The study of the generalized $ t $-deformation of free convolution from the lens of Cauchy–Stieltjes kernel (CSK) families provides an excellent mathematical framework for understanding noncommutative probability distributions. In this paper, we use the concept of generalized $ t $-deformation to demonstrate different elements of the Marchenko–Pastur, free Gamma, and inverse semicircle measures in the CSK families setting. These findings advance our knowledge of generalized $ t $-deformation in the non-commutative probability framework.
Citation: Fatimah Alshahrani, Raouf Fakhfakh. Stability and properties of Cauchy–Stieltjes Kernel families under generalized $ t $-transformation[J]. AIMS Mathematics, 2025, 10(9): 21025-21039. doi: 10.3934/math.2025939
The study of the generalized $ t $-deformation of free convolution from the lens of Cauchy–Stieltjes kernel (CSK) families provides an excellent mathematical framework for understanding noncommutative probability distributions. In this paper, we use the concept of generalized $ t $-deformation to demonstrate different elements of the Marchenko–Pastur, free Gamma, and inverse semicircle measures in the CSK families setting. These findings advance our knowledge of generalized $ t $-deformation in the non-commutative probability framework.
| [1] |
A. R. A. Alanzi, R. Fakhfakh, F. Alshahrani, On generalized t-transformation of free convolution, Symmetry, 16 (2024), 372. https://doi.org/10.3390/sym16030372 doi: 10.3390/sym16030372
|
| [2] |
S. S. Alshqaq, R. Fakhfakh, F. Alshahrani, Notes on Cauchy-Stieltjes kernel families, Axioms, 14 (2025), 189. https://doi.org/10.3390/axioms14030189 doi: 10.3390/axioms14030189
|
| [3] | M. Anshelevich, Product formulas on posets, wick products, and a correction for the q-Poisson process, Indiana U. Math. J., 69 (2020), 2129–2169. |
| [4] |
Z. Bao, L. Erdos, K. Schnelli, Equipartition principle for Wigner matrices, Forum Math. Sigma, 9 (2021), 121. https://doi.org/10.1017/fms.2021.38 doi: 10.1017/fms.2021.38
|
| [5] |
S. Belinschi, M. Capitaine, S. Dallaporta, M. Fevrier, Fluctuations of the Stieltjes transform of the empirical spectral distribution of selfadjoint polynomials in Wigner and deterministic diagonal matrices, J. Funct. Anal., 289 (2025), 111083. https://doi.org/10.1016/j.jfa.2025.111083 doi: 10.1016/j.jfa.2025.111083
|
| [6] |
W. Bryc, Free exponential families as kernel families, Demonstr. Math., 42 (2009), 657–672. https://doi.org/10.1515/dema-2009-0320 doi: 10.1515/dema-2009-0320
|
| [7] |
W. Bryc, A. Hassairi, One-sided Cauchy-Stieltjes kernel families, J. Theor. Probab., 24 (2011), 577–594. https://doi.org/10.1007/s10959-010-0303-x doi: 10.1007/s10959-010-0303-x
|
| [8] | W. Bryc, M. Ismail, Approximation operators, exponential, $q$-exponential, and free exponential families, arXiv Preprint, 2005. https://doi.org/10.48550/arXiv.math/0512224 |
| [9] |
W. Bryc, R. Fakhfakh, A. Hassairi, On Cauchy-Stieltjes kernel families, J. Multivariate Anal., 124 (2014), 295–312. https://doi.org/10.1016/j.jmva.2013.10.021 doi: 10.1016/j.jmva.2013.10.021
|
| [10] |
M. Bożejko, W. Bożejko, Deformations and $q$-convolutions. old and new results, Complex Anal. Oper. Th., 18 (2024), 130. https://doi.org/10.1007/s11785-024-01572-8 doi: 10.1007/s11785-024-01572-8
|
| [11] | M. Bożejko, J. Wysoczański, New examples of onvolutions and non-commutative central limit theorems, Institute of Mathematics Polish Academy of Sciences, 43 (1998), 95–103. |
| [12] |
M. Bożejko, J. Wysoczański, Remarks on t-transformations of measures and convolutions, Ann. I. H. Poincare-Pr., 37 (2001), 737–761. https://doi.org/10.1016/S0246-0203(01)01084-6 doi: 10.1016/S0246-0203(01)01084-6
|
| [13] |
V. Debavelaere, S. Allassonnière, On the curved exponential family in the stochastic approximation expectation maximization algorithm, ESAIM: Probab. Stat., 25 (2021), 408–432. https://doi.org/10.1051/ps/2021015 doi: 10.1051/ps/2021015
|
| [14] | D. Friedman, The functional equation $f(x+y) = g(x)+h(y)$. Am. Math. Mon., 69 (1962), 769–772. |
| [15] |
R. Fakhfakh, Explicit free multiplicative law of large numbers, Commun. Stat.-Theor. M., 52 (2023), 2031–2042. https://doi.org/10.1080/03610926.2021.1944212 doi: 10.1080/03610926.2021.1944212
|
| [16] |
R. Fakhfakh, A characterization of the Marchenko-Pastur probability measure, Stat. Probabil. Lett., 191 (2022), 109660. https://doi.org/10.1016/j.spl.2022.109660 doi: 10.1016/j.spl.2022.109660
|
| [17] |
R. Fakhfakh, F. Alshahrani, A property of the free Gaussian distribution, Georgian Math. J., 32 (2025), 71–76. https://doi.org/10.1515/gmj-2024-2037 doi: 10.1515/gmj-2024-2037
|
| [18] |
B. G. Florent, C. Cuenca, V. Gorin, Matrix addition and the Dunkl transform at high temperature, Commun. Math. Phys., 394 (2022), 735–795. https://doi.org/10.1007/s00220-022-04411-z doi: 10.1007/s00220-022-04411-z
|
| [19] |
B. G. Florent, Taylor expansion of $\mathcal{R}$-transforms, Applications to support and moments, Indiana U. Math. J., 55 (2006), 465–481. http://dx.doi.org/10.1512/iumj.2006.55.2691 doi: 10.1512/iumj.2006.55.2691
|
| [20] | G. Falsone, R. Laudani, Probability transformation method for the evaluation of derivative, integral and Fourier transform of some stochastic processes, J. Eng. Math., 12 (2021). https://doi.org/10.1007/s10665-021-10183-7 |
| [21] |
A. D. Krystek, L. Wojakowski, Associative convolutions arising from conditionally free convolution, Infin. Dimens. Anal. Qu., 8 (2005), 515–545. https://doi.org/10.1142/S0219025705002104 doi: 10.1142/S0219025705002104
|
| [22] |
A. D. Krystek, H. Yoshida, The combinatorics of the $r$-free convolution, Infin. Dimens. Anal. Qu., 6 (2003), 619–627. https://doi.org/10.1142/S0219025703001419 doi: 10.1142/S0219025703001419
|
| [23] | A. D. Krystek, H. Yoshida, Generalized t-transformations of probability measures and deformed convolution, Probab. Math. Stat., 24 (2004), 97–119. |
| [24] |
B. Jørgensen, C. C. Kokonendji, Dispersion models for geometric sums, Braz. J. Probab. Stat., 25 (2011), 263–293. https://doi.org/10.1214/10-BJPS136 doi: 10.1214/10-BJPS136
|
| [25] |
B. Jørgensen, C. C. Kokonendji, Discrete dispersion models and their Tweedie asymptotics, AStA-Adv. Stat. Anal., 100 (2016), 43–78. https://doi.org/10.1007/s10182-015-0250-z doi: 10.1007/s10182-015-0250-z
|
| [26] |
B. Jørgensen, Exponential dispersion models, J. Roy. Stat. Soc. B, 49 (1987), 127–162. https://doi.org/10.1111/j.2517-6161.1987.tb01685.x doi: 10.1111/j.2517-6161.1987.tb01685.x
|
| [27] |
G. Letac, M. Mora, Natural real exponential families with cubic variance functions, Ann. Stat., 18 (1990), 1–37. https://doi.org/10.1214/aos/1176347491 doi: 10.1214/aos/1176347491
|
| [28] |
C. N. Morris, Natural exponential families with quadratic variance functions, Ann. Stat., 10 (1982), 65–80. https://doi.org/10.1214/aos/1176345690 doi: 10.1214/aos/1176345690
|
| [29] | D. V. Voiculescu, Some results and a K-theory problem about threshold commutants mod normed ideals, Pure Appl. Funct. Anal., 7 (2022), 409–420. |
| [30] |
F. Zhang, N. H. K. Tony, Y. Shi, Information geometry on the curved-exponential family with application to survival data analysis, Physica A, 512 (2018), 788–802. https://doi.org/10.1016/j.physa.2018.08.143 doi: 10.1016/j.physa.2018.08.143
|