Research article

A finite volume element method for the multi-term time fractional reaction-diffusion models with variable coefficients

  • Published: 09 September 2025
  • MSC : 65M08, 65M15, 65M60

  • In this paper, a fully discrete finite volume element (FVE) scheme is proposed to treat the linear multi-term time fractional reaction-diffusion models with variable coefficients on triangular grids, where the Caputo fractional derivative of time variable is approximated by the $ L1 $ formula. The existence and uniqueness of solution for the proposed scheme is proved based on the matrix theories, the stability results are derived in detail by using a multi-term fractional Gronwall inequality, and the optimal error estimates under the $ L^2(\Omega) $ and $ H^1(\Omega) $ norms are also obtained. Owing to the variable coefficients in the models, a special technique should be used to analyze the stability and error estimates. Finally, three numerical examples with different fractional derivative terms are given to validate the feasibility and effectiveness.

    Citation: Jie Zhao, Zhichao Fang, Jiahuan Ren. A finite volume element method for the multi-term time fractional reaction-diffusion models with variable coefficients[J]. AIMS Mathematics, 2025, 10(9): 20689-20714. doi: 10.3934/math.2025924

    Related Papers:

  • In this paper, a fully discrete finite volume element (FVE) scheme is proposed to treat the linear multi-term time fractional reaction-diffusion models with variable coefficients on triangular grids, where the Caputo fractional derivative of time variable is approximated by the $ L1 $ formula. The existence and uniqueness of solution for the proposed scheme is proved based on the matrix theories, the stability results are derived in detail by using a multi-term fractional Gronwall inequality, and the optimal error estimates under the $ L^2(\Omega) $ and $ H^1(\Omega) $ norms are also obtained. Owing to the variable coefficients in the models, a special technique should be used to analyze the stability and error estimates. Finally, three numerical examples with different fractional derivative terms are given to validate the feasibility and effectiveness.



    加载中


    [1] N. F. Britton, Reaction-diffusion equations and their applications to biology, London: Academic Press, 1986.
    [2] P. Grindrod, The theory and applications of reaction diffusion equations: patterns and waves, 2 Eds., New York: Clarendon Press, 1996.
    [3] E. S. Baranovskii, R. V. Brizitskii, Z. Y. Saritskaia, Optimal control problems for the reaction-diffusion-convection equation with variable coefficients, Nonlinear Anal.-Real, 75 (2024), 103979. https://doi.org/10.1016/j.nonrwa.2023.103979 doi: 10.1016/j.nonrwa.2023.103979
    [4] Y. C. Hua, Y. L. Tang, Z. H. Chen, Interpolated coefficient characteristic mixed finite element method for semilinear convection-diffusion optimal control problems, J. Nonlinear Funct. Anal., 2024 (2024), 12. https://doi.org/10.23952/jnfa.2024.12 doi: 10.23952/jnfa.2024.12
    [5] J. X. Cen, S. Migórski, C. Vetro, S. D. Zeng, Stability analysis for a contaminant convection-reaction-diffusion model of recovered fracturing fluid, J. Nonlinear Var. Anal., 8 (2024), 581–600. https://doi.org/10.23952/jnva.8.2024.4.07 doi: 10.23952/jnva.8.2024.4.07
    [6] P. Paradisi, R. Cesari, F. Mainardi, F. Tampieri, The fractional Ficks law for non-local transport processes, Physica A, 293 (2001), 130–142. https://doi.org/10.1016/S0378-4371(00)00491-X doi: 10.1016/S0378-4371(00)00491-X
    [7] R. Metzler, J. Klafter, The random walks guide to anomalous diffusion: A fractional dynamics approach, Physics Reports, 339 (2002), 1–77. https://doi.org/10.1016/S0370-1573(00)00070-3 doi: 10.1016/S0370-1573(00)00070-3
    [8] B. Ross, Fractional calculus and its applications, Berlin: Springer, 1975. https://doi.org/10.1007/BFb0067095
    [9] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779
    [10] K. Diethelm, The analysis of fractional differential equations, Berlin: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2
    [11] P. J. Torvik, R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294–298. https://doi.org/10.1115/1.3167615 doi: 10.1115/1.3167615
    [12] C. Fetecau, M. Athar, C. Fetecau, Unsteady flow of a generalized Maxwell fluid with fractional derivative due to a constantly accelerating plate, Comput. Math. Appl., 57 (2009), 596–603. https://doi.org/10.1016/j.camwa.2008.09.052 doi: 10.1016/j.camwa.2008.09.052
    [13] C. Y. Ming, F. W. Liu, L. C. Zheng, I. Turner, V. Anh, Analytical solutions of multi-term time fractional differential equations and application to unsteady flows of generalized viscoelastic fluid, Comput. Math. Appl., 72 (2016), 2084–2097. https://doi.org/10.1016/j.camwa.2016.08.012 doi: 10.1016/j.camwa.2016.08.012
    [14] J. C. Ren, Z.-Z. Sun, Efficient numerical solution of the multi-term time fractional diffusion-wave equation, E. Asian J. Appl. Math., 5 (2015), 1–28. https://doi.org/10.4208/eajam.080714.031114a doi: 10.4208/eajam.080714.031114a
    [15] B. T. Jin, R. Lazarov, Y. K. Liu, Z. Zhou, The Galerkin finite element method for a multi-term time-fractional diffusion equation, J. Comput. Phys., 281 (2015), 825–843. https://doi.org/10.1016/j.jcp.2014.10.051 doi: 10.1016/j.jcp.2014.10.051
    [16] A. H. Bhrawy, M. A. Zaky, A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys., 281 (2015), 876–895. https://doi.org/10.1016/j.jcp.2014.10.060 doi: 10.1016/j.jcp.2014.10.060
    [17] L. J. Qiao, D. Xu, Orthogonal spline collocation scheme for the multi-term time-fractional diffusion equation, Int. J. Comput. Math., 95 (2018), 1478–1493. https://doi.org/10.1080/00207160.2017.1324150 doi: 10.1080/00207160.2017.1324150
    [18] F. H. Zeng, Z. Q. Zhang, G. E. Karniadakis, Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions, Comput. Method. Appl. M., 327 (2017), 478–502. https://doi.org/10.1016/j.cma.2017.08.029 doi: 10.1016/j.cma.2017.08.029
    [19] Y. M. Zhao, Y. D. Zhang, F. Liu, I. Turner, Y. F. Tang, V. Anh, Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations, Comput. Math. Appl., 73 (2017), 1087–1099. https://doi.org/10.1016/j.camwa.2016.05.005 doi: 10.1016/j.camwa.2016.05.005
    [20] M. Li, C. M. Huang, W. Y. Ming, Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations, Comp. Appl. Math., 37 (2018), 2309–2334. https://doi.org/10.1007/s40314-017-0447-8 doi: 10.1007/s40314-017-0447-8
    [21] Z.-Z. Sun, X. N. Wu, A fully discrete difference scheme for a diffusion-wave system, Appl. Numer. Math., 56 (2006), 193–209. https://doi.org/10.1016/j.apnum.2005.03.003 doi: 10.1016/j.apnum.2005.03.003
    [22] Y. M. Lin, C. J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001
    [23] S. S. Ezz-Eldien, E. H. Doha, Y. Wang, W. Cai, A numerical treatment of the two-dimensional multi-term time-fractional mixed sub-diffusion and diffusion-wave equation, Commun. Nonlinear Sci., 91 (2020), 105445. https://doi.org/10.1016/j.cnsns.2020.105445 doi: 10.1016/j.cnsns.2020.105445
    [24] Y. Q. Liu, H. G. Sun, X. L. Yin, L. B. Feng, Fully discrete spectral method for solving a novel multi-term time-fractional mixed diffusion and diffusion-wave equation, Z. Angew. Math. Phys., 71 (2020), 21. https://doi.org/10.1007/s00033-019-1244-6 doi: 10.1007/s00033-019-1244-6
    [25] Y. H. Shi, Y. M. Zhao, F. L. Wang, Y. F. Tang, Superconvergence analysis of FEM for 2D multi-term time fractional diffusion-wave equations with variable coefficient, Int. J. Comput. Math., 97 (2020), 1621–1635. https://doi.org/10.1080/00207160.2019.1639676 doi: 10.1080/00207160.2019.1639676
    [26] B. L. Yin, Y. Liu, H. Li, F. H. Zeng, A class of efficient time-stepping methods for multi-term time-fractional reaction-diffusion-wave equations, Appl. Numer. Math., 165 (2021), 56–82. https://doi.org/10.1016/j.apnum.2021.02.007 doi: 10.1016/j.apnum.2021.02.007
    [27] M. F. She, D. F. Li, H. W. Sun, A transformed L1 method for solving the multi-term time-fractional diffusion problem, Math. Comput. Simulat., 193 (2022), 584–606. https://doi.org/10.1016/j.matcom.2021.11.005 doi: 10.1016/j.matcom.2021.11.005
    [28] K. X. Li, H. Chen, S. S. Xie, Error estimate of L1-ADI scheme for two-dimensional multi-term time fractional diffusion equation, Netw. Heterog. Media, 18 (2023), 1454–1470. https://doi.org/10.3934/nhm.2023064 doi: 10.3934/nhm.2023064
    [29] J. Zhao, S. B. Dong, Z. C. Fang, A mixed finite element method for the multi-term time-fractional reaction-diffusion equations, Fractal Fract., 8 (2024), 51. https://doi.org/10.3390/fractalfract8010051 doi: 10.3390/fractalfract8010051
    [30] B. H. Lu, Z. P. Hao, C. Moya, G. Lin, FPINN-deeponet: A physics-informed operator learning framework for multi-term time-fractional mixed diffusion-wave equations, J. Comput. Phys., 538 (2025), 114184. https://doi.org/10.1016/j.jcp.2025.114184 doi: 10.1016/j.jcp.2025.114184
    [31] Y. H. Li, R. H. Li, Generalized difference methods on arbitrary quadrilateral networks, J. Comput. Math., 17 (1999), 653–672.
    [32] R. H. Li, Z. Y. Chen, W. Wu, Generalized difference methods for differential equations: numerical analysis of finite volume methods, Boca Raton: CRC Press, 2000. https://doi.org/10.1201/9781482270211
    [33] J. L. Lv, Y. H. Li, Optimal biquadratic finite volume element methods on quadrilateral meshes, SIAM J. Numer. Anal., 50 (2012), 2379–2399. https://doi.org/10.1137/100805881 doi: 10.1137/100805881
    [34] K. Sayevand, F. Arjang, Finite volume element method and its stability analysis for analyzing the behavior of sub-diffusion problems, Appl. Math. Comput., 290 (2016), 224–239. https://doi.org/10.1016/j.amc.2016.06.008 doi: 10.1016/j.amc.2016.06.008
    [35] S. Karaa, K. Mustapha, A. K. Pani, Finite volume element method for two-dimensional fractional subdiffusion problems, IMA J. Numer. Anal., 37 (2017), 945–964. https://doi.org/10.1093/imanum/drw010 doi: 10.1093/imanum/drw010
    [36] S. Karaa, A. K. Pani, Error analysis of a FVEM for fractional order evolution equations with nonsmooth initial data, ESAIM-Math. Model. Num., 52 (2018), 773–801. https://doi.org/10.1051/m2an/2018029 doi: 10.1051/m2an/2018029
    [37] Z. C. Fang, R. X. Du, H. Li, Y. Liu, A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations, AIMS Mathematics, 7 (2022), 1941–1970. https://doi.org/10.3934/math.2022112 doi: 10.3934/math.2022112
    [38] T. X. Wang, Z. W. Jiang, A. L. Zhu, Z. Yin, A mixed finite volume element method for time-fractional damping beam vibration problem, Fractal Fract., 6 (2022), 523. https://doi.org/10.3390/fractalfract6090523 doi: 10.3390/fractalfract6090523
    [39] Z. C. Fang, J. Zhao, H. Li, Y. Liu, Finite volume element methods for two-dimensional time fractional reaction-diffusion equations on triangular grids, Appl. Anal., 102 (2023), 2248–2270. https://doi.org/10.1080/00036811.2022.2027374 doi: 10.1080/00036811.2022.2027374
    [40] Z. C. Fang, J. Zhao, H. Li, Y. Liu, A fast time two-mesh finite volume element algorithm for the nonlinear time-fractional coupled diffusion model, Numer. Algor., 93 (2023), 863–898. https://doi.org/10.1007/s11075-022-01444-2 doi: 10.1007/s11075-022-01444-2
    [41] M. Donatelli, R. Krause, M. Mazza, K. Trotti, Multigrid for two-sided fractional differential equations discretized by finite volume elements on graded meshes, J. Comput. Appl. Math., 444 (2024), 115787. https://doi.org/10.1016/j.cam.2024.115787 doi: 10.1016/j.cam.2024.115787
    [42] J. R. Zhang, Q. Yang, The finite volume element method for time fractional generalized Burgers' equation, Fractal Fract., 8 (2024), 53. https://doi.org/10.3390/fractalfract8010053 doi: 10.3390/fractalfract8010053
    [43] J. Zhao, M. Cao, Z. C. Fang, A mixed finite volume element method for nonlinear time fractional fourth-order reaction-diffusion models, Fractal Fract., 9 (2025), 481. https://doi.org/10.3390/fractalfract9080481 doi: 10.3390/fractalfract9080481
    [44] Z. C. Fang, J. Zhao, H. Li, Y. Liu, Fast two-grid finite volume element algorithms combined with Crank-Nicolson scheme for the nonlinear time fractional mobile/immobile transport model, Int. J. Comput. Math., 2025 (2025), 1–22. https://doi.org/10.1080/00207160.2025.2507678 doi: 10.1080/00207160.2025.2507678
    [45] R. A. Adams, Sobolev spaces, New York: Academic Press, 1975.
    [46] R. Ewing, R. Lazarov, Y. P. Lin, Finite volume element aproximations of nonlocal reactive flows in porous media, Numer. Meth. Part. D. E., 16 (2000), 285–311.
    [47] X. Wang, Y. H. Li, $L^2$ Error estimates for high order finite volume methods on triangular meshes, SIAM J. Numer. Aanl., 54 (2016), 2729–2749. https://doi.org/10.1137/140988486 doi: 10.1137/140988486
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(604) PDF downloads(29) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(16)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog