In this study, we introduce the notion of soft Oxtoby–Rose operators within the framework of abstract measurable soft spaces, extend the classical concept of lower-density operators, and explore their essential characteristics. Subsequently, we delve into the so-called soft Oxtoby–Rose topologies (soft OR-topologies), the soft topologies generated by soft Oxtoby–Rose operators. We examine the key features and definitions associated with soft OR-topologies. Specifically, we demonstrate that within soft OR-topologies, Baire category soft sets, soft locally closed sets, and Borel soft sets are all equivalent. We wrap up this research by analyzing various soft topological properties linked to soft OR-topologies.
Citation: Zanyar A. Ameen, Ohud F. Alghamdi. Soft structural Oxtoby–Rose operators and their generated topologies[J]. AIMS Mathematics, 2025, 10(9): 20825-20842. doi: 10.3934/math.2025930
In this study, we introduce the notion of soft Oxtoby–Rose operators within the framework of abstract measurable soft spaces, extend the classical concept of lower-density operators, and explore their essential characteristics. Subsequently, we delve into the so-called soft Oxtoby–Rose topologies (soft OR-topologies), the soft topologies generated by soft Oxtoby–Rose operators. We examine the key features and definitions associated with soft OR-topologies. Specifically, we demonstrate that within soft OR-topologies, Baire category soft sets, soft locally closed sets, and Borel soft sets are all equivalent. We wrap up this research by analyzing various soft topological properties linked to soft OR-topologies.
| [1] |
L. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
|
| [2] |
Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956
|
| [3] |
D. Molodtsov, Soft set theory—first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
|
| [4] |
O. Dalkılıç, N. Demirtaş, Algorithms for covid-19 outbreak using soft set theory: Estimation and application, Soft Comput., 27 (2023), 3203–3211. https://doi.org/10.1007/s00500-022-07519-5 doi: 10.1007/s00500-022-07519-5
|
| [5] |
X. Liu, F. Feng, Q. Wang, R. R. Yager, H. Fujita, J. C. R. Alcantud, Mining temporal association rules with temporal soft sets, J. Math., 2021. https://doi.org/10.1155/2021/7303720 doi: 10.1155/2021/7303720
|
| [6] |
P. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. https://doi.org/10.1016/S0898-1221(02)00216-X doi: 10.1016/S0898-1221(02)00216-X
|
| [7] | D. Pei, D. Miao, From soft sets to information systems, In: 2005 IEEE international conference on granular computing, 2 (2005), 617–621. https://doi.org/10.1109/GRC.2005.1547365 |
| [8] |
S. Yuksel, T. Dizman, G. Yildizdan, U. Sert, Application of soft sets to diagnose the prostate cancer risk, J. Inequal. Appl., 2013 (2013), 1–11. https://doi.org/10.1186/1029-242X-2013-229 doi: 10.1186/1029-242X-2013-229
|
| [9] |
J. C. R. Alcantud, A. Z. Khameneh, G. S. García, M. Akram, A systematic literature review of soft set theory, Neural Comput. Appl., 36 (2024), 8951–8975. https://doi.org/10.1007/s00521-024-09552-x doi: 10.1007/s00521-024-09552-x
|
| [10] |
J. C. R. Alcantud, The semantics of N-soft sets, their applications, and a coda about three-way decision, Inform. Sciences, 606 (2022), 837–852. https://doi.org/10.1007/s00521-024-09552-x doi: 10.1007/s00521-024-09552-x
|
| [11] |
A. A. E. Atik, R. A. Gdairi, A. A. Nasef, S. Jafari, M. Badr, Fuzzy soft sets and decision making in ideal nutrition, Symmetry, 15 (2023), 1523. https://doi.org/10.3390/sym15081523 doi: 10.3390/sym15081523
|
| [12] |
R. Mareay, Soft rough sets based on covering and their applications, J. Math. Ind., 14 (2024), 4. https://doi.org/10.1186/s13362-024-00142-z doi: 10.1186/s13362-024-00142-z
|
| [13] |
J. Sun, J. Zhang, L. Liu, Y. Wu, Q. Shan, Output consensus control of multi-agent systems with switching networks and incomplete leader measurement, IEEE T. Autom. Sci. Eng., 21 (2023), 6643–6652. https://doi.org/10.1109/TASE.2023.3328897 doi: 10.1109/TASE.2023.3328897
|
| [14] |
J. Sun, G. Wang, J. Yun, L. Liu, Q. Shan, J. Zhang, Cooperative output regulation of multi-agent systems via energy-dependent intermittent event-triggered compensator approach, J. Franklin I., 362 (2025), 107868. https://doi.org/10.1016/j.jfranklin.2025.107868 doi: 10.1016/j.jfranklin.2025.107868
|
| [15] |
M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006 doi: 10.1016/j.camwa.2011.02.006
|
| [16] | S. Bayramov, C. Gunduz, A new approach to separability and compactness in soft topological spaces, TWMS J. Pure Appl. Math., 9 (2018), 82–93. |
| [17] |
A. Aygünoğlu, H. Aygün, Some notes on soft topological spaces, Neural Comput. Appl., 21 (2012), 113–119. https://doi.org/10.1007/s00521-011-0722-3 doi: 10.1007/s00521-011-0722-3
|
| [18] |
O. F. Alghamdi, M. H. Alqahtani, Z. A. Ameen, On soft submaximal and soft door spaces, Contemp. Math., 6 (2025), 663–675. https://doi.org/10.37256/cm.6120255321 doi: 10.37256/cm.6120255321
|
| [19] | F. Lin, Soft connected spaces and soft paracompact spaces, Int. J. Math. Comput. Sci., 7 (2013), 277–283. |
| [20] |
M. Terepeta, On separating axioms and similarity of soft topological spaces, Soft Comput., 23 (2019), 1049–1057. https://doi.org/10.1007/s00500-017-2824-z doi: 10.1007/s00500-017-2824-z
|
| [21] |
J. C. R. Alcantud, Soft open bases and a novel construction of soft topologies from bases for topologies, Mathematics, 8 (2020), 672. https://doi.org/10.3390/math8050672 doi: 10.3390/math8050672
|
| [22] |
Z. A. Ameen, O. F. Alghamdi, B. A. Asaad, R. A. Mohammed, Methods of generating soft topologies and soft separation axioms, Eur. J. Pure Appl. Math., 17 (2024), 1168–1182. https://doi.org/10.29020/nybg.ejpam.v17i2.5161 doi: 10.29020/nybg.ejpam.v17i2.5161
|
| [23] |
A. Kandil, O. A. E. Tantawy, S. A. E. Sheikh, A. M. A. E. latif, Soft ideal theory soft local function and generated soft topological spaces, Appl. Math. Inform. Sci., 8 (2014), 1595–1603. http://dx.doi.org/10.12785/amis/080413 doi: 10.12785/amis/080413
|
| [24] |
Z. A. Ameen, S. A. Ghour, Cluster soft sets and cluster soft topologies, Comput. Appl. Math., 42 (2023), 337. https://doi.org/10.1007/s40314-023-02476-7 doi: 10.1007/s40314-023-02476-7
|
| [25] | O. Haupt, C. Pauc, La topologie approximative de denjoy envisagée comme vraie topologie, C. R. Math. Acad. Sci. Paris, 234 (1952), 390–392. |
| [26] |
D. Maharam, On a theorem of von neumann, P. Am. Math. Soc., 9 (1958), 987–994. https://doi.org/10.1090/S0002-9939-1958-0105479-6 doi: 10.1090/S0002-9939-1958-0105479-6
|
| [27] |
Z. A. Ameen, M. H. Alqahtani, O. F. Alghamdi, Lower density soft operators and density soft topologies, Heliyon, 10 (2024), e35280. https://doi.org/10.1016/j.heliyon.2024.e35280 doi: 10.1016/j.heliyon.2024.e35280
|
| [28] |
F. Tall, The density topology, Pac. J. Math., 62 (1976), 275–284. https://doi.org/10.2140/pjm.1976.62.275 doi: 10.2140/pjm.1976.62.275
|
| [29] |
W. Poreda, E. W. Bojakowska, W. Wilczynski, A category analogue of the density topology, Fund. Math., 125 (1985), 167–173. https://doi.org/10.4064/fm-125-2-167-173 doi: 10.4064/fm-125-2-167-173
|
| [30] |
D. Rose, D. Janković, T. Hamlett, Lower density topologies a, Ann. NY. Acad. Sci., 704 (1993), 309–321. https://doi.org/10.1111/j.1749-6632.1993.tb52533.x doi: 10.1111/j.1749-6632.1993.tb52533.x
|
| [31] |
K. Flak, J. Hejduk, On topologies generated by some operators, Open Math., 11 (2013), 349–356. https://doi.org/10.2478/s11533-012-0077-8 doi: 10.2478/s11533-012-0077-8
|
| [32] |
J. Hejduk, A. Loranty, On abstract and almost-abstract density topologies, Acta Math. Hung., 155 (2018), 228–240. https://doi.org/10.1007/s10474-018-0838-3 doi: 10.1007/s10474-018-0838-3
|
| [33] |
J. Hejduk, S. Lindner, A. Loranty, On lower density type operators and topologies generated by them, Filomat, 32 (2018), 4949–4957. https://doi.org/10.2298/FIL1814949H doi: 10.2298/FIL1814949H
|
| [34] |
M. I. Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009 doi: 10.1016/j.camwa.2008.11.009
|
| [35] | S. Das, S. Samanta, Soft metric, Ann. Fuzzy Math. Inform., 6 (2013), 77–94. |
| [36] |
P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6 doi: 10.1016/S0898-1221(03)00016-6
|
| [37] | N. Xie, Soft points and the structure of soft topological spaces, Ann. Fuzzy Math. Inform., 10 (2015), 309–322. |
| [38] |
S. A. Ghour, Z. A. Ameen, Maximal soft compact and maximal soft connected topologies, Appl. Comput. Intell. S., 2022. https://doi.org/10.1155/2022/9860015 doi: 10.1155/2022/9860015
|
| [39] |
S. Nazmul, S. Samanta, Neighbourhood properties of soft topological spaces, Ann. Fuzzy Math. Inform., 6 (2013), 1–15. https://doi.org/10.1016/j.fiae.2014.06.006 doi: 10.1016/j.fiae.2014.06.006
|
| [40] |
N. Çağman, S. Karataş, S. Enginoglu, Soft topology, Comput. Math. Appl., 62 (2011), 351–358. https://doi.org/10.1016/j.camwa.2011.05.016 doi: 10.1016/j.camwa.2011.05.016
|
| [41] |
S. Hussain, B. Ahmad, Some properties of soft topological spaces, Comput. Math. Appl., 62 (2011), 4058–4067. https://doi.org/10.1016/j.camwa.2011.09.051 doi: 10.1016/j.camwa.2011.09.051
|
| [42] |
S. Yüksel, N. Tozlu, Z. G. Ergül, Soft regular generalized closed sets in soft topological spaces, Int. J. Math. Anal., 8 (2014), 355–367. https://doi.org/10.12988/ijma.2014.4125 doi: 10.12988/ijma.2014.4125
|
| [43] | M. Riaz, Z. Fatima, Certain properties of soft metric spaces, J. Fuzzy Math., 25 (2017), 543–560. |
| [44] |
S. A. Ghour, Z. A. Ameen, On soft submaximal spaces, Heliyon, 8 (2022), e10574. https://doi.org/10.1016/j.heliyon.2022.e10574 doi: 10.1016/j.heliyon.2022.e10574
|
| [45] |
Z. A. Ameen, M. H. Alqahtani, Congruence representations via soft ideals in soft topological spaces, Axioms, 12 (2023), 1015. https://doi.org/10.3390/axioms12111015 doi: 10.3390/axioms12111015
|
| [46] |
Z. A. Ameen, M. H. Alqahtani, Baire category soft sets and their symmetric local properties, Symmetry, 15 (2023), 1810. https://doi.org/10.3390/sym15101810 doi: 10.3390/sym15101810
|
| [47] | A. Z. Khameneh, A. Kilicman, On soft $\sigma$-algebras, Malays. J. Math. Sci., 7 (2013), 17–29. |
| [48] | M. Riaz, K. Naeem, M. O. Ahmad, Novel concepts of soft sets with applications, Ann. Fuzzy Math. Inform., 13 (2017), 239–251. |
| [49] | W. Rong, The countabilities of soft topological spaces, Int. J. Math. Comput. Sci., 6 (2012), 952–955. |
| [50] |
M. H. Alqahtani, Z. A. Ameen, Soft nodec spaces, AIMS Math., 9 (2024), 3289–3302. https://doi.org/10.3934/math.2024160 doi: 10.3934/math.2024160
|
| [51] | Z. A. Ameen, O. F. Alghamdi, Soft topologies induced by almost lower density soft operators, Eng. Let., 33 (2025), 712–720. |
| [52] | L. Bukovskỳ, The structure of the real line, Basel: Springer, 71 (2011). https://doi.org/10.1007/978-3-0348-0006-8_2 |