
utt(xi+ma tj) = Uy + mhuxtt ++ 2 Upxtr + Usxxr T Usxxxtr T O(h )

6 24
Thus,

LHS = (u(-xi+m» tiv1) = U(Xipm, fj))

2

k
Eutt(-me’ )+ O(k3))

(kul(-xl+m’ tj) +

m

1
k
1
k
k 2
Z Wi M,()CH.m,l ) + 2ull(xl+m3t ) + O(k )

21,2 31,3 414
m-h m’h m*h
5
(ut + mhux, + — Uy + Uyyxr + Upxxxt T O(h ))

2 6 24
m2h2 m3h3 m4h4

2 Tuxxtt + Wuxxxtt + O(hs)) + O(kz)]

h? h* k
= Zml Wl + > Zm: mzwmum + 7 Zm: m4wmuxxxx, + 3 Zm: Wyl + O(kz, kh?, h6)

2 4

k h h
= SOut + ESOutt + ES Uy + ﬂsﬂ/txxxxt + O(kza khz’ h6)

k
+ 5 utt + mhuxt, + —uxxn +

For the right-hand side of the equation, by performing a Taylor expansion of H, Hé, H 1’ 1 and Hé“ in

(x;, 1), and expanding gol ., 1N X;, we obtain the following:

1 ‘ , . . ‘
RHS = E(aH]j +bH; + aH{Jrl + bH{rl) + Z Oy

1 h? h* h? 2h*
— - ,© 6 = (6 6
> alu,, + 12uxxxx + 360u + O(h )) + b(uxx 3 — Uy + 15 u” + 0O(h ))
2 ]’14
+afue(xi, tir) + ﬁuxxxx(xia tiv1) + %M@(% tiv1) + O(hﬁ))

2 2ht
_uxxxx(xi’ tj+l) + _u(6 ()C,, ]+l) + O(h6 )]

+b uxx(xia tj+l)+ 3 45

2h2 3h3 414
+ Zm: Wi (‘10 + mh‘px + m2 Pxx T m6 Prxx + Wgoxxxx + O(hs))
k a kh* a b
= (Cl + b)uxx + _(a + b)uxxt + hz(_ + _)uxxxx ) (E + )uxxxxt h (360 45 )u(6)

+ WP + — Z m? WyPxx + 24 Z m* Wy Prxxx T 0(k2 kh? hﬁ)

m
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k a b kh> a b a 2b
= ((l + b)uxx + E(a + b)uxxt + hz(E + §)uxxxx + T(E + 3)uxxxxt + h4(% + 45 )u(6)
h2 h4 2 2 16
— — k*, kh°, h).
+S090+ ZSZQDxx+24S4‘10xxxx+0( s ’ )
Therefore,
T=LHS — RHS

k h? a b
= (Sout - (Cl + b)uxx - SO()O) + 5 (SOMtt - (Cl + b)uxxt) + ? (SZZ'txxt - Z(E + g)uxxxx - SZ‘Pxx)

h* a 2b
—_ — 24— + 2, © — 2 kR 1.
+ 24 (S4uxxxxt (360 + 45 )I/l S4S0xxxx) + O(k s kh s h )

According to (4.2), we have the following:

a+b=1+2a=39,,
%a+§b:2a:SZ,

1 167, _ —
Ba+gb—2a/—54.

Thus,

k h?
T= (Sout - SOuxx - SOQD) + E (Soutt - S()uxxt) + E (S 2Uxxr — SZ”xxxx - SZQDXX)

4

h
+ ﬂ (S4uxxxt - S4u(6) - S4()0xxxx) + O(kza khza h6)

From (1.1), since u, — u,, — ¢ = 0, by differentiating both sides of the equation with respect to x or ¢,
we obtain the following:

Uy — Uxxx T @x = Oa
Uy — Uxxr = P15
Uxxt — Uxxxx — Pxx = 0,

Uxxxxt — u(6) — Pxxxx = 0.
Thus,

7= gSogot + Ok, kh?, h®).
This means that, as &,k — 0, the truncation error T — 0, which indicates that the difference scheme
is consistent. Since we have already proven the stability earlier, it follows from the Lax equivalence
theorem that our difference scheme is convergent.
Moreover, we also know that the truncation error of Eq (3.2) is O(k + h%). Similarly, the truncation
errors of (3.1) and (3.3) are also O(k + h%). This result will be verified in the numerical experiments in
the next section.
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5. Numerical examples

The method is assessed in terms of the L, and L, error norms and the order of convergence, which
are defined as follows:

_ log(E,/E>)
log(hi/hy)’

M N
2
L. = Z Z (u(x,-, j) = Uexa(Xi, tj)) . Lo=  max |u(xi1;) = ttexa(xin1))|, rate
-

0<i<M,0<j<N
i=0 j

exa 1

errors when the spatial step of the lattice is &y, h,, respectively.

where u, (x,, ;) represents the exact solution at x = x;, f = f;, and E}, E, denote the corresponding L,
We consider the FHN equation

ou o
a—”: = a_xbzt u(l—wu—0), (x1)elp,qlx[0,T]

with the initial condition
1 1 X
u(x,0) = = + = tanh (—) ,
2 2 242

and boundary conditions

2

1 1 1
s l/l(q, f) = E + 5 tanh [2—\/5(6] + Cl')

I 1 1
Lt(p, 1) = 5 + E tanh [ﬁ(p + ct)

respectively, where ¢ = ‘/%(1 —20).

Thus, the exact solution of this equation is

1 1 1
u(x,t) = 5 + 5 tanh [2—\/5()6 + ct)

In what follows, we apply the algorithm proposed in this paper to Eq (1.1) under two sets of
initial data.
Case 1: Set the initial data p = —10,¢g = 10, T = 1, and 6 = 0.5, and the fixed time step Af = 1072,

Table 1 shows the results of the comparison between the numerical solution and the exact solution
at different spatial locations when the spatial step size & is taken as 0.5, 0.25 and 0.125. It can be
seen that the error between the numerical solution and the analytical solution significantly decreases as
the spatial step size decreases. Figure 1 shows the comparison between the three-dimensional images
of the numerical solution and the exact solution when #4 is taken as 0.5 and 0.25. It can be seen that
the numerical simulation results basically match with the exact solution image, which verifies the
effectiveness of the algorithm.
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Table 1. Comparison of numerical solutions and exact solutions for different spatial
step sizes.
Numerical solutions .
X Exact solutions
h=05 h=0.25 h=0.125

-8 0.003481327309947 0.003481327293309 0.003481327296985 0.003481327297065
-6 0.014166030241687 0.014166035788835 0.014166035875316 0.014166035876688
-4 0.055807233852591 0.055807219442184 0.055807219210866 0.055807219207170
-2 0.195570322854545 0.195570317536785 0.195570317493569 0.195570317493043
0 0.499999999999997 0.499999999999994 0.500000000000002 0.500000000000000
2 0.804429677145450 0.804429682463204 0.804429682506434 0.804429682506957
4 0.944192766147403 0.944192780557806 0.944192780789137 0.944192780792830
6 0.985833969758309 0.985833964211155 0.985833964124688 0.985833964123312
8 0.996518672690049 0.996518672706683 0.996518672703019 0.996518672702935

(a) Numerical, 2 = 0.5

(b) Exact, h = 0.5 (¢) Numerical, & = 0.25 (d) Exact, h = 0.25

Figure 1. Comparison of numerical and exact solutions for different 4.

Table 2 lists the comparison of the backward Euler method, the algorithm of the literature [17],
and the algorithm of this paper for different spatial step sizes that correspond to the L, error, L, error,
and convergence order. From the data in the table, it can be seen that the numerical accuracy of the
algorithm in this paper is superior. With the increase of the number of spatial discrete points, the error
decreases, the convergence order is close to the sixth order, and the numerical solution shows good
stability under different spatial resolutions. Figure 2 illustrates the errors at each discrete point at time
t = 1 when the spatial space step £ is taken as 1, 0.5, 0.25 and 0.125. As can be seen from Figure 2,
the trend of the error images is similar at different spatial steps, and the order of magnitude of the error
steadily decreases as h decreases, which proves that the method is stable and convergent.
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Table 2. Comparison of the L, errors, L, errors, and convergence order of different

algorithms.
I backward Euler method the algorithm of the [17] the algorithm in this paper
Lo order Lo order Lo order

1 1.5460 x 1073 - 1.1055 x 10~* - 1.5524 x 1073 -

0.5 4.0850 x 1074 1.9202  5.9802x 107%  4.0859 2.1853 x 1077 6.1505
0.25 1.0197 x 107+ 2.0021 3.6832x 1077 4.0212 3.3936 x 107° 6.0089
0.125 5.5657 x 107> 1.9908  2.2936x 10 4.0053  5.3193 x 107! 5.9954
0.0625 6.4132x 107 2.0002 1.4366 x 107° 3.9968 8.4049 x 10713 5.9839

Figure 2. Numerical errors of discrete points with different M values at time t=1.

Case 2: Set the initial data p = =5, ¢ = 25, T = 0.5, and 6 = 0.5, and the fixed time step At = 1072,

Table 3 shows the comparison results between the numerical solution and the analytical solution
at different spatial locations when the spatial step size & is set to 0.5, 0.25, and 0.125. It can be
seen that as the spatial step size decreases, the error between the numerical solution and the analytical
solution significantly decreases. Figure 3 shows the comparison of the three-dimensional images of the
numerical solution and the analytical solution when the spatial step size % is set to 0.5 and 0.25. It can be
seen that the numerical simulation results are basically consistent with the analytical solution images.

Table 4 lists the comparison of the L, error, L., error, and convergence order of the three algorithms
under different spatial step sizes. From the data in the table, it can be seen that the numerical accuracy
of the algorithm proposed in this paper is superior. As the number of spatial discrete points increases,
the error gradually decreases, and the convergence order approaches the sixth order. Additionally,
the numerical solution exhibits good stability at different spatial resolutions. Figure 4 shows the
error situation at each discrete point when the spatial step size & is set to 1, 0.5, 0.25, and 0.125,

attime t = 1.
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Table 3. Comparison of numerical solutions and exact solutions for different spatial

step sizes.
Numerical solutions .
X Exact solutions
h=05 h=0.25 h=0.125
-2 0.195570341839716 0.195570317837384 0.195570317498287 0.195570317493043
1 0.669761714960261 0.669761551833839 0.669761549365509 0.669761549326657
4 0.944192776812420 0.944192780723502 0.944192780791714 0.944192780792830
7 0.992964649799372 0.992964648928960 0.992964648915042 0.992964648914826
10 0.999151394949809 0.999151395035921 0.999151395037261 0.999151395037289
13 0.999898198917428 0.999898198931662 0.999898198931886 0.999898198931891
16 0.999987795679827 0.999987795681589 0.999987795681621 0.999987795681621
19 0.999998537012758 0.999998537012975 0.999998537012976 0.999998537012976
22 0.999999824626747 0.999999824626765 0.999999824626763 0.999999824626765

(a) Numerical, & = 0.5

(b) Exact, h = 0.5

(¢) Numerical, & = 0.25

(d) Exact, h = 0.25

Figure 3. Comparison of numerical and exact solutions for different 4.

Table 4. Comparison of the L, errors, L, errors, and convergence order of different

algorithms.
" backward Euler method the algorithm of the [17] the algorithm in this paper
L order L order L order

1 9.5178 x 107* - 7.0569 x 107 - 1.1797 x 1073 -

0.5 24734 x107*  1.9441 4.1635 x 107 4.0832 1.6565 x 1077 6.1542
0.25 6.3067 x 107> 1.9716 2.5620 x 107’ 4.0225 2.6608 x 107~° 5.9601
0.125 1.5770 x 1073 1.9997 1.5949 x 1078 4.0057  4.1168 x 107! 6.0142
0.0625 39516 x 107 19966  9.9584 x 1071  4.0014  6.5337 x 10713 5.9775
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—#—h=025
—+—h=0125

..... Yy

-5 [l} é 15 1I5 2I0 2IS
Figure 4. Numerical errors of discrete points with different M values at time t=1.

6. Conclusions

In this paper, a novel high-precision compact finite difference algorithm was developed to solve
nonlinear reaction-diffusion equations, with a specific application to the FHN equation. The spatial
second-order derivatives were discretized using a sixth-order compact finite difference scheme, while
the time integration was performed using a semi-implicit Crank-Nicolson method. Through two
numerical experiments, the numerical results obtained by this method were found to be basically
consistent with the exact solution. Compared with other algorithms, it has a higher algorithmic
accuracy, achieving sixth-order spatial convergence accuracy, which can maintain high accuracy at
lower grid resolutions and save computational resources. Moreover, the method proposed in this paper
can be extended to solve other nonlinear reaction-diffusion equations, which makes it an effective tool
to solve numerical solutions of such partial differential equations and helps to better understand the
behavior of biological systems.
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