We present a new concept of fractional curvature invariant for regular curves in the Lorentz plane by generalizing the Caputo‐fractional curvature from Euclidean geometry to the pseudo‐Riemannian setting. Our construction projects the integer-order derivative of the Caputo vector of fractional-order derivatives onto the Lorentzian normal direction, yielding a curvature measure that naturally distinguishes timelike and spacelike curves. Explicit formulas for representative model curves are derived, and we illustrate how the Lorentzian metric signature fundamentally changes fractional curvature behavior. This framework extends fractional‐order geometric analysis into relativity, providing new tools for studying memory effects and nonlocal dynamics along curves in relativistic contexts.
Citation: Meltem Ogrenmis, Handan Oztekin, Y. S. Hamed, Muhammad Bilal Riaz, Muhammad Abbas. Caputo fractional curvature of curves in the Lorentzian plane[J]. AIMS Mathematics, 2025, 10(9): 20670-20688. doi: 10.3934/math.2025923
We present a new concept of fractional curvature invariant for regular curves in the Lorentz plane by generalizing the Caputo‐fractional curvature from Euclidean geometry to the pseudo‐Riemannian setting. Our construction projects the integer-order derivative of the Caputo vector of fractional-order derivatives onto the Lorentzian normal direction, yielding a curvature measure that naturally distinguishes timelike and spacelike curves. Explicit formulas for representative model curves are derived, and we illustrate how the Lorentzian metric signature fundamentally changes fractional curvature behavior. This framework extends fractional‐order geometric analysis into relativity, providing new tools for studying memory effects and nonlocal dynamics along curves in relativistic contexts.
| [1] |
O. P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems, J. Math. Anal. Appl., 272 (2002), 368–379. https://doi.org/10.1016/S0022-247X(02)00180-4 doi: 10.1016/S0022-247X(02)00180-4
|
| [2] |
T. Atanackovic, S. Konjik, L. Oparnica, S. Pilipovic, Generalized Hamilton's principle with fractional derivatives, J. Phys. A: Math. Theor., 43 (2010), 255203. https://doi.org/10.1088/1751-8113/43/25/255203 doi: 10.1088/1751-8113/43/25/255203
|
| [3] |
A. Atangana, Fractional derivatives, dimensions, and geometric interpretation: An answer to your worries, AIMS Mathematics, 10 (2025), 2562–2588. https://doi.org/10.3934/math.2025119 doi: 10.3934/math.2025119
|
| [4] |
M. E. Aydın, Effect of local fractional derivatives on Riemann curvature tensor, Examples and Counterexamples, 5 (2024), 100134. https://doi.org/10.1016/j.exco.2023.100134 doi: 10.1016/j.exco.2023.100134
|
| [5] | M. E. Aydın, M. Bektaş, A. O. Öğrenmiş, A. Yokuş, Differential geometry of curves in Euclidean 3-space with fractional order, Int. Electron. J. Geom., 14 (2021), 132–144. |
| [6] | M. E. Aydın, S. Kaya, Fractional equiaffine curvatures of curves in 3-dimensional affine space, International Journal of Maps in Mathematics, 6 (2023), 67–82. |
| [7] |
M. E. Aydın, A. Mihai, A. Yokuş, Applications of fractional calculus in equiaffine geometry: plane curves with fractional order, Math. Method. Appl. Sci., 44 (2021), 13659–13669. https://doi.org/10.1002/mma.7649 doi: 10.1002/mma.7649
|
| [8] | D. Baleanu, K. Diethelm, S. Enrico, J. J. Trujillo, Fractional calculus models and numerical methods, New Jersey: World Scientific, 2012. |
| [9] |
D. Baleanu, T. Abdeljawad, F. Jarad, Fractional variational principles with delay, J. Phys. A: Math. Theor., 41 (2008), 315403. https://doi.org/10.1088/1751-8113/41/31/315403 doi: 10.1088/1751-8113/41/31/315403
|
| [10] |
R. L. Bagley, R. A. Calico, Fractional order state equations for the control of viscoelastically damped structures, J. Guid. Control Dynam., 14 (1991), 304–311. https://doi.org/10.2514/3.20641 doi: 10.2514/3.20641
|
| [11] |
R. L. Bagley, P. J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27 (1983), 201–210. https://doi.org/10.1122/1.549724 doi: 10.1122/1.549724
|
| [12] |
R. L. Bagley, P. J. Torvik, Fractional calculus-A different approach to the analysis of viscoelastically damped structures, American Institute of Aeronautics and Astronautics, 21 (1983), 741–748. https://doi.org/10.2514/3.8142 doi: 10.2514/3.8142
|
| [13] |
R. L. Bagley, P. J. Torvik, On the fractional calculus model of viscoelastic behaviour, J. Rheol., 30 (1986), 133–155. https://doi.org/10.1122/1.549887 doi: 10.1122/1.549887
|
| [14] | B. Bonilla, A. A. Kilbas, J. J. Trujillo, Cálculo fraccionario y ecuaciones diferenciales fraccionarias, Madrid: UNED Ediciones, 2003. |
| [15] |
Y. Cao, Y. G. Kao, J. H. Park, H. B. Bao, Global Mittag-Leffler stability of the delayed fractional-coupled reaction-diffusion system on networks without strong connectedness, IEEE T. Neur. Net. Lear., 33 (2022), 6473–6483. https://doi.org/10.1109/TNNLS.2021.3080830 doi: 10.1109/TNNLS.2021.3080830
|
| [16] |
M. Caputo, Linear models of dissipation whose Q is almost frequency independent—Ⅱ, Geophysical Journal of the Royal Astronomical Society, 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
|
| [17] | M. Caputo, Elasticità e dissipatione, Bologna: Zanichelli, 1969. |
| [18] |
A. Gjurchinovski, T. Sandev, V. Urumov, Delayed feedback control of fractional-order chaotic systems, J. Phys. A: Math. Theor., 43 (2010), 445102. https://doi.org/10.1088/1751-8113/43/44/445102 doi: 10.1088/1751-8113/43/44/445102
|
| [19] |
I. Grigorenko, E. Grigorenko, Chaotic dynamics of the fractional Lorenz system, Phys. Rev. Lett., 91 (2003), 034101. https://doi.org/10.1103/PhysRevLett.91.034101 doi: 10.1103/PhysRevLett.91.034101
|
| [20] |
C.-H. He, H.-W. Liu, C. Liu, A fractal-based approach to the mechanical properties of recycled aggregate concretes, Facta Univ.-Ser. Mech., 22 (2024), 329–342. https://doi.org/10.22190/FUME240605035H doi: 10.22190/FUME240605035H
|
| [21] |
C.-H. He, C. Liu, Fractal dimensions of a porous concrete and its effect on the concrete's strength, Facta Univ.-Ser. Mech., 21 (2023), 137–150. https://doi.org/10.22190/FUME221215005H doi: 10.22190/FUME221215005H
|
| [22] | R. Hilfer, Applications of fractional calculus in physics, New Jersey: World Scientific, 2000. https://doi.org/10.1142/3779 |
| [23] |
Z. Li, Optical solutions of the nonlinear Kodama equation with the M-truncated derivative via the extended $(G'/G)$-expansion method, Fractal Fract., 9 (2025), 300. https://doi.org/10.3390/fractalfract9050300 doi: 10.3390/fractalfract9050300
|
| [24] |
Z. Li, E. Hussain, Qualitative analysis and traveling wave solutions of a (3+1)-dimensional generalized nonlinear Konopelchenko–Dubrovsky–Kaup–Kupershmidt system, Fractal Fract., 9 (2025), 285. https://doi.org/10.3390/fractalfract9050285 doi: 10.3390/fractalfract9050285
|
| [25] |
Y. G. Kao, Y. Cao, Y. Q. Chen, Projective synchronization for uncertain fractional reaction-diffusion systems via adaptive sliding mode control based on finite-time scheme, IEEE T. Neur. Net. Lear., 35 (2024), 15638–15646. https://doi.org/10.1109/TNNLS.2023.3288849 doi: 10.1109/TNNLS.2023.3288849
|
| [26] |
Y. G. Kao, Y. Li, J. H. Park, X. Y. Chen, Mittag-Leffler synchronization of delayed fractional memristor neural networks via adaptive control, IEEE T. Neur. Net. Lear., 32 (2021), 2279–2284. https://doi.org/10.1109/TNNLS.2020.2995718 doi: 10.1109/TNNLS.2020.2995718
|
| [27] | Y. G. Kao, C. H. Wang, H. W. Xia, Y. Cao, Global Mittag-Leffler synchronization of coupled delayed fractional reaction-diffusion Cohen–Grossberg neural networks via sliding mode control, In: Analysis and control for fractional-order systems, Singapore: Springer, 121–140, 2024. https://doi.org/10.1007/978-981-99-6054-5_7 |
| [28] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
| [29] | F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, London: Imperial College Press, 2010. |
| [30] |
Ruby, M. Mandal, The geometrical and physical interpretation of fractional order derivatives for a general class of functions, Math. Method. Appl. Sci., 47 (2024), 8400–8420, https://doi.org/10.1002/mma.10020 doi: 10.1002/mma.10020
|
| [31] | B. O'Neill, Semi-riemannian geometry with applications to relativity, New York: Academic Press, 1983. |
| [32] | K. B. Oldham, J. Spanier, The fractional calculus: theory and applications of differentiation and integration to arbitrary order, New York: Dover Publications, 2006. |
| [33] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999. |
| [34] | F. R. López, O. Rubio, A new fractional curvature of curves using the Caputo's fractional derivative, Advanced Mathematical Models and Applications, 8 (2023), 157–175. |
| [35] | R. K. Sachs, H.-H. Wu, General relativity for mathematicians, New York: Springer, 1977. https://doi.org/10.1007/978-1-4612-9903-5 |
| [36] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications, New York: Gordon and Breach Science Publishers, 1993. |
| [37] |
V. E. Tarasov, Fractional generalization of gradient and Hamiltonian systems, Journal of Physics A: Mathematical and General, 38 (2005), 5929–5943. https://doi.org/10.1088/0305-4470/38/26/007 doi: 10.1088/0305-4470/38/26/007
|
| [38] |
V. E. Tarasov, Fractional generalization of gradient systems, Lett. Math. Phys., 73 (2005), 49–58. https://doi.org/10.1007/s11005-005-8444-z doi: 10.1007/s11005-005-8444-z
|
| [39] | V. Volterra, B. Hostinsky, Operations infinitesimales lineares, Paris: Gauthier-Villars, 1938. |
| [40] |
T. Yajima, H. Nagahama, Geometric structures of fractional dynamical systems in non-Riemannian space: applications to mechanical and electromechanical systems, Ann. Phys., 530 (2018), 1700391. https://doi.org/10.1002/andp.201700391 doi: 10.1002/andp.201700391
|