Research article

An error bound estimation for the positive semi-definite tensor complementarity problem and its applications

  • Published: 09 September 2025
  • MSC : 90C30, 90C33

  • For the positive semi-definite tensor complementarity problem (TCP), based on the natural residual function, we first established an error bound estimation for the positive semi-definite TCP without the fractional term of the residual function. Compared with the existing results, the requirements imposed on the TCP such as being an $ m $-uniform $ P $-function and being $ m $-monotone were removed. As an application of the error bound obtained, we showed the global $ R $-linear convergence rate of the proposed self-adaptive projection algorithm for solving the TCP via an equivalent transformation of this problem. Meanwhile, we also obtained an $ \epsilon $-optimal solution in a finite number of iterations. Finally, numerical results were reported to demonstrate the efficiency of the proposed method.

    Citation: Yuanshou Zhang, Hongchun Sun, Zhiwen Jie, Sabir Amina. An error bound estimation for the positive semi-definite tensor complementarity problem and its applications[J]. AIMS Mathematics, 2025, 10(9): 20805-20824. doi: 10.3934/math.2025929

    Related Papers:

  • For the positive semi-definite tensor complementarity problem (TCP), based on the natural residual function, we first established an error bound estimation for the positive semi-definite TCP without the fractional term of the residual function. Compared with the existing results, the requirements imposed on the TCP such as being an $ m $-uniform $ P $-function and being $ m $-monotone were removed. As an application of the error bound obtained, we showed the global $ R $-linear convergence rate of the proposed self-adaptive projection algorithm for solving the TCP via an equivalent transformation of this problem. Meanwhile, we also obtained an $ \epsilon $-optimal solution in a finite number of iterations. Finally, numerical results were reported to demonstrate the efficiency of the proposed method.



    加载中


    [1] Y. S. Song, L. Q. Qi, Properties of some classes of structured tensors, J. Optim. Theory Appl., 165 (2015), 854–873. https://doi.org/10.1007/s10957-014-0616-5 doi: 10.1007/s10957-014-0616-5
    [2] Y. S. Song, L. Q. Qi, Properties of tensor complementarity problem and some classes of structured tensors, Ann. Appl. Math., 33 (2017), 308–323.
    [3] M. L. Che, L. Q. Qi, Y. M. Wei, Positive-definite tensors to nonlinear complementarity problems, J. Optim. Theory Appl., 168 (2016), 475–487. https://doi.org/10.1007/s10957-015-0773-1 doi: 10.1007/s10957-015-0773-1
    [4] Z. H. Huang, L. Q. Qi, Tensor complementarity problems–part III: Applications, J. Optim. Theory Appl., 183 (2019), 771–791. https://doi.org/10.1007/s10957-019-01573-0 doi: 10.1007/s10957-019-01573-0
    [5] L. Q. Qi, H. B. Chen, Y. N. Chen, Tensor eigenvalues and their applications, Singapore: Springer, 2018. https://doi.org/10.1007/978-981-10-8058-6
    [6] Z. H. Huang, L. Q. Qi, Formulating an $n$-person noncoorperative game as a tensor complementarity problem, Comput. Optim. Appl., 66 (2017), 557–576. https://doi.org/10.1007/s10589-016-9872-7 doi: 10.1007/s10589-016-9872-7
    [7] Z. Y. Luo, L. Q. Qi, N. H. Xiu, The sparsest solutions to Z-tensor complementarity problems, Optim. Lett., 11 (2017), 471–482. https://doi.org/10.1007/s11590-016-1013-9 doi: 10.1007/s11590-016-1013-9
    [8] Z. H. Huang, L. Q. Qi, Tensor complementarity problems–part I: Basic theory, J. Optim. Theory Appl., 183 (2019), 1–23. https://doi.org/10.1007/s10957-019-01566-z doi: 10.1007/s10957-019-01566-z
    [9] M. M. Zheng, Y. Zhang, Z. H. Huang, Global error bounds for the tensor complementarity problem with a P-tensor, J. Ind. Manag. Optim., 15 (2019), 933–946. https://doi.org/10.3934/jimo.2018078 doi: 10.3934/jimo.2018078
    [10] L. Y. Ling, C. Ling, H. J. He, Generalized tensor complementarity problems over a polyhedral cone, Asia Pac. J. Oper. Res., 37 (2020), 2040006. https://doi.org/10.1142/S0217595920400060 doi: 10.1142/S0217595920400060
    [11] L. Y. Ling, H. J. He, C. Ling, On error bounds of polynomial complementarity problems with structured tensors, Optimization, 67 (2018), 341–358. https://doi.org/10.1080/02331934.2017.1391254 doi: 10.1080/02331934.2017.1391254
    [12] S. L. Hu, J. Wang, Z. H. Huang, Error bounds for the solution sets of quadratic complementarity problems, J. Optim. Theory Appl., 179 (2018), 983–1000. https://doi.org/10.1007/s10957-018-1356-8 doi: 10.1007/s10957-018-1356-8
    [13] L. Q. Qi, Z. H. Huang, Tensor complementarity problems–part II: Solution methods, J. Optim. Theory Appl., 183 (2019), 365–385. https://doi.org/10.1007/s10957-019-01568-x doi: 10.1007/s10957-019-01568-x
    [14] L. X. Han, A continuation method for tensor complementarity problems, J. Optim. Theory Appl., 180 (2019), 949–963. https://doi.org/10.1007/s10957-018-1422-2 doi: 10.1007/s10957-018-1422-2
    [15] K. L. Zhang, H. B. Chen, P. F. Zhao, A potential reduction method for tensor complementarity problems, J. Ind. Manag. Optim., 15 (2019), 429–443. https://doi.org/10.3934/jimo.2018049 doi: 10.3934/jimo.2018049
    [16] D. D. Liu, W. Li, S. W. Vong, Tensor complementarity problems: The GUS-property and an algorithm, Linear Multilinear Algebra, 66 (2018), 1726–1749. https://doi.org/10.1080/03081087.2017.1369929 doi: 10.1080/03081087.2017.1369929
    [17] F. Y. Han, Y. M. Wei, P. P. Xie, Regularized and structured tensor total least squares methods with applications, J. Optim. Theory Appl., 202 (2024), 1101–1136. https://doi.org/10.1007/s10957-024-02507-1 doi: 10.1007/s10957-024-02507-1
    [18] X. Z. Wang, M. L. Che, L. Q. Qi, Y. M. Wei, Modified gradient dynamic approach to the tensor complementarity problem, Optim. Method Softw., 35 (2020), 394–415. https://doi.org/10.1080/10556788.2019.1578766 doi: 10.1080/10556788.2019.1578766
    [19] J. J. Sun, S. Q. Du, An effective smoothing Newton projection algorithm for finding sparse solutions to NP-hard tensor complementarity problems, J. Comput. Appl. Math., 451 (2024), 116074. https://doi.org/10.1016/j.cam.2024.116074 doi: 10.1016/j.cam.2024.116074
    [20] P. F. Dai, A fixed point iterative method for tensor complementarity problems, J. Sci. Comput., 84 (2020), 49. https://doi.org/10.1007/s10915-020-01299-6 doi: 10.1007/s10915-020-01299-6
    [21] G. Li, J. C. Li, Improved fixed point iterative methods for tensor complementarity problem, J. Optim. Theory Appl., 199 (2023), 787–804. https://doi.org/10.1007/s10957-023-02304-2 doi: 10.1007/s10957-023-02304-2
    [22] L. Q. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302–1324. https://doi.org/10.1016/j.jsc.2005.05.007 doi: 10.1016/j.jsc.2005.05.007
    [23] G. H. Golub, C. F. Van Loan, Matrix computations, 4 Eds., Johns Hopkins University Press, 2013.
    [24] W. Y. Ding, Y. M. Wei, Generalized tensor eigenvalue problems, SIAM J. Matrix Anal. Appl., 36 (2015), 1073–1099. https://doi.org/10.1137/140975656 doi: 10.1137/140975656
    [25] E. H. Zarantonello, Projections on convex sets in Hilbert space and spectral theory: Part I. Projections on convex sets: Part II. Spectral theory, In: Contributions to nonlinear functional analysis, New York: Academic Press, 1971,237–424. https://doi.org/10.1016/B978-0-12-775850-3.50013-3
    [26] M. A. Noor, General variational inequalities, Appl. Math. Lett., 1 (1988), 119–122. https://doi.org/ 10.1016/0893-9659(88)90054-7 doi: 10.1016/0893-9659(88)90054-7
    [27] J. J. Duistermaat, J. A. C. Kolk, Multidimensional real analysis I: Differentiation, New York: Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511616716
    [28] Y. S. Song, L. Q. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM J. Matrix Anal. Appl., 34 (2013), 1581–1595. https://doi.org/10.1137/130909135 doi: 10.1137/130909135
    [29] Y. S. Song, L. Q. Qi, Strictly semi-positive tensors and the boundedness of tensor complementarity problems, Optim. Lett., 11 (2017), 1407–1426. https://doi.org/10.48550/arXiv.1509.01327 doi: 10.48550/arXiv.1509.01327
    [30] T. T. Shang, G. J. Tang, Structured tensor tuples to polynomial complementarity problems, J. Global Optim., 86 (2023), 867–883. https://doi.org/10.1007/s10898-023-01302-y doi: 10.1007/s10898-023-01302-y
    [31] Y. Xu, G. Y. Ni, M. S. Zhang, Bounds of the solution set to the polynomial complementarity problem, J. Optim. Theory Appl., 203 (2024), 146–164. https://doi.org/10.1007/s10957-024-02484-5 doi: 10.1007/s10957-024-02484-5
    [32] T. T. Shang, W. S. Jia, Q tensor tuples to polynomial complementarity problems, Oper. Res. Lett., 61 (2025), 107297. https://doi.org/10.1016/j.orl.2025.107297 doi: 10.1016/j.orl.2025.107297
    [33] F. Facchinei, J. S. Pang, Finite-dimensional variational inequality and complementarity problems, 1 Eds., New York: Springer, 2003. https://doi.org/10.1007/b97544
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(398) PDF downloads(22) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog