In this paper, we proposed a two-dimensional macroscopic local fractional viscous-diffusive model of vehicular traffic flow, derived from the two-dimensional fractal Navier-Stokes equation. The model was formulated by combining the derived momentum equation with the fractal LWR framework. The proposed fractal dynamic velocity equation incorporates convection, anticipation, relaxation, diffusion, and viscosity as governing parameters. A stability analysis was performed, and an analytical solution to the model was obtained. Certain aspects of multilane traffic flow are further explored through illustrative examples. The solutions are presented and discussed using graphical representations, which demonstrate how non-differentiable traffic density and speed functions evolve dynamically. The study highlights the influence of viscous-diffusive effects on traffic flow, showing that road narrowing increases viscosity and diffusion, thereby reducing traffic speed, whereas these factors have a comparatively smaller impact on wider roads.
Citation: Bhawna Pokhriyal, Pranay Goswami, Kranti Kumar, Abdalla S. Mahmoud, Mohammed Abdalbagi, Saad Althobaiti. A new two-dimensional macroscopic local fractional viscous diffusive model of vehicular traffic flow[J]. AIMS Mathematics, 2025, 10(9): 20782-20804. doi: 10.3934/math.2025928
In this paper, we proposed a two-dimensional macroscopic local fractional viscous-diffusive model of vehicular traffic flow, derived from the two-dimensional fractal Navier-Stokes equation. The model was formulated by combining the derived momentum equation with the fractal LWR framework. The proposed fractal dynamic velocity equation incorporates convection, anticipation, relaxation, diffusion, and viscosity as governing parameters. A stability analysis was performed, and an analytical solution to the model was obtained. Certain aspects of multilane traffic flow are further explored through illustrative examples. The solutions are presented and discussed using graphical representations, which demonstrate how non-differentiable traffic density and speed functions evolve dynamically. The study highlights the influence of viscous-diffusive effects on traffic flow, showing that road narrowing increases viscosity and diffusion, thereby reducing traffic speed, whereas these factors have a comparatively smaller impact on wider roads.
| [1] | A. Ferrara, S. Sacone, S. Siri, Freeway traffic modelling and control, Advances in Industrial Control, Springer, 2018. https://doi.org/10.1007/978-3-319-75961-6 |
| [2] |
M. Herty, S. Moutari, G. Visconti, Macroscopic modeling of multilane motorways using a two-dimensional second-order model of traffic flow, SIAM J. Appl. Math., 78 (2018), 2252–2278. https://doi.org/10.1137/17M1151821 doi: 10.1137/17M1151821
|
| [3] |
M. J. Lighthill, G. B. Whitham, On kinematic waves II. A theory of traffic flow on long crowded roads, Proc. R. Soc. Lond. A, 229 (1955), 317–345. https://doi.org/10.1098/rspa.1955.0089 doi: 10.1098/rspa.1955.0089
|
| [4] | P. I. Richards, Shock waves on the highway, Oper. Res., 4 (1956), 42–51. https://doi.org/10.1287/opre.4.1.42 |
| [5] | M. Treiber, A. Kesting, Traffic flow dynamics: data, models and simulation, Springer, 2013. https://doi.org/10.1007/978-3-642-32460-4 |
| [6] | H. J. Payne, Model of freeway traffic and control, Math. Model Public Syst., 1971, 51–61. |
| [7] | G. B. Whitham, Linear and nonlinear waves, John Wiley & Sons, 2011. |
| [8] |
C. F. Daganzo, Requiem for second-order fluid approximations of traffic flow, Transp. Res. Part B: Methodol., 29 (1995), 277–286. https://doi.org/10.1016/0191-2615(95)00007-Z doi: 10.1016/0191-2615(95)00007-Z
|
| [9] |
H. M. Zhang, A theory of nonequilibrium traffic flow, Transp. Res. Part B: Methodol., 32 (1998), 485–498. https://doi.org/10.1016/S0191-2615(98)00014-9 doi: 10.1016/S0191-2615(98)00014-9
|
| [10] |
H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transp. Res. Part B: Methodol., 36 (2002), 275–290. https://doi.org/10.1016/S0191-2615(00)00050-3 doi: 10.1016/S0191-2615(00)00050-3
|
| [11] |
A. Aw, M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916–938. https://doi.org/10.1137/S0036139997332099 doi: 10.1137/S0036139997332099
|
| [12] |
R. Jiang, Q. S. Wu, Z. J. Zhu, A new continuum model for traffic flow and numerical tests, Transp. Res. Part B: Methodol., 36 (2002), 405–419. https://doi.org/10.1016/S0191-2615(01)00010-8 doi: 10.1016/S0191-2615(01)00010-8
|
| [13] |
Z. H. Khan, T. A. Gulliver, H. Nasir, A. Rehman, K. Shahzada, A macroscopic traffic model based on driver physiological response, J. Eng. Math., 115 (2019), 21–41. https://doi.org/10.1007/s10665-019-09990-w doi: 10.1007/s10665-019-09990-w
|
| [14] |
Z. H. Khan, W. Imran, S. Azeem, K. S. Khattak, T. A. Gulliver, M. S. Aslam, A macroscopic traffic model based on driver reaction and traffic stimuli, Appl. Sci., 9 (2019), 2848. https://doi.org/10.3390/app9142848 doi: 10.3390/app9142848
|
| [15] |
L. Yu, T. Li, Z. Shi, The effect of diffusion in a new viscous continuum traffic model, Phys. Lett. A, 374 (2010), 2346–2355. https://doi.org/10.1016/j.physleta.2010.03.056 doi: 10.1016/j.physleta.2010.03.056
|
| [16] |
B. S. Kerner, P. Konhäuser, Structure and parameters of clusters in traffic flow, Phys. Rev. E, 50 (1994), 54. https://doi.org/10.1103/PhysRevE.50.54 doi: 10.1103/PhysRevE.50.54
|
| [17] | G. O. Fosu, F. T. Oduro, Two dimensional anisotropic macroscopic second-order traffic flow model, J. Appl. Math. Comput. Mech., 2020. |
| [18] |
L. F. Wang, X. J. Yang, D. Baleanu, C. Cattani, Y. Zhao, Fractal dynamical model of vehicular traffic flow within the local fractional conservation laws, Abstr. Appl. Anal., 2014 (2014), 635760. https://doi.org/10.1155/2014/635760 doi: 10.1155/2014/635760
|
| [19] |
J. G. Liu, X. J. Yang, Y. Y. Feng, P. Cui, A new perspective to study the third-order modified KDV equation on fractal set, Fractals, 28 (2020), 2050110. https://doi.org/10.1142/S0218348X20501108 doi: 10.1142/S0218348X20501108
|
| [20] |
S. M. Elnady, M. El-Beltagy, A. G. Radwan, M. E. Fouda, A generalized local fractional derivative with applications, J. Comput. Phys., 530 (2025), 113903. https://doi.org/10.1016/j.jcp.2025.113903 doi: 10.1016/j.jcp.2025.113903
|
| [21] |
B. Xu, S. Zhang, Exact solutions of a local fractional nonisospectral complex mKdV equation based on Riemann-Hilbert method with time-varying spectrum, Alex. Eng. J., 115 (2025), 564–576. https://doi.org/10.1016/j.aej.2024.11.116 doi: 10.1016/j.aej.2024.11.116
|
| [22] |
J. S. Sun, Approximate solution for time fractional nonlinear MKDV equation within local fractional operators, Fractals, 32 (2024), 2440021. https://doi.org/10.1142/S0218348X24400218 doi: 10.1142/S0218348X24400218
|
| [23] |
J. Singh, V. P. Dubey, D. Kumar, S. Dubey, D. Baleanu, Fractal-view analysis of local fractional Fokker-Planck equation occurring in modelling of particle's Brownian motion, Opt. Quant. Electron., 56 (2024), 1109. https://doi.org/10.1007/s11082-024-06842-5 doi: 10.1007/s11082-024-06842-5
|
| [24] |
X. J. Yang, D. Baleanu, J. A. Tenreiro Machado, Systemss of navier-stokes equations on cantor sets, Math. Probl. Eng., 2013 (2013), 769724. https://doi.org/10.1155/2013/769724 doi: 10.1155/2013/769724
|
| [25] |
Y. Zhao, D. Baleanu, C. Cattani, D. Cheng, X. Yang, Maxwell's equations on Cantor sets: a local fractional approach, Adv. High Energy Phys., 2013 (2013), 686371. https://doi.org/10.1155/2013/6863717 doi: 10.1155/2013/6863717
|
| [26] | J. P. Lebacque, The godunov scheme and what it means for rst order traac ow models, Proceedings of the 13th International Symposium on Transportation and Trafc Theory, 1996. |
| [27] |
D. Helbing, M. Treiber, Numerical simulation of macroscopic traffic equations, Comput. Sci. Eng., 1 (1999), 89–98. https://doi.org/10.1109/5992.790593 doi: 10.1109/5992.790593
|
| [28] | X. J. Yang, Advanced local fractional calculus and its applications, New York: World Science Publisher, 2012. |
| [29] | X. J. Yang, Local fractional functional analysis & its applications, Hong Kong: Asian Academic Publisher Limited, 2011. |
| [30] |
A. M. Yang, C. Cattani, C. Zhang, G. N. Xie, X. J. Yang, Local fractional Fourier series solutions for nonhomogeneous heat equations arising in fractal heat flow with local fractional derivative, Adv. Mech. Eng., 6 (2014), 514639. https://doi.org/10.1155/2014/514639 doi: 10.1155/2014/514639
|