This paper explores the influence of a transverse magnetic field at the boundary and studies the vanishing dissipation limit of the incompressible magneto-micropolar fluid equations in a half-space. We prove that the solutions remain uniformly bounded, both in the conormal Sobolev norms and the $ L^{\infty} $ norm, over a fixed time interval, independent of the dissipative coefficients. As a result, we establish the convergence of the dissipative magneto-micropolar fluid equations to the corresponding non-dissipative equations in the $ L^{\infty} $ norm. Additionally, our analysis provides uniform regularity energy estimates as the dissipative coefficients tend to zero. This shows that the strong boundary layer can still be prevented by the transverse magnetic field, even with the magnetic diffusion.
Citation: Lingqi Liu, Limei Li, Yuanming Xu. Uniform regularity and vanishing dissipation limit for the incompressible magneto-micropolar fluid equations with transverse magnetic field[J]. AIMS Mathematics, 2025, 10(9): 20715-20741. doi: 10.3934/math.2025925
This paper explores the influence of a transverse magnetic field at the boundary and studies the vanishing dissipation limit of the incompressible magneto-micropolar fluid equations in a half-space. We prove that the solutions remain uniformly bounded, both in the conormal Sobolev norms and the $ L^{\infty} $ norm, over a fixed time interval, independent of the dissipative coefficients. As a result, we establish the convergence of the dissipative magneto-micropolar fluid equations to the corresponding non-dissipative equations in the $ L^{\infty} $ norm. Additionally, our analysis provides uniform regularity energy estimates as the dissipative coefficients tend to zero. This shows that the strong boundary layer can still be prevented by the transverse magnetic field, even with the magnetic diffusion.
| [1] |
J. F. cheng, Y. J. Liu, Global regularity of the 2D magnetic micropolar fluid flows with mixed partial viscosity, Comput. Math. Appl., 70 (2015), 66–72. http://doi.org/10.1016/j.camwa.2015.04.026 doi: 10.1016/j.camwa.2015.04.026
|
| [2] |
L. Zou, X. Y. Lin, Magnetic effects on the solvability of 2D incompressible magneto-micropolar boundary layer equations without resistivity in Sobolev spaces, Nonlinear Anal., 224 (2022), 113080. http://doi.org/10.1016/j.na.2022.113080 doi: 10.1016/j.na.2022.113080
|
| [3] |
B. Q. Yuan, Regularity of weak solutions to magneto-micropolar fluid equations, Acta Math. Sci. Ser. A., 30 (2010), 1469–1480. http://doi.org/10.1016/S0252-9602(10)60139-7 doi: 10.1016/S0252-9602(10)60139-7
|
| [4] |
X. M. Gu, D. H. Wang, F. Xie, Vanishing viscosity limit of compressible viscoelastic equations in half space, J. Differ. Equ., 398 (2024), 319–343. http://doi.org/10.1016/j.jde.2024.04.004 doi: 10.1016/j.jde.2024.04.004
|
| [5] |
T. Gallay, V. Šverák, Vanishing viscosity limit for axisymmetric vortex rings, Invent. Math., 237 (2024), 275–348. http://doi.org/10.1007/s00222-024-01261-5 doi: 10.1007/s00222-024-01261-5
|
| [6] |
N. Masmoudi, F. Rousset, Uniform regularity for the Navier–Stokes equation with Navier boundary condition, Arch. Ration. Mech. Anal., 203 (2012), 529–575. http://doi.org/10.1007/s00205-011-0456-5 doi: 10.1007/s00205-011-0456-5
|
| [7] |
S. Gao, S. X. Li, J. Wang, Vanishing dissipation limit of solutions to initial boundary value problem for three dimensional incompressible magneto-hydrodynamic equations with transverse magnetic field, J. Differ. Equ., 374 (2023), 29–55. http://doi.org/10.1016/j.jde.2023.07.035 doi: 10.1016/j.jde.2023.07.035
|
| [8] |
J. Wang, X. Y. Zhang, Uniform regularity and vanishing dissipation limit for the 3D magnetic Bénard equations in half space, J. Differ. Equ., 414 (2025), 274–309. http://doi.org/10.1016/j.jde.2024.09.018 doi: 10.1016/j.jde.2024.09.018
|
| [9] | H. Schlichting, K. Gersten, Boundary-layer theory, Berlin: springer, 2016. http://doi.org/10.1007/978-3-662-52919-5 |
| [10] | G. K. Batchelor, An introduction to fluid dynamics, 2 Eds., Cambridge: Cambridge University Press, 2000. |
| [11] | O. A. Oleinik, V. N. Samokhin, Mathematical models in boundary layer theory, Boca Raton: CRC Press, 1999. |
| [12] |
Y. L. Xiao, Z. P. Xin, On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition, Comm. Pure Appl. Math., 60 (2007), 1027–1055. http://doi.org/10.1002/cpa.20187 doi: 10.1002/cpa.20187
|
| [13] |
L. C. Berselli, S. Spirito, On the vanishing viscosity limit of 3D Navier-Stokes equations under slip boundary conditions in general domains, Comm. Math. Phys., 316 (2012), 171–198. http://doi.org/10.1007/s00220-012-1581-1 doi: 10.1007/s00220-012-1581-1
|
| [14] |
Y. L. Xiao, Z. P. Xin, J. H. Wu, Vanishing viscosity limit for the 3D magnetohydrodynamic system with a slip boundary condition, J. Funct. Anal., 257 (2009), 3375–3394. http://doi.org/10.1016/j.jfa.2009.09.010 doi: 10.1016/j.jfa.2009.09.010
|
| [15] | X. Q. Xie, C. M. Li, Vanishing viscosity limit for viscous magnetohydrodynamic equations with a slip boundary condition, Appl. Math. Sci., 5 (2011), 1999–2011. |
| [16] |
Y. P. Meng, Y. G. Wang, A uniform estimate for the incompressible magneto-hydrodynamics equations with a slip boundary condition, Quart. Appl. Math., 74 (2016), 27–48. http://doi.org/10.1090/qam/1406 doi: 10.1090/qam/1406
|
| [17] |
D. Iftimie, F. Sueur, Viscous boundary layers for the Navier–Stokes equations with the Navier slip conditions, Arch. Ration. Mech. Anal., 199 (2011), 145–175. http://doi.org/10.1007/s00205-010-0320-z doi: 10.1007/s00205-010-0320-z
|
| [18] |
H. Beirão Da Veiga, Vorticity and regularity for flows under the Navier boundary condition, Commun. Pure Appl. Anal., 5 (2006), 907–918. http://doi.org/10.3934/cpaa.2006.5.907 doi: 10.3934/cpaa.2006.5.907
|
| [19] |
Y. Wang, Z. P. Xin, Y. Yong, Uniform regularity and vanishing viscosity limit for the compressible Navier-Stokes with general Navier-slip boundary conditions in three-dimensional domains, SIAM J. Math. Anal., 47 (2015), 4123–4191. http://doi.org/10.1137/151003520 doi: 10.1137/151003520
|
| [20] |
B. L. Gou, G. W. Wang, Vanishing viscosity limit for the 3D magnetohydrodynamic system with generalized Navier slip boundary conditions, Math. Methods Appl. Sci., 39 (2016), 4526–4534. http://doi.org/10.1002/mma.3881 doi: 10.1002/mma.3881
|
| [21] |
X. F. Cui, S. X. Li, F. Xie, Uniform regularity estimates and inviscid limit for the compressible non-resistive magnetohydrodynamics system, Nonlinearity, 36 (2022), 354–400. http://doi.org/10.1088/1361-6544/aca511 doi: 10.1088/1361-6544/aca511
|
| [22] |
T. Tao, Vanishing vertical viscosity limit of anisotropic Navier-Stokes equation with no-slip boundary condition, J. Differ. Equ., 265 (2018), 4283–4310. http://doi.org/10.1016/j.jde.2018.06.001 doi: 10.1016/j.jde.2018.06.001
|
| [23] |
C. J. Liu, F. Xie, T. Yang, Uniform regularity and vanishing viscosity limit for the incompressible non-resistive MHD system with TMF, Commun. Pure Appl. Anal., 20 (2021), 2725–2750. http://doi.org/10.3934/cpaa.2021073 doi: 10.3934/cpaa.2021073
|
| [24] |
D. H. Wang, F. Xie, Inviscid limit of compressible viscoelastic equations with the no-slip boundary condition, J. Differ. Equ., 353 (2023), 63–113. http://doi.org/10.1016/j.jde.2022.12.041 doi: 10.1016/j.jde.2022.12.041
|
| [25] |
X. M. Gu, D. H. Wang, F. Xie, Vanishing viscosity limit of compressible viscoelastic equations in half space, J. Differ. Equ., 398 (2024), 319–343. http://doi.org/10.1016/j.jde.2024.04.004 doi: 10.1016/j.jde.2024.04.004
|
| [26] |
L. Zou, X. Y. Lin, Uniform regularity and vanishing viscosity limit for the incompressible non-resistive magneto-micropolar equations, Appl. Anal., 102 (2023), 3549–3576. http://doi.org/10.1080/00036811.2022.2078718 doi: 10.1080/00036811.2022.2078718
|
| [27] |
M. Paddick, The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions, Discrete Contin. Dyn. Syst., 36 (2016), 2673–2709. http://doi.org/10.3934/dcds.2016.36.2673 doi: 10.3934/dcds.2016.36.2673
|
| [28] |
O. Gues, Probleme mixte hyperbolique quasi-linaire caractristique, Comm. Part. Differ. Equ., 15 (1990), 595–654. http://doi.org/10.1080/03605309908820701 doi: 10.1080/03605309908820701
|