Lumpy skin disease (LSD) is a viral infection in cattle caused by the lumpy skin disease virus (LSDV). The purpose of this study was to examine the qualitative dynamics of the LSD model, including vaccine efficacy and different types of discrete time delays. The model considers LSD transmission in both susceptible and vaccinated populations. Local and global stability analyses have been conducted. A Lyapunov functional was developed, and LaSalle's invariance principle was utilized to demonstrate the global asymptotic stability of the model's equilibria. We have calculated the basic reproduction number $ \mathsf{R_0} $. The LSD-free equilibrium is globally asymptotically stable (GAS) when $ \mathsf{R_0}\leq1 $, whereas the LSD-endemic equilibrium is GAS when $ \mathsf{R_0} > 1 $. The theoretical results have been confirmed through numerical simulations. The results have indicated that utilizing a combination of time delays is more effective in eradicating the LSD virus outbreak. From a biological perspective, the delay functions similarly to antiviral vaccines and treatments in mitigating the LSD outbreak. Furthermore, even when the vaccine efficacy vanishes, an extended incubation period and increased delays before infection with LSD significantly restrict viral transmission and inhibit the spread of the virus. Moreover, the results indicate that even with a high level of vaccine efficacy, the elimination of the disease from populations is unlikely without the implementation of supplementary mitigation strategies.
Citation: Nada A. Almuallem. Global properties of a delayed model for the dynamics of lumpy skin disease with vaccination efficacy[J]. AIMS Mathematics, 2025, 10(9): 20642-20669. doi: 10.3934/math.2025922
Lumpy skin disease (LSD) is a viral infection in cattle caused by the lumpy skin disease virus (LSDV). The purpose of this study was to examine the qualitative dynamics of the LSD model, including vaccine efficacy and different types of discrete time delays. The model considers LSD transmission in both susceptible and vaccinated populations. Local and global stability analyses have been conducted. A Lyapunov functional was developed, and LaSalle's invariance principle was utilized to demonstrate the global asymptotic stability of the model's equilibria. We have calculated the basic reproduction number $ \mathsf{R_0} $. The LSD-free equilibrium is globally asymptotically stable (GAS) when $ \mathsf{R_0}\leq1 $, whereas the LSD-endemic equilibrium is GAS when $ \mathsf{R_0} > 1 $. The theoretical results have been confirmed through numerical simulations. The results have indicated that utilizing a combination of time delays is more effective in eradicating the LSD virus outbreak. From a biological perspective, the delay functions similarly to antiviral vaccines and treatments in mitigating the LSD outbreak. Furthermore, even when the vaccine efficacy vanishes, an extended incubation period and increased delays before infection with LSD significantly restrict viral transmission and inhibit the spread of the virus. Moreover, the results indicate that even with a high level of vaccine efficacy, the elimination of the disease from populations is unlikely without the implementation of supplementary mitigation strategies.
| [1] |
A. Kononov, P. Prutnikov, I. Shumilova, S. Kononova, A. Nesterov, O. Byadovskaya, et al., Determination of lumpy skin disease virus in bovine meat and offal products following experimental infection, Transbound. Emerg. Dis., 66 (2019), 1332–1340. https://doi.org/10.1111/tbed.13158 doi: 10.1111/tbed.13158
|
| [2] |
E. Mulatu, A. Feyisa, Review: Lumpy skin disease, J. Vet. Sci. Technol., 9 (2018), 535. https://doi.org/10.4172/2157-7579.1000535 doi: 10.4172/2157-7579.1000535
|
| [3] | X. Roche, A. Rozstalnyy, D. TagoPacheco, C. Pittiglio, A. Kamata, D. B. Alcrudo, et al., Introduction and spread of lumpy skin disease in South, East and Southeast Asia: Qualitative risk assessment and management, Rome: Food and Agriculture Organization of the United Nations, 2021. |
| [4] |
B. Datten, A. A. Chaudhary, S. Sharma, L. Singh, K. D. Rawat, M. S. Ashraf, et al., An extensive examination of the warning signs, symptoms, diagnosis, available therapies, and prognosis for lumpy skin disease, Viruses, 15 (2023), 604. https://doi.org/10.3390/v15030604 doi: 10.3390/v15030604
|
| [5] |
S. A. Alharbi, N. A. Almuallem, Computational study of a fractional-order HIV epidemic mdel with latent phase and treatment, Fractal Fract., 9 (2025), 28. https://doi.org/10.3390/fractalfract9010028 doi: 10.3390/fractalfract9010028
|
| [6] |
N. A. Almuallem, H. M. Ali, E. M. Elsaid, M. R. Eid, W. S. Hassanin, Mathematical simulation of optimal control measures to avoid chickenpox infection, Int. J. Math. Math. Sci., 2025 (2025), 3238188. https://doi.org/10.1155/ijmm/3238188 doi: 10.1155/ijmm/3238188
|
| [7] |
A. I. Butt, W. Ahmad, M. Rafiq, D. Baleanu, Numerical analysis of Atangana-Baleanu fractional model to understand the propagation of a novel corona virus pandemic, Alex. Eng. J., 61 (2022), 7007–7027. https://doi.org/10.1016/j.aej.2021.12.042 doi: 10.1016/j.aej.2021.12.042
|
| [8] |
N. A. Almuallem, H. Mollah, S. Sarwardi, A study of a prey-predator model with disease in predator including gestation delay, treatment and linear harvesting of predator species, AIMS Math., 10 (2025), 14657–14698. https://doi.org/10.3934/math.2025660 doi: 10.3934/math.2025660
|
| [9] |
P. O. Odeniran, A. A. Onifade, E. T. MacLeod, I. O. Ademola, S. Alderton, S. C. Welburn, Mathematical modelling and control of African animal trypanosomosis with interacting populations in West Africa-Could biting flies be important in main taining the disease endemicity? PLoS One, 15 (2020), e0242435. https://doi.org/10.1371/journal.pone.0242435 doi: 10.1371/journal.pone.0242435
|
| [10] |
R. Bradhurst, G. Garner, M. Hóvári, M. de la Puente, K. Mintiens, S. Yadav, et al., Development of a transboundary model of livestock disease in Europe, Transbound. Emerg. Dis., 69 (2022), 1963–1982. https://doi.org/10.1111/tbed.14201 doi: 10.1111/tbed.14201
|
| [11] |
E. L. Brugnago, E. C. Gabrick, K. C. Iarosz, J. D. Szezech, R. L. Viana, A. M. Batista, et al., Multistability and chaos in SEIRS epidemic model with a periodic time-dependent transmission rate, Chaos, 33 (2023), 123123. https://doi.org/10.1063/5.0156452 doi: 10.1063/5.0156452
|
| [12] |
E. C. Gabrick, E. L. Brugnago, S. L. de Souza, K. C. Iarosz, J. D. Szezech, R. L. Viana, et al., Impact of periodic vaccination in SEIRS seasonal model, Chaos, 34 (2024), 013137. https://doi.org/10.1063/5.0169834 doi: 10.1063/5.0169834
|
| [13] |
A. C. Costa, D. L. Cardoso, L. F. de Oliveira, I. R. de Oliveira, S. Bhowmick, M. Amaku, et al., Network analysis of cattle movement among municipalities in Minas Gerais State, Brazil, from 2013 to 2023, Prevent. Vet. Med., 236 (2025), 106420. https://doi.org/10.1016/j.prevetmed.2025.106420 doi: 10.1016/j.prevetmed.2025.106420
|
| [14] |
I. A. Moneim, D. Greenhalgh, Threshold and stability results for an SIRS epidemic model with a general periodic vaccination strategy, J. Biol. Syst., 13 (2005), 131–150. https://doi.org/10.1142/S0218339005001446 doi: 10.1142/S0218339005001446
|
| [15] |
R. Magori-Cohen, Y. Louzoun, Y. Herziger, E. Oron, A. Arazi, E. Tuppurainen, et al., Mathematical modelling and evaluation of the different routes of transmission of lumpy skin disease virus, Vet. Res., 43 (2012), 1. https://doi.org/10.1186/1297-9716-43-1 doi: 10.1186/1297-9716-43-1
|
| [16] |
A. Anwar, K. Na-Lampang, N. Preyavichyapugdee, V. Punyapornwithaya, Lumpy skin disease outbreaks in Africa, Europe, and Asia (2005–2022): multiple change point analysis and time series forecast, Viruses, 14 (2022), 2203. https://doi.org/10.3390/v14102203 doi: 10.3390/v14102203
|
| [17] |
A. I. Butt, H. Aftab, M. Imran, T. Ismaeel, Mathematical study of lumpy skin disease with optimal control analysis through vaccination, Alex. Eng. J., 72 (2023), 247–259. https://doi.org/10.1016/j.aej.2023.03.073 doi: 10.1016/j.aej.2023.03.073
|
| [18] |
G. Man, A. J. Gnanaprakasam, S. Ramalingam, A. S. Omer, I. Khan, Mathematical model of the lumpy skin disease using Caputo fractional-order derivative via invariant point technique, Sci. Rep., 15 (2025), 9112. https://doi.org/10.1038/s41598-025-92884-y doi: 10.1038/s41598-025-92884-y
|
| [19] | G. Saha, P. Shahrear, A. Faiyaz, A. K. Saha, Mathematical modeling of lumpy skin disease: New perspectives and insights, PDE Appl. Math., 30 (2025), 101218. |
| [20] |
W. F. Alfwzan, M. H. DarAssi, F. M. Allehiany, M. A. Khan, M. Y. Alshahrani, E. M. Tag-Eldin, A novel mathematical study to understand the Lumpy skin disease (LSD) using modified parameterized approach, Results Phys., 51 (2023), 106626. https://doi.org/10.1016/j.rinp.2023.106626 doi: 10.1016/j.rinp.2023.106626
|
| [21] |
G. Gari, A. Waret-Szkuta, V. Grosbois, P. Jacquiet, F. Roger, Risk factors associated with observed clinical lumpy skin disease in Ethiopia, Epidemiol. Inf., 138 (2010), 1657–1666. https://doi.org/10.1017/S0950268810000506 doi: 10.1017/S0950268810000506
|
| [22] |
P. Kumar, S. Kumar, B. S. Alkahtani, S. S. Alzaid, A robust numerical study on modified Lumpy skin disease model, AIMS Math., 9 (2025), 22941–22985. https://doi.org/10.3934/math.20241116 doi: 10.3934/math.20241116
|
| [23] |
N. A. Almuallem, R. P. Chauhan, Effects of quarantine and vaccination on the transmission of Lumpy skin disease: A fractional approach, PLoS One, 20 (2025), e0327673. https://doi.org/10.1371/journal.pone.0327673 doi: 10.1371/journal.pone.0327673
|
| [24] | S. A. Ambhore, N. K. Lamba, Lumpy skin disease: A mathematical model application, Indian J. Sci. Technol., 18 (2025), 755–762. |
| [25] |
A. M. Elaiw, N. A. Almuallem, Global properties of delayed-HIV dynamics models with differential drug efficacy in cocirculating target cells, Appl. Math. Comput., 15 (2015), 1067–1089. https://doi.org/10.1016/j.amc.2015.06.011 doi: 10.1016/j.amc.2015.06.011
|
| [26] |
M. H. Hassan, T. El-Azab, G. AlNemer, M. A. Sohaly, H. El-Metwally, Analysis time-delayed SEIR model with survival rate for COVID-19 stability and disease control, Mathematics, 12 (2024), 3697. https://doi.org/10.3390/math12233697 doi: 10.3390/math12233697
|
| [27] |
E. Tuppurainen, K. Dietze, J. Wolff, H. Bergmann, D. Beltran-Alcrudo, A. Fahrion, et al., Review: Vaccines and vaccination against lumpy skin disease, Vaccines, 9 (2021), 1136. https://doi.org/10.3390/vaccines9101136 doi: 10.3390/vaccines9101136
|
| [28] | M. M. Ojo, O. J. Peter, E. F. Goufo, H. S. Panigoro, F. A. Oguntolu, Mathematical model for control of tuberculosis epidemiology, J. Appl. Math. Comput., 69 (2023), 69–87. |
| [29] | Y. Kuang, Delay differential equations: with applications in population dynamics, New York: Academic press, 1993. |
| [30] |
Y. Narwal, S. Rathee, Fractional order mathematical modeling of lumpy skin disease, Commun. Faculty Sci. Uni. Ankara Ser. A1 Math. Stat., 73 (2024), 192–210. https://doi.org/10.31801/cfsuasmas.1207144 doi: 10.31801/cfsuasmas.1207144
|
| [31] |
A. El-Mesady, A. A. Elsadany, A. M. Mahdy, A. Elsonbaty, Nonlinear dynamics and optimal control strategies of a novel fractional-order lumpy skin disease model, J. Comput. Sci., 79 (2024), 102286. https://doi.org/10.1016/j.jocs.2024.102286 doi: 10.1016/j.jocs.2024.102286
|
| [32] | O. Arino, M. L. Hbid, E. Ait Dads, Delay differential equations and applications, In: Proceedings of the NATO Advanced Study Institute held in Marrakech, Morocco, 9-21 September 2002, Springer Science & Business Media, 2007. |
| [33] | X. Yang, L. Chen, J. Chen, Permanence and positive periodic solution for the single-species nonautonomous delay diffusive models, Comput. Math. Appl., 32 (1996), 109–116. |
| [34] |
P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
|
| [35] |
N. Chitnis, J. M. Cushing, J. M. Hyman, Bifurcation analysis of a mathematical model for malaria transmission, SIAM J. Appl. Math., 67 (2006), 24–45. https://doi.org/10.1137/050638941 doi: 10.1137/050638941
|
| [36] | J. K. Hale, S. M. Lunel, Introduction to functional differential equations, Berlin: Springer Science & Business Media, 2013. |
| [37] | J. P. La Salle, The stability of dynamical systems, USA: Society for Industrial and Applied Mathematics, 1976. |
| [38] |
N. Chitnis, J. M. Hyman, J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272–1296. https://doi.org/10.1007/s11538-008-9299-0 doi: 10.1007/s11538-008-9299-0
|
| [39] |
F. Namazi, A. Khodakaram Tafti, Lumpy skin disease, an emerging transboundary viral disease: A review, Vet. Med. Sci., 7 (2021), 888–896. https://doi.org/10.1002/vms3.434. doi: 10.1002/vms3.434
|
| [40] |
P. M. Beard, Lumpy skin disease: A direct threat to Europe, Vet. Rec., 178 (2016), 557–558. https://doi.org/10.1136/vr.i2800 doi: 10.1136/vr.i2800
|
| [41] |
M. T. Al-Arydah, Assessing vaccine efficacy for infectious diseases with variable immunity using a mathematical model, Sci. Rep., 14 (2024), 18572. https://doi.org/10.1038/s41598-024-69651-6 doi: 10.1038/s41598-024-69651-6
|
| [42] |
M. T. Al-Arydah, R. Smith, Controlling malaria with indoor residual spraying in spatially heterogenous environments, Math. Biosci. Eng., 8 (2011), 889–914. https://doi.org/10.3934/mbe.2011.8.889 doi: 10.3934/mbe.2011.8.889
|
| [43] |
A. I. Butt, Dynamical modeling of lumpy skin disease using Atangana-Baleanu derivative and optimal control analysis, Model. Earth Syst. Environ., 11 (2025), 27. https://doi.org/10.1007/s40808-024-02239-1 doi: 10.1007/s40808-024-02239-1
|
| [44] |
A. I. Butt, H. Aftab, M. Imran, T. Ismaeel, M. Arab, M. Gohar, et al., Dynamical study of lumpy skin disease model with optimal control analysis through pharmaceutical and non-pharmaceutical controls, Europ. Phys. J. Plus, 138 (2023), 1048. https://doi.org/10.1140/epjp/s13360-023-04690-y doi: 10.1140/epjp/s13360-023-04690-y
|
| [45] |
V. Osei-Buabeng, A. A. Frimpong, B. Barnes, Mathematical modeling of COVID-19 with a constant spatial diffusion term in Ghana, Comput. Meth. Diff. Equ., 13 (2025), 870–884. https://doi.org/10.22034/cmde.2024.59036.2504 doi: 10.22034/cmde.2024.59036.2504
|
| [46] |
S. L. de Souza, A. M. Batista, I. L. Caldas, K. C. Iarosz, J. D. Szezech, Dynamics of epidemics: Impact of easing restrictions and control of infection spread, Chaos Solitons Fract., 142 (2021), 110431. https://doi.org/10.1016/j.chaos.2020.110431 doi: 10.1016/j.chaos.2020.110431
|