Research article Topical Sections

Soft structural Oxtoby–Rose operators and their generated topologies

  • Published: 10 September 2025
  • MSC : 54A10, 54A99, 03E99

  • In this study, we introduce the notion of soft Oxtoby–Rose operators within the framework of abstract measurable soft spaces, extend the classical concept of lower-density operators, and explore their essential characteristics. Subsequently, we delve into the so-called soft Oxtoby–Rose topologies (soft OR-topologies), the soft topologies generated by soft Oxtoby–Rose operators. We examine the key features and definitions associated with soft OR-topologies. Specifically, we demonstrate that within soft OR-topologies, Baire category soft sets, soft locally closed sets, and Borel soft sets are all equivalent. We wrap up this research by analyzing various soft topological properties linked to soft OR-topologies.

    Citation: Zanyar A. Ameen, Ohud F. Alghamdi. Soft structural Oxtoby–Rose operators and their generated topologies[J]. AIMS Mathematics, 2025, 10(9): 20825-20842. doi: 10.3934/math.2025930

    Related Papers:

  • In this study, we introduce the notion of soft Oxtoby–Rose operators within the framework of abstract measurable soft spaces, extend the classical concept of lower-density operators, and explore their essential characteristics. Subsequently, we delve into the so-called soft Oxtoby–Rose topologies (soft OR-topologies), the soft topologies generated by soft Oxtoby–Rose operators. We examine the key features and definitions associated with soft OR-topologies. Specifically, we demonstrate that within soft OR-topologies, Baire category soft sets, soft locally closed sets, and Borel soft sets are all equivalent. We wrap up this research by analyzing various soft topological properties linked to soft OR-topologies.



    加载中


    [1] L. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956
    [3] D. Molodtsov, Soft set theory—first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [4] O. Dalkılıç, N. Demirtaş, Algorithms for covid-19 outbreak using soft set theory: Estimation and application, Soft Comput., 27 (2023), 3203–3211. https://doi.org/10.1007/s00500-022-07519-5 doi: 10.1007/s00500-022-07519-5
    [5] X. Liu, F. Feng, Q. Wang, R. R. Yager, H. Fujita, J. C. R. Alcantud, Mining temporal association rules with temporal soft sets, J. Math., 2021. https://doi.org/10.1155/2021/7303720 doi: 10.1155/2021/7303720
    [6] P. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. https://doi.org/10.1016/S0898-1221(02)00216-X doi: 10.1016/S0898-1221(02)00216-X
    [7] D. Pei, D. Miao, From soft sets to information systems, In: 2005 IEEE international conference on granular computing, 2 (2005), 617–621. https://doi.org/10.1109/GRC.2005.1547365
    [8] S. Yuksel, T. Dizman, G. Yildizdan, U. Sert, Application of soft sets to diagnose the prostate cancer risk, J. Inequal. Appl., 2013 (2013), 1–11. https://doi.org/10.1186/1029-242X-2013-229 doi: 10.1186/1029-242X-2013-229
    [9] J. C. R. Alcantud, A. Z. Khameneh, G. S. García, M. Akram, A systematic literature review of soft set theory, Neural Comput. Appl., 36 (2024), 8951–8975. https://doi.org/10.1007/s00521-024-09552-x doi: 10.1007/s00521-024-09552-x
    [10] J. C. R. Alcantud, The semantics of N-soft sets, their applications, and a coda about three-way decision, Inform. Sciences, 606 (2022), 837–852. https://doi.org/10.1007/s00521-024-09552-x doi: 10.1007/s00521-024-09552-x
    [11] A. A. E. Atik, R. A. Gdairi, A. A. Nasef, S. Jafari, M. Badr, Fuzzy soft sets and decision making in ideal nutrition, Symmetry, 15 (2023), 1523. https://doi.org/10.3390/sym15081523 doi: 10.3390/sym15081523
    [12] R. Mareay, Soft rough sets based on covering and their applications, J. Math. Ind., 14 (2024), 4. https://doi.org/10.1186/s13362-024-00142-z doi: 10.1186/s13362-024-00142-z
    [13] J. Sun, J. Zhang, L. Liu, Y. Wu, Q. Shan, Output consensus control of multi-agent systems with switching networks and incomplete leader measurement, IEEE T. Autom. Sci. Eng., 21 (2023), 6643–6652. https://doi.org/10.1109/TASE.2023.3328897 doi: 10.1109/TASE.2023.3328897
    [14] J. Sun, G. Wang, J. Yun, L. Liu, Q. Shan, J. Zhang, Cooperative output regulation of multi-agent systems via energy-dependent intermittent event-triggered compensator approach, J. Franklin I., 362 (2025), 107868. https://doi.org/10.1016/j.jfranklin.2025.107868 doi: 10.1016/j.jfranklin.2025.107868
    [15] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006 doi: 10.1016/j.camwa.2011.02.006
    [16] S. Bayramov, C. Gunduz, A new approach to separability and compactness in soft topological spaces, TWMS J. Pure Appl. Math., 9 (2018), 82–93.
    [17] A. Aygünoğlu, H. Aygün, Some notes on soft topological spaces, Neural Comput. Appl., 21 (2012), 113–119. https://doi.org/10.1007/s00521-011-0722-3 doi: 10.1007/s00521-011-0722-3
    [18] O. F. Alghamdi, M. H. Alqahtani, Z. A. Ameen, On soft submaximal and soft door spaces, Contemp. Math., 6 (2025), 663–675. https://doi.org/10.37256/cm.6120255321 doi: 10.37256/cm.6120255321
    [19] F. Lin, Soft connected spaces and soft paracompact spaces, Int. J. Math. Comput. Sci., 7 (2013), 277–283.
    [20] M. Terepeta, On separating axioms and similarity of soft topological spaces, Soft Comput., 23 (2019), 1049–1057. https://doi.org/10.1007/s00500-017-2824-z doi: 10.1007/s00500-017-2824-z
    [21] J. C. R. Alcantud, Soft open bases and a novel construction of soft topologies from bases for topologies, Mathematics, 8 (2020), 672. https://doi.org/10.3390/math8050672 doi: 10.3390/math8050672
    [22] Z. A. Ameen, O. F. Alghamdi, B. A. Asaad, R. A. Mohammed, Methods of generating soft topologies and soft separation axioms, Eur. J. Pure Appl. Math., 17 (2024), 1168–1182. https://doi.org/10.29020/nybg.ejpam.v17i2.5161 doi: 10.29020/nybg.ejpam.v17i2.5161
    [23] A. Kandil, O. A. E. Tantawy, S. A. E. Sheikh, A. M. A. E. latif, Soft ideal theory soft local function and generated soft topological spaces, Appl. Math. Inform. Sci., 8 (2014), 1595–1603. http://dx.doi.org/10.12785/amis/080413 doi: 10.12785/amis/080413
    [24] Z. A. Ameen, S. A. Ghour, Cluster soft sets and cluster soft topologies, Comput. Appl. Math., 42 (2023), 337. https://doi.org/10.1007/s40314-023-02476-7 doi: 10.1007/s40314-023-02476-7
    [25] O. Haupt, C. Pauc, La topologie approximative de denjoy envisagée comme vraie topologie, C. R. Math. Acad. Sci. Paris, 234 (1952), 390–392.
    [26] D. Maharam, On a theorem of von neumann, P. Am. Math. Soc., 9 (1958), 987–994. https://doi.org/10.1090/S0002-9939-1958-0105479-6 doi: 10.1090/S0002-9939-1958-0105479-6
    [27] Z. A. Ameen, M. H. Alqahtani, O. F. Alghamdi, Lower density soft operators and density soft topologies, Heliyon, 10 (2024), e35280. https://doi.org/10.1016/j.heliyon.2024.e35280 doi: 10.1016/j.heliyon.2024.e35280
    [28] F. Tall, The density topology, Pac. J. Math., 62 (1976), 275–284. https://doi.org/10.2140/pjm.1976.62.275 doi: 10.2140/pjm.1976.62.275
    [29] W. Poreda, E. W. Bojakowska, W. Wilczynski, A category analogue of the density topology, Fund. Math., 125 (1985), 167–173. https://doi.org/10.4064/fm-125-2-167-173 doi: 10.4064/fm-125-2-167-173
    [30] D. Rose, D. Janković, T. Hamlett, Lower density topologies a, Ann. NY. Acad. Sci., 704 (1993), 309–321. https://doi.org/10.1111/j.1749-6632.1993.tb52533.x doi: 10.1111/j.1749-6632.1993.tb52533.x
    [31] K. Flak, J. Hejduk, On topologies generated by some operators, Open Math., 11 (2013), 349–356. https://doi.org/10.2478/s11533-012-0077-8 doi: 10.2478/s11533-012-0077-8
    [32] J. Hejduk, A. Loranty, On abstract and almost-abstract density topologies, Acta Math. Hung., 155 (2018), 228–240. https://doi.org/10.1007/s10474-018-0838-3 doi: 10.1007/s10474-018-0838-3
    [33] J. Hejduk, S. Lindner, A. Loranty, On lower density type operators and topologies generated by them, Filomat, 32 (2018), 4949–4957. https://doi.org/10.2298/FIL1814949H doi: 10.2298/FIL1814949H
    [34] M. I. Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009 doi: 10.1016/j.camwa.2008.11.009
    [35] S. Das, S. Samanta, Soft metric, Ann. Fuzzy Math. Inform., 6 (2013), 77–94.
    [36] P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6 doi: 10.1016/S0898-1221(03)00016-6
    [37] N. Xie, Soft points and the structure of soft topological spaces, Ann. Fuzzy Math. Inform., 10 (2015), 309–322.
    [38] S. A. Ghour, Z. A. Ameen, Maximal soft compact and maximal soft connected topologies, Appl. Comput. Intell. S., 2022. https://doi.org/10.1155/2022/9860015 doi: 10.1155/2022/9860015
    [39] S. Nazmul, S. Samanta, Neighbourhood properties of soft topological spaces, Ann. Fuzzy Math. Inform., 6 (2013), 1–15. https://doi.org/10.1016/j.fiae.2014.06.006 doi: 10.1016/j.fiae.2014.06.006
    [40] N. Çağman, S. Karataş, S. Enginoglu, Soft topology, Comput. Math. Appl., 62 (2011), 351–358. https://doi.org/10.1016/j.camwa.2011.05.016 doi: 10.1016/j.camwa.2011.05.016
    [41] S. Hussain, B. Ahmad, Some properties of soft topological spaces, Comput. Math. Appl., 62 (2011), 4058–4067. https://doi.org/10.1016/j.camwa.2011.09.051 doi: 10.1016/j.camwa.2011.09.051
    [42] S. Yüksel, N. Tozlu, Z. G. Ergül, Soft regular generalized closed sets in soft topological spaces, Int. J. Math. Anal., 8 (2014), 355–367. https://doi.org/10.12988/ijma.2014.4125 doi: 10.12988/ijma.2014.4125
    [43] M. Riaz, Z. Fatima, Certain properties of soft metric spaces, J. Fuzzy Math., 25 (2017), 543–560.
    [44] S. A. Ghour, Z. A. Ameen, On soft submaximal spaces, Heliyon, 8 (2022), e10574. https://doi.org/10.1016/j.heliyon.2022.e10574 doi: 10.1016/j.heliyon.2022.e10574
    [45] Z. A. Ameen, M. H. Alqahtani, Congruence representations via soft ideals in soft topological spaces, Axioms, 12 (2023), 1015. https://doi.org/10.3390/axioms12111015 doi: 10.3390/axioms12111015
    [46] Z. A. Ameen, M. H. Alqahtani, Baire category soft sets and their symmetric local properties, Symmetry, 15 (2023), 1810. https://doi.org/10.3390/sym15101810 doi: 10.3390/sym15101810
    [47] A. Z. Khameneh, A. Kilicman, On soft $\sigma$-algebras, Malays. J. Math. Sci., 7 (2013), 17–29.
    [48] M. Riaz, K. Naeem, M. O. Ahmad, Novel concepts of soft sets with applications, Ann. Fuzzy Math. Inform., 13 (2017), 239–251.
    [49] W. Rong, The countabilities of soft topological spaces, Int. J. Math. Comput. Sci., 6 (2012), 952–955.
    [50] M. H. Alqahtani, Z. A. Ameen, Soft nodec spaces, AIMS Math., 9 (2024), 3289–3302. https://doi.org/10.3934/math.2024160 doi: 10.3934/math.2024160
    [51] Z. A. Ameen, O. F. Alghamdi, Soft topologies induced by almost lower density soft operators, Eng. Let., 33 (2025), 712–720.
    [52] L. Bukovskỳ, The structure of the real line, Basel: Springer, 71 (2011). https://doi.org/10.1007/978-3-0348-0006-8_2
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(405) PDF downloads(25) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog