This study investigates set-valued contractions within the framework of $ {m_v^b-} $metric spaces, extending classical contraction principles. By introducing and examining the Hausdorff $ {m_v^b-} $metric, we establish a foundation for set-valued fixed point theorems, thereby contributing significantly to this area of research. Our findings generalize several well-known contraction concepts, including those of Banach, Sehgal, Wardowski, Altun, Bianchini, and Nadler, within the context of $ {m_v^b-} $metric spaces. These advancements have practical implications, particularly in the study of nonlinear systems and the mathematical model of Fredholm integral inclusions. The results presented here emphasize the growing importance of set-valued fixed points and pave the way for further exploration and application across various scientific and engineering domains.
Citation: Khairul Habib Alam, Yumnam Rohen, Anita Tomar, Mohammad Sajid. Set-valued contractions with an application to Fredholm integral inclusions in $ {m_v^b}- $metric spaces[J]. AIMS Mathematics, 2025, 10(9): 20742-20758. doi: 10.3934/math.2025926
This study investigates set-valued contractions within the framework of $ {m_v^b-} $metric spaces, extending classical contraction principles. By introducing and examining the Hausdorff $ {m_v^b-} $metric, we establish a foundation for set-valued fixed point theorems, thereby contributing significantly to this area of research. Our findings generalize several well-known contraction concepts, including those of Banach, Sehgal, Wardowski, Altun, Bianchini, and Nadler, within the context of $ {m_v^b-} $metric spaces. These advancements have practical implications, particularly in the study of nonlinear systems and the mathematical model of Fredholm integral inclusions. The results presented here emphasize the growing importance of set-valued fixed points and pave the way for further exploration and application across various scientific and engineering domains.
| [1] |
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
|
| [2] |
K. H. Alam, Y. Rohen, A. Tomar, $(\alpha, F)$-Geraghty-type generalized $F$-contractions on non-Archimedean fuzzy metric-unlike spaces, Demonstr. Math., 57 (2024), 20240046. https://doi.org/10.1515/dema-2024-0046 doi: 10.1515/dema-2024-0046
|
| [3] |
K. H. Alam, Y. Rohen, I. A. Kallel, J. Ahmad, Solution of an algebraic linear system of equations using fixed point results in $C^*$-algebra valued extended Branciari $S_b$-metric spaces, Int. J. Anal. Appl., 22 (2024), 139–139. https://doi.org/10.28924/2291-8639-22-2024-139 doi: 10.28924/2291-8639-22-2024-139
|
| [4] |
K. H. Alam, Y. Rohen, A. Tomar, M. Sajid, On geometry of fixed figures via $\varphi$-interpolative contractions and application of activation functions in neural networks and machine learning models, Ain Shams Eng. J., 16 (2025), 103182. https://doi.org/10.1016/j.asej.2024.103182 doi: 10.1016/j.asej.2024.103182
|
| [5] | S. B. Nadler Jr, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 2. |
| [6] |
M. Joshi, A. Tomar, On unique and nonunique fixed points in metric spaces and application to chemical sciences, J. Funct. Space., 2021 (2021), 1–11. https://doi.org/10.1155/2021/5525472 doi: 10.1155/2021/5525472
|
| [7] |
K. H. Alam, Y. Rohen, N. Saleem, Fixed points of $(\alpha, \beta, F^{*})$ and $(\alpha, \beta, F^{**})$-weak Geraghty contractions with an application, Symmetry, 15 (2023), 243. https://doi.org/10.3390/sym15010243 doi: 10.3390/sym15010243
|
| [8] |
A. Tomar, M. Joshi, S. K. Padaliya, B. Joshi, A. Diwedi, Fixed point under set-valued relation-theoretic nonlinear contractions and application, Filomat, 33 (2019), 4655–4664. https://doi.org/10.2298/FIL1914655T doi: 10.2298/FIL1914655T
|
| [9] |
M. Joshi, A. Tomar, T. Abdeljawad, On fixed points, their geometry and application to satellite web coupling problem in $S$-metric spaces, AIMS Math., 8 (2023), 4407–4441. https://doi.org/10.3934/math.2023220 doi: 10.3934/math.2023220
|
| [10] | J. L. Kelley, General topology, New York: Van Nostrand Reinhold Co, 1955. |
| [11] |
A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math.-Debrecen, 57 (2000), 31–37. https://doi.org/10.5486/PMD.2000.2133 doi: 10.5486/PMD.2000.2133
|
| [12] | I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., 30 (1989), 26–37. |
| [13] |
Z. D. Mitrović, S. Radenović, The Banach and Reich contractions in $b_v(s)$-metric spaces, J. Fix. Point Theory A., 19 (2017), 3087–3095. https://doi.org/10.1007/s11784-017-0469-2 doi: 10.1007/s11784-017-0469-2
|
| [14] |
M. Asadi, E. Karapınar, P. Salimi, New extension of $p$-metric spaces with some fixed-point results on M-metric spaces, J. Inequal. Appl., 2014 (2014), 1–9. https://doi.org/10.1186/1029-242X-2014-18 doi: 10.1186/1029-242X-2014-18
|
| [15] |
N. Y. Özgür, N. Mlaiki, N. Taş, N. Souayah, A new generalization of metric spaces: Rectangular $M$-metric spaces, Math. Sci., 12 (2018), 223–233. https://doi.org/10.1007/s40096-018-0262-4 doi: 10.1007/s40096-018-0262-4
|
| [16] |
M. Asim, I. Uddin, M. Imdad, Fixed point results in $M_v$-metric spaces with an application, J. Inequal. Appl., 2019 (2019), 1–19. https://doi.org/10.1186/s13660-019-2223-3 doi: 10.1186/s13660-019-2223-3
|
| [17] |
M. Joshi, A. Tomar, H. A. Nabwey, R. George, On unique and nonunique fixed points and fixed circles in $M_v^b$-metric space and application to cantilever beam problem, J. Funct. Space., 2021 (2021), 1–15. https://doi.org/10.1155/2021/6681044 doi: 10.1155/2021/6681044
|
| [18] |
K. H. Alam, Y. Rohen, A. Tomar, On fixed point and its application to the spread of infectious diseases model in $M_v^b$-metric space, Math. Method. Appl. Sci., 47 (2024), 6489–6503. https://doi.org/10.1002/mma.9933 doi: 10.1002/mma.9933
|
| [19] | K. H. Alam, Y. Rohen, A. Tomar, M. Sajid, On fixed point and solution to nonlinear matrix equations related to beam theory in $M_v^b$-metric space, J. Nonlinear Convex A., 25 (2024), 2149–2171. |
| [20] |
K. H. Alam, Y. Rohen, A. Tomar, J. Ahmad, A new extended metric space and solution of rocket's ascending motion, Asian-Eur. J. Math., 18 (2025), 2550001. https://doi.org/10.1142/S1793557125500019 doi: 10.1142/S1793557125500019
|
| [21] | W. Kirk, N. Shahzad, Fixed point theory in distance spaces, Springer, 1 (2014). |
| [22] |
V. M. Sehgal, On fixed and periodic points for a class of mappings, J. Lond. Math. Soc., 2 (1972), 571–576. https://doi.org/10.1112/jlms/s2-5.3.571 doi: 10.1112/jlms/s2-5.3.571
|
| [23] |
D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory A., 2012 (2012), 1–6. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94
|
| [24] | I. Altun, G. Minak, H. Dag, Multivalued $F$-contractions on complete metric space, J. Nonlinear Convex A., 16 (2015), 659–666. |
| [25] | R. M. T. Bianchini, Su un problema di S. Reich riguardonte la teoria dei punti fissi, Boll. Unione Mat. Ital., 5 (1972), 103–108. |
| [26] |
M. Joshi, A. Tomar, I. Uddin, Fixed point in $M_v^b$-metric space and applications, Acta U. Sapientiae-Ma., 15 (2023), 272–287. https://doi.org/10.2478/ausm-2023-0015 doi: 10.2478/ausm-2023-0015
|