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Abstract: This paper explores the influence of a transverse magnetic field at the boundary and studies
the vanishing dissipation limit of the incompressible magneto-micropolar fluid equations in a half-
space. We prove that the solutions remain uniformly bounded, both in the conormal Sobolev norms
and the L™ norm, over a fixed time interval, independent of the dissipative coefficients. As a result, we
establish the convergence of the dissipative magneto-micropolar fluid equations to the corresponding
non-dissipative equations in the L* norm. Additionally, our analysis provides uniform regularity
energy estimates as the dissipative coefficients tend to zero. This shows that the strong boundary
layer can still be prevented by the transverse magnetic field, even with the magnetic diffusion.
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1. Introduction

In the realm of magnetohydrodynamics, the magneto-micropolar fluid equations play a vital role in
exploring complex flow phenomena. Below, we present a three-dimensional equations of the
incompressible magneto-micropolar fluid equation

ou+u-Vu—H-VH+ Vp = (u + v)Au + 24V X w,
ow+u-Vo = xV(V - w) + yAw — 4kw + 2«V X u,
OH+u-VH-H: Vu = eAH,

V-u=V-H=0,

(1.1)
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here, u = (uy, up, u3), w = (W1, Wy, w3), and H = (hy, hy, h3) represent the velocity field, microrotation
velocity field, and magnetic field, respectively. p is the total pressure. The parameters u and € denote
the viscosity coefficient and the magnetic diffusion coefficient, respectively. x denotes the microrotation
viscosity, and y, y denote the angular viscosities.

The incompressible magneto-micropolar fluid equations present significant analytical challenges
while also providing new opportunities for exploration, owing to their unique and distinctive
mathematical characteristics. A great deal of work has also been done on the magneto-micropolar
fluid equations; see references [1-3].

The vanishing dissipation limit problem represents a crucial and complex area of study in both
hydrodynamics and applied mathematics. This problem involves understanding the behavior of fluid
systems as dissipative effects, such as viscosity, tend to zero. It plays a key role in bridging the gap
between idealized, inviscid systems and more realistic, viscous systems. Despite its importance, it
poses significant analytical challenges due to the loss of regularity and the potential development of
singularities as dissipation vanishes. Numerous works have explored different aspects of this problem,
addressing its implications for stability, convergence, and boundary layer behavior. For further
exploration of these complexities, see references [4, 5], which provide detailed insights into the
mathematical and physical intricacies of the vanishing dissipation limit in various fluid systems. And
there is an important issue for magneto-micropolar systems, which is justifying the boundary layer
assumptions of the magneto-micropolar fluid systems.

Motivated by the work presented in [6—8], this paper aims to explore the precise role that viscosity
and diffusivity play as the dissipation effects approach zero, especially in regions close to the boundary
where boundary layer phenomena may arise. To address this, we specifically study the magneto-
micropolar fluid equations in a half-plane domain, incorporating fully viscosity and diffusivity terms.
By analyzing this setup, we aim to uncover the subtle mechanisms by which these dissipation terms
govern the transition from a dissipative to a non-dissipative regime near the boundary, providing insight
into the mathematical and physical complexities of such systems in fluid dynamics.

Specifically, we investigate the following magneto-micropolar fluid equations in the domain
{(z,x) | t € [0, T], x € Q}, where the spatial region is given by Q) = {X =(x,y,2) ]| (x,y) eR? z> 0}

0w +u’® - Vu? — H° - VH? + Vp® = 2eAu® + 2V X 0°,
0,w° +u° -V’ = eV(V - 0°) + Aw?® — 4ew® + 26V X u?,

(1.2)
0,H® +uv® - VH? — H? - Vu® = 2eAH?,
V-u?=V -H°=0.
The initial data is given by
(u®, 0° H®)|=o = (o, wo, Hp). (1.3)

Initial boundary value problems in fluid mechanics frequently arise in various fields, with boundary
conditions determined according to the specific physical settings. In the presence of boundaries, the
no-slip boundary condition is imposed on both the velocity field and the microrotation velocity field

U’l20 = @°l:=0 = 0, (1.4)
and assume that the magnetic field satisfies the perfect conducting boundary condition

0:hil.=0 = 0;h5).=0 =0, h5l.=0 = 1. (1.5)
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For fluids with viscosity and diffusivity, the no-slip boundary condition primarily affects the flow
within a thin layer adjacent to the surface. This gives rise to the classical boundary layer theory,
see references [9—11], which postulates that outside this thin region, the fluid behaves ideally, while
dissipative effects dominate within the layer. We will establish that the classical solution to this problem
remains uniformly bounded in a conormal Sobolev space over a local time interval. This allows us to
prove the vanishing dissipation limit, namely, that the solution converges to the corresponding system
with € = 0 by means of a compactness argument.

Next, we introduce the following new variable for the magnetic field

H
B° =H°®-¢],

withe, = (0,0, 1), and thus B = (b, bs5,b5) = (hi, hs, b5 — 1).
Therefore Eq (1.2) can be rewritten as

o’ +u’®-Vu® + Vp® — B® - VB® — 0,B° = 2¢Au® + 2¢V X 0°,
0,0° +u? -V’ = eV(V - %) + Aw? — dew?® + 2eV X U,

(1.6)
0,B° + u® - VB? — B? - Vu® — 9,u° = 2eAB?,
V-ue=V-B*=0.
The initial data are reformulated as follows:
(W, 0%, B)|,—o = (up, wo, Hy —€;) = (g, wy, By). (1.7)

Both the velocity field and the microrotation velocity field continue to satisfy the no-slip boundary
condition
u’l—o = w0 = 0. (1.8)

Combining with (1.5), the boundary conditions of the magnetic field are
0.b7|.=0 = 0.b5].=0 =0, Dbf|.=0 =0, (1.9)

the zero velocity at the boundary indicates that particles near the solid wall remain stationary relative
to the flow.
By letting ¢ — 0 in (1.6), the corresponding limiting magneto-micropolar fluid equations are
obtained
du’ +u’-vVu’ +Vp-B°- VB’ - §.B° =0,

0,0° +u’ - Vo' = A,

1.10
0B’ +u’- VB’ -B?-Vu’ - 9,u’ =0, (1.10)
V-u'=V-B%=0,
with the same initial date
u’, °,B),=o = (uy, wy, By). (1.11)

For well-posedness and consistency, we impose the no-slip boundary condition on both the velocity
field and the microrotation velocity field

w0 = @m0 = 0. (1.12)
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The justification of the boundary layer assumptions in the magneto-micropolar fluid equations is a
crucial issue in the study of magneto-micropolar fluids. The aim of this paper is to address this problem
by proving that the vanishing dissipation limit of the magneto-micropolar Eq (1.6) corresponds to the
limiting magneto-micropolar Eq (1.10).

Under the application of slip boundary conditions, the boundary layer effect becomes relatively
weak, and the vanishing dissipation limit has been thoroughly investigated in existing studies,
including [12, 13] for the Navier—Stokes equations and [14—16] for the MHD equations.

The adoption of Navier-slip boundary conditions effectively inhibits the development of strong
boundary layers, with the corresponding vanishing dissipation limit rigorously demonstrated in [17-19]
for the Navier—Stokes equations and in [20,21] for the MHD equations.

In contrast, the no-slip boundary condition typically results in the formation of strong boundary
layers. The vanishing dissipation limit problem becomes especially challenging in this context,
primarily due to the difficulties in controlling the vorticity of the boundary layer corrector. As a result,
research on vanishing dissipation limits under no-slip conditions remains relatively incomplete. For
existing studies, readers may refer to [22] for the Navier—Stokes equations, [7, 23] for the MHD
equations, [24,25] for the viscoelastic equations, and [8] for the magnetic Bénard equations.

Building on these studies, this paper further investigates the vanishing dissipation limit for
magneto-micropolar equations. Compared to [26], this paper introduces the magnetic diffusion term
eAB? into the second equation of (1.6). To ensure the well-posedness of the problem, appropriate
boundary conditions must be prescribed on the magnetic field. However, the inclusion of the magnetic
diffusion term, along with the associated boundary conditions, induces boundary layer phenomena in
the magnetic field, thereby presenting new challenges in the mathematical analysis.

This work significantly extends the analysis in [26] by addressing a more complex system and
overcoming new analytical difficulties introduced by additional physical effects. Specifically, our study
differs from [26] in the following three aspects:

First, in addition to the magnetic diffusion term eAB?, we incorporate a compressional microrotation
term yV(V - w) into the microrotation equation, which is not considered in [26]. This term introduces
new technical difficulties in the uniform estimates of normal derivatives for w®. Nevertheless, by fixing
the diffusion coeflicient of Aw? to be constant 1, we reduce the requirement to second-order normal
derivative estimates, following the strategy developed in [8].

Second, unlike [26], where uniform estimates for higher-order normal derivatives are derived
under strong compatibility conditions, our system includes a magnetic diffusion term £AB?® that
fundamentally alters the structure of the equations. This term makes it impractical to derive uniform
estimates using the same approach. Instead, by leveraging the elliptic nature of the pressure equation,
we successfully establish uniform bounds for the second-order normal derivatives of the pressure. As
a result, our analysis only relies on uniform a priori bounds of |[u®, w?, B?, 0,w?||;~ to close the energy
estimates, avoiding any need for high-order compatibility conditions.

Third, we rigorously justify the vanishing dissipation limit via uniform regularity estimates and
compactness arguments. Notably, although the strong O(1) boundary layer is eliminated by the effect
of the transverse magnetic field, a weaker second-order boundary layer remains for (u®, B®), while no
boundary layer forms in w® due to the fixed rotational diffusion. These results highlight the stabilizing
influence of magnetic diffusion and the refined structure of the micro-rotation dynamics.

To formulate the problem, we first recall the notation of the conormal Sobolev space. As introduced
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in [6,27], we define the following conormal derivatives of functions depending on (¢, X)
Zy =01, Z) =0y, Zy =0y, Z3 = $(2)0., Z" =Z\"Z\"' 277",

with @ = (@, a1, @2, @3) denotes the multi-index with || = |ao| + ||+ |a2| + |a3], and the weight ¢(z) is
a smooth bounded function of z such that ¢(0) = 0 and ¢’(0) > 0. Typically, one can choose ¢(z) = ]%Z
Then, define the conormal Sobolev space for an integer m € N

HI(10, T x Q) = {£(t,%) | 2 € L*(10,T1 X Q) la| < m},

equipped norms

IR, = D 127 f 5,

|a|<m

Similarly, we define
WS(10, T1x Q) = {f(t.%) | Z°f € L([0, T1 X Q). la] < m},

with

If @l = D 12 U -

lal<m

In this paper, we denote by ||-|| and (-, -) the L?> norm and the spatial inner product, respectively. The
notations

w’ = (uf, uf), 0° = (o, 5),B° = (B, 05), V), = (0., 9,), and Ay, = 8% + 0,

are used throughout. Moreover, we use the notation A < B to indicate that there exists a positive
constant C > 0, independent of &, such that A < CB. The commutator is denoted by [-, -], and P(-)
represents a polynomial function, which may vary from line to line.

Additionally, we define the following energy functional:

! A
N,(?) = sup [0, ®, BO)@)|, + & f IV(u?, BE)(s)|I%, ds + f IVw®(s)|%, ds
0 0

0<s<t

! !
s f IV - w®(s)I2 ds + f 18w, B)(s)|I%_, ds (1.13)
0 0

t t
2 2
v [ fewt B, s+ [ e s
0 0
Now, we can state the main theorem of this paper.

Theorem 1.1. (Uniform regularity estimate and vanishing dissipation limit) Let m > 7 be an integer.
Assume that the initial data satisfy the divergence-free conditions V -uy =0, V- By = 0, and

2
I(u®, @, BEO)If, + 110:(u®, °, BEO)If,.-; + [[02°O)[|; < Mo, (1.14)

with My > 0 being a positive constant. Then, there exists a time T > 0 independent of € such that the
classical solution (v®, w®, B®) to the initial-boundary value problems (1.6)—(1.9) satisfies the following
regularity estimate:

!
Nolt) + f 10.Yp (), ds < M, (1.15)
0
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where the M depends only on M.
Moreover, there exists a unique solution (u°,w’,B®) to the limiting magneto-micropolar fluid
Egs (1.10)—(1.12), such that
|(w®, ", B%) = (u°, 0, B9 .. = 0. (1.16)

The remainder of the paper is organized as follows. In Section 2, we introduce the elementary
inequalities that will be frequently used. Section 3 derives the uniform conormal estimates in conormal
space for the classical solutions (u®, w®, B®) to the initial-boundary value problems (1.6)—(1.9). Then,
we proceed to estimate the norm derivatives of (u®, w®, B®), which are given in detail in Sections 4
and 5, and the estimate of pressure p® is given in Section 6. Finally, by deriving an L™ estimate and
combining all estimates with some compactness arguments, in Section 7, we prove that the solution to
the initial-boundary value problems (1.6)—(1.9) is uniformly bounded in the conormal Sobolev space
within a fixed time interval, which is independent of &, and as a direct consequence, we justify the
vanishing dissipation limit as £ — 0.

2. Preliminaries

In this section, we introduce some essential properties of the conormal Sobolev space, which will
play a key role in the subsequent sections. As the first result, we state the
Sobolev-Gagliardo-Nirenberg-Moser-type inequality, whose proof can be found in [28].

Lemma 2.1. For any integer m € N and functions f, g € L*([0, T]xQ)NH ([0, T] X Q), the following
inequality holds for a, 8 € N* with || + |8| = m

T ) T T
f |12 £ 2850 dt < 1Ifll7s f gl dr + ligllz f IF @I, dt. 2.1)
0 ’ 0 ’ 0

Next, we present the anisotropic Sobolev embedding inequality in the conormal Sobolev space,
with the proof available in [6,27].

Lemma 2.2. Let f(t,X) € Hfa([O, T1xQ)andd,f(t,Xx) € HCZO([O, T1xQ), then we obtain f € L*([0, T]x
Q), moreover, it obtains

11z, < LFOIE + 18-F O + fo ' IFOIE + 18- f DIz ds. (22)
In particular, for any integer my > 1, it also holds that
sy, S 19 My 1y + 111, - (2.3)
And from the inequality (2.2), it directly follows that for any integer q > 0, if
f(t,x) € HLP([0,T] x Q) andd. f(t,x) € HL([0,T] x Q),

it holds -
sup If DI < IFOE,, +10.FOIE,, + f L OIE,5 +10.fDIE,, ds. 2.4)
0

0<s<t
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To address the commutator involving conormal derivatives, it is observed that the Z; does not
commute with d,. As in [27], there exist two families of bounded smooth functions

{¢k,m(Z)} 0<k<m—1 and {(ﬁk’m (Z)}

0<k<m—1

with any integer m > 1, which depends only on ¢(z), such that

m—1

(2y,0:] = Z Dim(DZ40. = Z (200,25 (2.5)

In a similar manner, there exist two families of bounded smooth functions

{¢1,k,m(z)’ ¢2,k,m(z)}0§kgm—1 and {¢l,k,m(z)’ ¢2,k,m(z)}

2

0<k<m-—1

which depend only on ¢(z), such that

§

|z, 82| =  Grim(DZ40, + Gren(DZD)

=~
S

o (2.6)
= ) (023,25 + p**" (P Z5).
k=0
Therefore, the following estimates can be immediately deduced.
Lemma 2.3. Let the integer m > 2 and
f@t,x) e H™([0, T]1 x Q),0.f(t,x) € H ([0, T] x Q).
Then, for any a € N* with || < m
SO < N0 f Oy » (2.7)
and
Z 0. Z° fFONl S NO-f D, S Z 0. Z° fFONl + 10 Dl]—1 - (2.8)

lal<m |l<m

The analysis will also make use of the following Moser-type inequalities related to commutator
estimate.

Lemma 2.4. For any integer m > 1 and a € N* with |a| < m, given appropriate functions f and g
defined on Q) where g vanishes on the boundary 0€, the following property holds:

f 1Z*(g0. /)OI dt < ||6zg||Loo f 1f @Il dt + sup [IF DI f 16:8(D)II5, . (2.9)
<s<[

The proof of this lemma can be found in references [6,27]. Additionally, the next lemma follows
directly from inequality (2.9). The detailed steps and justifications for both lemmas, along with their
underlying inequalities, are provided, offering comprehensive mathematical reasoning. The proofs of
the next three lemmas can be found in [23].
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Lemma 2.5. Let m > 1 be an integer and o € N* with |a| < m. Suppose that f € H™ ([0, T] x Q) N

co

WL (0, T]1 x Q), and v € H™!([0,T] x Q)N WL ([0, T1 x Q) satisfies that v is divergence-free and
tangential to the boundary, the following holds

T T
fOIIZ“(V'Vf)(t)IIZdts sup IIV(I)IIf,oof If @I, df + sup IIf(t)IlloofO IVl dt. (2.10)

0<t<T 0<t<T

Lemma 2.6. Let m > 1 be an integer and @ € N* with |a| < m. Suppose that f € H"([0,T] x Q),
d.f € HN([0,T1 x Q), Vf € L*([0,T] x Q), and v € H".([0, T] x Q) N WL ([0, T x Q) satisfying

co co

that v is divergence-free and tangential to the boundary, the following holds

T T T
f IZ*,v - VIF@OIP dt < 1IZvl7 f IO, + 18- £ O, Ddt + 1V 17 f V@Il dr. (2.11)
0 ’ 0 ’ 0

Lemma 2.7. Let m > 1 be an integer and a € N* with |a| < m. Suppose that f € H;”OH([O, TIxQ)Nn
Wczg‘x’([O, T] x Q), v satisfies the no-slip boundary condition: v|sq = 0, and d,v € H;";‘([(), TIxQ)N
W2([0, T1 % Q), the following holds

T
f 12, v - V18.f ()| dt
0 (2.12)

< sup ||<9ZV(S)|I§,00[ If @), di + sup IIf(S)Ilzoof 18:¥(D)II5,,, .

0<t<T 0<t<T

3. Conormal energy estimate

Proposition 3.1. Let m be an integer satisfying m > 1, the classical solution (u®, w?, B®) of (1.6)—(1.9)
on [0, T'] satisfies that, for any t € [0, T]

A ! !
l(u®, ®, B, + & f IV(u?, BE)(s)|I%, ds + f Vi (5|12, ds + & f IV - w(s)|I% ds
0 0 0

0<s<t

t
< llw®, @, BX)(O)Il,, +f 10-p°(5)Il,-1 ds + (1 + sup [|(w®, @, B)($)I[f 1 o0 + 116 wgllLoo) (3.1
0

t
: f l(w®, w®, BE)(s)|Z, + 110-(u®, ®, BE)(S)|%_, ds + & f l(u®, w®, BO)(s)|, ds.
0 0
Proof. Acting Z¢ with |a| < m on the equations (1.6), — (1.6);, we obtain that

0,Z°0° + (- V)Z*0® + VZ9p® — (B® - V)Z°B® — 0,Z°B? — 2eAZ*u°

= —[Z%,V]p® + 2e[Z%, Alu® — [Z%,u® - V]u® + [Z2*,B? - V|B® + [Z2°, 0,]B°

+2eZ%(V X w?),

02w + (0° - V)2 w® — AZ°w* + 4eZ° w® (3.2)
= —[Z%,u° - V]w® + [Z%, Alw® + eZ*V(V - w°) + 2eZ*(V X 0®),

0,2°B° + (u® - V)Z°B® — (B? - V)Z*u® — 0,Z2°u® — 2eAZ*B°

= —[Z% v’ - V]B® + [Z%,B? - V]u® + [Z°,0,]u® + 2&[Z%, A|B®.
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Multiplying (3.2) by (Z%v?®, Z* w®, Z*B?) and integrating the resulting equation over [0, 7] X €2, it follows,
via integration by parts, that

1 1
EII(ZC'UE, Z°0%, ZB) )| - EII(Z“US, Z°w®, Z°B)O)|

! ! !
+2¢e f IVZ2ue(s)|]* + |[VZOBE(s)||*ds + f IVZe P (s)|*ds + 4& f 1Z¢w?(s)|I*ds
0 0 0

!
=ffZ“p8(V-Z“u8)dxds
0 Jo
! !
+f f(—[Z”,V]pS)‘Z"u‘gdxds+28f f[Z", Alu? - Z%u®dxds
0 Ja 0 Ja
!
+ f f (=[Z%,u® - V]u® + [Z2°,B° - VIB® + [Z7,0.]B") - Z*u’dxds
0 Ja
! !
+2.9f fZ"(VXwS)-Z“usdxds+af fZ“V(V~w€)-Z“a)8dxds
0 Ja 0 Ja

t t
+ f f(—[Z””, u’ - V]w?®) - Z°wdxds + f f([Z“’, Alw?®) - Z° w®dxds
0 Ja 0 Ja

t t
+ 23[ fZ“(V X u’) - Zw®dxds + 28f f([Z“, AIB?) - ZB®dxds
0 Ja

(3.3)

0 Jo
!
+ f f(—[Z"’, u® - VIB® + [Z*,B? - V]u® + [Z", 0,]u®) - Z*B®dxds
0 Jo

11

here we have used the divergence-free conditions V - u® = V - B® = 0 and the boundary conditions
u’|,-o = w’|,=o = 0, and next we estimate the terms on the right-hand side of (3.3).
First of all, by using the divergence-free condition V - u® = 0, we can obtain that

V.-Z%"" = -[Z°,0,]u5. (3.4
Together with (2.7), we obtain the following:
IV - Z%®|| = I[Z27, 3 Jusll S N0 u5llm-1 < Vi - -1 < (05| (3.5)

We consider the case where Z contains at least one Z3; otherwise, if Z% does not contain Zs, then
V - Z%?® = 0. Then from (3.5), one has

!
ffZ“pS(V-Z“u‘g)dxds
0 Ja

!
< f IZp ()l - IV - Zow(s)]ld's
0

|| =

) (3.6)
Sfo|I¢(Z)3ZP8(S)|Im-1-IIua(S)IImdS

t t
sf|I5zp£(S)||§1_1dS+fIIH'S(S)IIidS-
0 0
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In the same way, obtain that
~[Z°,V]p® = ~[Z°,8.]p%€.. (3.7)

It directly follows that

ff(—[Z“,V]p8)~Z"u8dxds
0 Ja

We continue to estimate /5, by (2.6), we have

!
28f f[Z“,A]uS-Z"ugdxds
0 Jo
!
«f
0

! !
se f 1005l Sds +£| [ (D $P @220, Z0u%)ds
0 0 Bigm-1

|| =

! !
< f 10 p°(S)I2_ydls + f e ()] ds. (3.8)
0 0

|15] =

A
( Z P (2)027Pu®, Zu)ds

( Z 6"P(2)0.7Pu%, 20| ds + &
0 |1Bl<m-1

Bl<m—1

(3.9)

b

where the ¢'#(z) and ¢*#(z) depend only on ¢(z), then by integration by parts and the boundary
conditions u®|,—y = 0, we have

t
el | (> ¢P@&7Pw, z°v)ds
0 Bi<m-1

1 1

<el | « Z 8.0*%(2)0,2°u°, Z°u®)ds| + & (Z $*(2)0.Z°u%, 0,Z°u®)d s
0 1Bl<m-1 0 Bi<m-1 (3.10)
!
se f U0-Z (I + IZ () - ( D 0. 2P0 (5)l)ds
0 1Bi<m—1
!
sz(”azug(s)”m+||u8(s)||m)||8zu8(s)”m—lds-
0
Then, combining with the above two formulas, we have
!
|I5] = f f[Z",A]uS-Z"usdxds
0 Ja
!
sz(nazug(s)”m‘i'”ua(s)l|m)(||azu8(s)”m—l)ds (3.11)
0

! !
<0¢ f 0w ()| ds + & f e (SIE + 100°(s)IP,_ ds.
0 0

where 6 is a sufficiently small positive parameter, the exact value of which will be determined in the
subsequent analysis. Moreover, in the same manner, one obtains

!
28f f[Z“, Alw? - Z°w®dxds
0 Jo

f !
g9f||azw€(s)||§1ds+f lw*($)ll5, + 10:0°(5)II5,- s,
0 0

13| =

(3.12)
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and
110 =

t
ZSf f[Z“,A]B5~Z"B€dde
0 Jo

t

) (3.13)
<be | 110.B(s)I ds + e f IBE()I1% + 10 B2 ()%, ds.
0 0

Then, we consider ;. By applying (2.11), we obtain an estimate similar to that used for C§ in
Section 3 of [23

]
! t
I1Z%, u® - V]u®(s)|’ds < sup IIUS(S)IIf,mf ()5, + 100 ()17, . (3.14)
0

0 0<s<t

Similarly, by virtue of (1.9), that is b|.-o = 0, one can obtain

! !
f I[Z*, B® - VIB(s)|’ds < sup IIB‘E(S)IIimf IB=(s), + 10 B°(S)II5,- . (3.15)
0 0

0<s<t

And by virtue of (2.7), we obtain

! !
fII[Z“,GZ]BE(S)IIZdSSfIIOZBS(S)IIi_ldS- (3.16)
0 0

So, we obtain that from the above three estimates

!
|14] = f ‘f(—[Z"’,u‘9 -Viu® + [Z2*,B° - VIB® + [Z2*, 0,]B®) - Z*u’dxds
b t o NERY)
< ((1 + sup [|(w®, B°)(s)II{ ) - f ll(w®, B*)(s)Il;, + IIGZ(US,B"’)(S)IIi_ldS) (f ||u8||,2ndS) :
0<s<t 0 0
Similarly, we can obtain
!
|I11] = f j‘(—[ZC",u‘8 -VIB® + [Z2%,B® - V]u® + [Z2%,0,]u®) - Z*B®dxds
0 Jo
) ! ) ! (3.18)
< ((1 + sup [|(u®, B*)(s)II{ ) - f lI(w®, B*)(s)Il,, + IIf)z(ug,Bg)(S)lli_ldS) (f IIBSIIf,,dS) :
0<s<t 0 0
Next, we estimate /g, which can be derived using the boundary condition w?®|,-y = 0.
!
I :sf fZ"V(V - W) - Z°wdxds
0 Ja
! !
:sf f[Z", VIV - 0°) - Z°w’dxds + sf fVZ"(V - w°) - ZwPdxds
0 Ja 0 Ja
! !
=— sf 1Z4(V - w®)(s)|[Pds + sf fZ“(V - %) - [Z27, V]w®dxds (3.19)
0 0 Ja

A
+ sf f[Z“‘, VI(V - %) - Z°w’dxds
0 Q
f 2 _
=—¢g | 1Z°%CV - ))Pds + > 19,
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By (2.5) and Young’s inequality, we obtain an estimate for the second term on the right-hand side

of (3.19).
!
IV =¢ f f Z*(V - o) - [2°, V]w'dxds
0 JQ

m—1 1
= Z Gim()ZU(V - °) - Z¥0.w dxdss
k=0 YO0 JQ

g (" !
Sif ||V-w5(s)||fnds+Cf 10, (s)IIZ,_,ds.
0 0

(3.20)

By (2.5) and integration by parts, we obtain an estimate for the last term on the right-hand side of (3.19)

17 =¢ f f [Z%,V(V - &°) - Z°w’dxds
m—1
_82 f f #“"(2)0.ZK(V - oF) - Z* wFdxds
k=0
m—1
:—gz f f 8.0 ()ZK(V - oF) - Z*w dxds
k=0 YO0 JQ
m—1 !
—82[ fgbk’m(z)Zk(V'wS)-(9ZZ“a)stds
k=0 Y0 JQ

t t !
Ss2f||8zw8(S)lli_1dS+C(f ||af(s)||ﬁ1ds+f 10:0°()I[7,- 1 )-
0 0 0

Combined with the two estimates above, we obtain that

!
Is :sf fZ“V(V-a)’S)-Z“wEdde
0 Ja

e ! ! !
<- Ef IV - @*(s)ll7,ds + 82f 100 ()I[7,- s + C(f lw*($)II5, + 10.0°(s)II5,- ds).
0 0 0

We continue to estimate /; and separate it into two parts
[Z%,u® - V]w® = [Z% ] - V| ® + [Z7, u50;| w
For the first term on the right-hand side of (3.23), one has
[Z% ) -V, | w® = Z°(u], - V,0°) —uf - V(2 0%)
= Z CPZPw® - V(2 o).

1<(BI<la|
pry=a

By combining with (2.11), we obtain that

t
f NZ*, wj, - Vi]w(s)lids
0
<||Zuh||L°°f||w€(s)”m+”6 @°($)ln- 1ds+||Vhw8”L°“f”uh(s)Hmds

!
< sup [U($)ll1 f 1o (Dl + 10:0°(5)lln-1dls + sUp 0" ()]l 100 f la?(5)llndls.
0 0

0<s<t 0<s<t

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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For the last term on the right-hand side of (3.23), it holds
(2%, u50.| w® =Z° (4, - 0,0°) — u50.(Z° W°)
= > CB2u5 - 20.0° — u50.(2° )

i (3.26)
=Z°UE - B.00° + Z CEZPuE - 270.00° + uE[Z°, 8.1,
By

The first term on the right-hand side of Eq (3.26) can be estimated as follows:
! !
f IZ%u5 - 0. (s)llds < 110,00l f 5 ()llmd's. (3.27)
0 0
From (2.7), the third term on the right-hand side of (3.26) satisfies

X

! !
f||u‘§([Z“,(9z]w8)(S)lldSS||u‘§||L,°°fIIGZwS(S)IIm—ldS- (3.28)
0 0

For the second term on the right-hand side of Eq (3.26), provided that 1 <| 8 |< [5], it follows that

WX

t !
fIIZﬁui'Zyazw’s(S)lldssIIZﬂuillL;ofIIGZwE(S)IIm_ldS
0 0

‘ (3.29)
< sup 1l oo f 10:007(3)ll1ds.
0<s<t 0
For [5]+ 1 <| B |< m — 1, it follows from (2.5) that
! t
fIIZBu‘;-Zyazws(s)llds sf ||¢_IZﬁu§-¢Zyazws(s)||ds
0 0
!
stWW%¢@W+wwmmes
0
!
< f ™' 25 - (2" + 9127, 0. (5)|| ds (3.30)
0
‘ ¢ [3]-1
< f ™' ZPus; - 2+ wo(5)|| ds + f ¢ ZPus - (¢ Z “121(2)0.28)w? (s)|| ds
0 0 k=0
é][ + J,.
We deduce that .
Lﬂﬂﬂﬂ@jﬂd%%®Ws
0
!
A2 s f 10.255(5)lds (3.31)
~Jo

t
< sup (Ml f 1055 hyrds.
0

0<s<t
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For J,, we can achieve that
[31-1

f ¢\ ZPu5 - (9 ), #1025 (s)|| ds
0

k=0

-1

¢ ZPu5 - () M @ZEw (s)|| d
[y,

N\S

(3.32)
[51-1 "
X | [l 2ol
k=0 1 0
e
< sup o7 (5)l oo f 100 ($)lh1ds.
0<s<t 0
Thus, we obtain
! !
f 129 22005 9)ds 5 s 0,011 f 0.0, ) urds.  (333)
0 <s<t 0

Collecting the above estimates yields

!
f f(—[Z"’,u‘9~V]w5)-Z"wgdxds
0 Ja
1

t 2
< ((1 + sup |0, @*)($)IIPy )1 o0 + 190117 ) - f lI(u®, )OI, + IIGZ(US,wE)(S)IIfn_ldS) (3.34)
’ 0

0<s<t

( f ||w8<s>||3,,)2 .
0

Now we estimate the remaining two terms in (3.3)

! !
f f Z%(V X ) - Z°u%ds = f f (Z*(V x u°) - Z°w’ — [Z°, 0, )52 — Z°w5[Z°, 0, ]uf
0 Q 0 Q

|I7] =

(3.35)
+ [Z29,0,lwiZ" 05 + Z° wi[Z", 0,]u5)dXds.
Young’s inequality and (2.7) imply that
! t
Is + Iy :2sf fZ"(V X w?) - Z"u’dxds + 28f fZ“(V X u®) - Zw’dxds
0o Ja 0 Ja
t
:4sf fZS(V X u®) - Z°w’dxds
t
- 2sf f[Z“ 0 JW5Z%udxds — 2sf fZ“ S[Z7, 0, Jujdxds
(3.36)

+28f f[Z“ (9]wEZ“u§dxds+2sf fZ“ (27,0 ]usdxds

<e f 1ZoVus(s)||*ds + 4e f 1Z¢w?(s)|[*ds
0 0
!
+C (s f IIGZwE(s)IIm_l||u8(s)||m+||6zu8(s)llm_1IIw‘S(s)IIm).
0
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Finally, substituting the above estimates into equation (3.3), summing over all multi-indices with
|| < m, and taking 6 sufficiently small, we obtain

! t t
II(ug,wg,Bg)(t)Ilfn+8f ||V(u8,B8)(s)||§1ds+f ||Vw8(s)||51ds+8f IV - @°()lly, ds
0 0 0

t
<ll(w®, w®, B2)O)I;, + f 10.P°(s)Il7,_ds + (1 + sup II(H‘Q,wS,Bs)(S)IIf%]H,m + |I5Zw‘glli;3{)
0 0<s<t (337)

!
: f I(w®, w®, B*)(S)I, + 110,(0®, 0, B*)(s)II;,_ ds
0
! !
+8f I(w?, w®, BE)(s)Il7, + |I0Z(US,B€)(S)IIidS+8f 10,0°(s)IIZ,_ds.
0 0
Thus, Proposition 3.1 is established. O

4. Estimate on the first order normal derivatives

Proposition 4.1. For any integers m > 7, the systems (1.6)—(1.9) admit a classical solution (v?, w?®, B®)
on the time interval [0, T, which satisfies for every t € [0, T] that

! !
f 16w, BO)(s)IZ,_ ds + & f 162 (u®, BEY(S)IE, s
0 0
! ! !
< f IVpP(S)IE_yds + f IVA(u®, BOY(s)Eds + £ f IV ()| ds 4.1)
0 0 0

+(1+ sup ||(u8,B8)(s>||%,m)- fo lIu®, B)(s)l;ds.

0<s<t

Proof. First, we consider the conormal energy estimate for d,u®. The equation of B® in (1.6) can be
rewritten as follows:

o.u® + 236§B‘8 =0,B° +u’- VB® — B° - Vu® — 2¢A,B®. 4.2)

Applying Z® to (4.2) with |a| < m — 1, and taking the L? inner product on both sides of the resulting
equation gives that

! !
f f 1Z°0.u°(s)I* + 4&*|Z°07B° ()] dxds + 4 f f Z°0u° - Z°97 B dxds
0 JQ 0 JQ

! t
< f 16, Z°B°(s)|ds + f 127 (u® - VB®)(s)I> + 127 (B° - Vu')(s)|Pds
0 0

¢ (4.3)
+& f IALZOBE(s)||>ds
0

i=1

1
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In the following, we shall estimate the terms appearing on the right-hand side of (4.3).

! t
L+1;= f 16, Z°B*(s)|I*ds + & f IALZB? (s)IIPds
0 0

t , 4.4)
sf IIBE(S)IIidS+82f IV,B*(s)Il7ds,
0 0

and

b= f 1Z* (u® - VB®)(s)I + IZ*(B® - Vu')(s)IPds
0

. 4.5
< sup [Iu’, BYS)IP.. fo It BY)IEds,

0<s<t

here we have applied the boundary conditions u§|.- = b§|.-o = 0, the divergence-free conditions,
and (2.10).

Substituting (4.4) and (4.5) into (4.3), we obtain that

! !
f f 1Z°0.u%(5)|* + 46?|Z° 2B (s)|*dxds + 4 f f Z7ou° - Z°97B°
0 Q 0 Q

h , (4.6)
sng IIVhBS(S)IIfndS+(1+ sup II(US,BE)(S)IIf,w)f lIu®, B)(s)ll7,ds.
0 0

0<s<t

Proceeding with the conormal energy estimate for d,B®, we first reformulate the equation for u® in
system (1.6) as follows:

0.B° + 2070’ = Gu’ + U - Vu© + Vp© — B® - VB® — 25(V X w°) — 2sA 0. 4.7)

Acting by Z* with |a| < m — 1 on (4.7) and taking L? inner products gives

t !
f f 1Z°0.B°|> + 4&*|Z°07u° P dxds + de f f Z°0.B° - Z°9>ufdxds
0 Q 0 Q

t t !
< f 10,270 (s)|[*ds + f 1Z*Vp°(9)lPds + &° f 1A, Z7 0" (s)|*d s
0 0 0

¢ ’ (4.8)
+ & f I1Z7(V x ®)(9)|Pds + f 12 (u® - Vu) (I + 1Z°(B° - VB)(s)|*d's
0 0
5
:::E: J}
i=1
In the following, we shall estimate the terms appearing on the right-hand side of (4.8).
! !
L+DL= f 10,20 (s)|Pds + f 1Z°V p°(s)IPds
0 0 (4.9)

t t
Sf||ll€(S)||fndS+f||VP€(S)||§1_1dS,
0 0
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! !
L+ I, =& f IALZ% 0 (s)|[Pds + & f 1IZ4(V x 0®)(s)|[*ds
0 0

t § (4.10)
sazf IIthg(S)II,idS+82f IV (s)Il5,_ds,
0 0
and
!
Is = f 1Z%(u® - Vu®)(s)|* + |Z°(B® - VB*)(s)|’ds
0 ) (4.11)
< sup 1(®, B)(I o f lI(u®, B*)(s)Ilds,
<s<t 0
here we have used the boundary conditions u§|.-o = b5l.-o = 0, the divergence-free conditions,
and (2.10).
Inserting (4.9)—(4.11) into (4.8) yields
! !
f f 1270, B> + 4&|Z°07u°Pdxds + de f f Z°0.B° - Z°9>utdxds
0 Ja 0 Ja
! ! !
Sszf ||Vhll8(s)||,2nds+82f||V(1)8(S)||51_1ds+f IVp°(9)II7,_ ds (4.12)
0 0 0

+ (1 + sup ||(u‘9,B‘g)(S)IIiOO)f0 lI(u®, B)(5)lI5,ds.

0<s<t

Our current task is to estimate the final terms appearing on the left-hand sides of both (4.6)
and (4.12). Through integration by parts, we find that

f
4e f f Z°07® - 270, B dxds
0 Ja

! !
=4e f f [Z%,0.10,u° - Z°0,Bfdxds + 4e f f Z0u° - [Z°,8,10,B%dxds (4.13)
0 Q 0 Q

t
—4e f f Z°0.u° - Z° 2B dxds.
0 Q

By applying (2.5) and Young’s inequality, we obtain that

! t
4e f f [Z2%,0,]0,u° - Z°0,B°dxds + 4¢ f f Z20.u® - [Z27,0,]10,B°dxds
0 Jo 0 Jo
m—2

t m=2
:452 f f ¢k,m_1(z)z§a§u8-zaaZBsdxds+4sZ f f Gem1(2)Z°0.0° - ZEPBedxds  (4.14)
k=0 YO VO k=0 YO VO
! ! A
< f 0B I ds + s f 10 ds + Cs? f 12", BOY(S)I2_ods,
0 0 0

where 1, and 1, are sufficiently small positive constants that will be determined later.
By inserting (4.13) and (4.14) into (4.12), combining them with (4.6), and performing the
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summation over |a| < m — 1, we obtain

! t
fIIGZ(US,BS)(S)II,Z,,_ldS+82f||5§(u€,B€)(S)II,2,,_1dS
0 0

! s !
sf IIVpg(S)Ili,_ldHezfIIVh(ug,Bg)(S)IIistzf IV (s)II%_,ds
0 0 (4.15)

@mmwm)fmww

0<s<t
! t

+771f |I0ZB‘9(S)||,%1_1dS+nzf ||3zus(S)|li_1dS+82fII6E(UE,B£)(S)IIi_2dS
0 0 0

Through an inductive argument in m, with appropriately chosen small parameters r; and 7,, the proof
of Proposition (4.1) is completed. O

5. Estimate on the second order normal derivation

For the forthcoming L™ estimates, it is necessary to establish bounds on the second-order normal
derivatives of w®.

Proposition 5.1. For any integer m > 7, it holds that for the classical solution (0®, w®, B®) of (1.6)—
(1.9)on [0,T]

fllaiw"’(S)llfn_zdSSf IV (I ds + (1 + sup [|(w®, "))}, )f I, 0*)(I[2,_ ds
0 0 0<s<t (51)

1
+82f lI(u®, )OI, + 10:(u®, @)y, ds
0

Proof. The structural properties of the w® equation in (1.6) automatically yield an energy framework
for second-order normal derivatives. The evolution equation governing w?® takes the form

F0° = 0,0° +u° - Vo — eV(V - o) + 4ew® — 26V X U° — A0, (5.2)
Acting by Z% (Ja| < m — 2) on (5.2) and taking L? inner products yields

!
f 1Z*02w° (s)|*ds
0

! t ! !
< f 10,2 w®(s)|Pds + & f 12w (s)IPds + f 10,27 (5)IPPds + f 1Z°(u® - Vo©)(s)l*ds
0 0 0 0

1 1 (5.3)
+ & f IZ°V(V - w)(s)IPds + & f I1Z°(V x u®)(s)|Pds
0 0
6
= Z Ii.
i=1
Initially, the following result is immediate
!
h+h+1l= f 18:Z° " (S)I + EZ W (I + 12V (s)]ds
0
(5.4)

f
2 2 2 2
sf lw® (D1 + €N (DN5mp + Va0 (DI, ds.
0
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Secondly, applying (2.10) yields

t
I4=f 12 (u® - Vo )(s)l[*ds
0
t
< sup II(HS,wS)(S)IIimf lI(u®, @)l ds.
0

0<s<t

The last two terms in (5.3) require the following estimates:

!
I, =& f 1Z(V(V - w*)(s)|Pds
0
!
<& f M I + 10,0, + 1P ()P _ds.
0

Likewise, it follows that

!
Iy =¢° f 1Z%(V x u)(s)|I*ds
0
f
<6 [ IR + 10, ods.
0
By integrating all the estimates established above, we conclude that
t
f 1220 (s)|Pd's
Ot f
Sf Vs (), ds + (1 + sup ll(u®, wg)(S)II%,m)f lI(u®, @*)(s)Il5,_ ds
0 <s<t 0

!
+ & f Iw®, @)y, + 10:(0%, @)l + 1020 (S, ds.
0

Summing over all multi-indices with || < m — 2 gives the desired estimate.
Thus we have completed the proof of Proposition 5.1.

6. Estimate of pressure

(5.5)

(5.6)

(5.7)

(5.8)

Proposition 6.1. For any integer m > 7, the classical solution to (1.6)—(1.9) exists on [0,T] and

satisfies the following estimate:

/ t
[ 1w ds + [ 1055 s
0 0
v !
<o [ WO ds +¢ [ 10 BNGIE ds
0 0
!
+(1+ sup II(u‘iB‘g)(S)Ilim) f ll(u®, BX)(9)ll;ds,
0<s<t 0

where n and { are sufficiently small positive constants.

6.1)
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Proof. By taking the divergence of the equation for u® in system (1.6), we derive the equation for the
pressure p®
Ap® =V - (—u® - Vu® + B® - VB?® + 2eV X 0°)
=V . (-u®- Vu’ + B - VB®) (6.2)
=V .F.
By analyzing the third velocity component equation in (3.8), we derive the boundary condition for p®
and consequently establish the relation

azpslz:O = azbg‘lz:O + 28851/‘;'1:0 = _vh : (zgazuz + BZ)lz:O’ (63)

in which the boundary condition b%|.-o = 0 is applied.

The temporal parameter ¢ serves only as an implicit variable in all operations. To maintain both
notational conciseness and mathematical rigor, we will consistently adopt implicit function notation
in subsequent derivations, omitting explicit temporal annotations for all relevant functions. And we
consider decomposing the pressure p® as p® = p7 + p5 following the approach in [6], where p{ satisfies

Apy=V-F, (6.4)
azpﬂz:o =0,
and p§ obeys
ar; =0 (6.5)
azp§|z:0 ==V (2802112 + B®)|.=0.

This decomposition carries the following significance: p{ represents the gradient component in the
Leray-Hodge decomposition of the vector field F, while pj5 is uniquely determined by the
aforementioned boundary conditions. Applying standard elliptic theory, we obtain estimates for both
pj and ps.

The p{ estimate follows from Fourier transforming in (x, y)

—k* p° +0..p% = ik - F +0.F3, z>0. (6.6)

Solving this ordinary differential equation yields

pik,z) = f Gz 2)E(k,7)dz, (6.7)
0
where k = (ky, k»), and
—e M cosh(|kl|z) (&, 1), z<7,
Gi(z,7) = e (it (& )('k' ) , (6.8)
—e™Me (i cosh (Jklz') , - sinh (kI2)), 2> 2.
Following the same argument in [10], we obtain
IVPSIl < IIFIP. (6.9)
Moreover, for all ¢ > 1, we have
IVPilly S WFllg + 11V - Fllg-1, (6.10)
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162p5llg-1 S IV - Fllg-1.

Therefore, combining (6.4) with the above estimates yields
18-V pSllg < 10:p5llge1r + 102 P51y S 1Fllgsr + 11V - Fllg,
from which it immediately follows that for all i > 2,
8.V pilly S 165 Fliger + 1105 (V - F)llg-
Combining the estimates (6.9)—(6.13), we obtain
IVPillm-1 + 10:Vpilln-2 S N1Flln-1 + IV - Fllp-2.

Therefore, with F := (—u® - Vu® + B - VB?), an application of (2.10) yields
! ! !
f IF()I2_ ds < f lu® - Vue(s)|I7_,ds + f IB? - VB*(s)|I_,ds
0 0 0

t
< sup [I(u®, B9l o f ll(w®, B)()II;,ds.
0

0<s<t

We now estimate V - F by decomposing it into

V.F =V, (—u°- V) +V, - (B° - VB)
+0, - (—u° - Vi) + 8. - (B - VbY)

4
= Z fi
i=1
We first estimate f;, which follows immediately from (2.10)

! !
f I fillm—ods = f ||Vh -(—u® - Vu))
0 0

t !
< sup IIthg(S)IIf,mf lu®(s)Il7, ds + sup IIIJE(S)IIioof IV®(s)ll7,- s
0 0

0<s<t 0<s<t

ds
m—1

t
< sup [lu*(s)ll5 o f ()5, ds.
0

0<s<t

Similarly, we obtain the estimate for f,

fo 1llnads = fo 1V, - (=B - Vb))

t
< sup [IB*(s)Il5 o, f IB°(s)ll7,ds.
0

0<s<t

Ln—Z‘is

Turning to f3, the divergence-free condition V - u® = 0 yields

= 0.(—u° - V)i = 0.(—ut - Vy)ul + (V) - wp)?.

6.11)

6.12)

(6.13)

(6.14)

(6.15)

(6.16)

6.17)

(6.18)

(6.19)
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Applying (2.10) immediately yields its estimate

! t !
2 2 2 2 2
follﬁllm_zds SllanhuallL;;fo [y, (I, ds + sup IIUE(S)III,mfo 10V 5 ()], od's

0<s<t

!
2 2
+ Vi - Wl f IV - wi ()l d's
*Jo

!
< sup [[u®(9)If3 o f lu®(s)Il;,ds.
0

0<s<t
Similarly, we obtain the estimate for f;.
! !
f I fall?,_»ds < sup IB($)II3 ., f IBZ(s)I5,ds.
0 0<s<t 0
Therefore, combining the results from (6.16) to (6.21), we derive
! !
f IV - FIE_ods < sup [B*(s)I2., f 1B (s)I12ds.
0 0<s<t 0

In summary, the preceding estimate immediately yields

t ! t
fIIVP‘TIIi_ldS+fIIGZVP‘TII,Zn_zdSS sup ||(u8,B8)(S)II§,OOfII(us,Bs)(S)IIi,dS-
0 0 0

0<s<t

(6.20)

(6.21)

(6.22)

(6.23)

Turning to p5. Similarly, applying the Fourier transform yields an explicit solution to Eq (6.5)

Pok,z) = e ""ZH (280.6¢ + BE)(k, 0),

which yields

Vps(k,2) = e (i - (220:45 + By (K, 0>)<|;]§| Y

By Plancherel’s theorem and the trace inequality, we obtain
VPl slied:u; + BHC.OIE

X \"

sé?llo gl lo2ulll, + B0, BE -
Therefore, for all i, g > 0, there holds

102V P52 < 21005 1ol 0205 i g + 1Bl g 10 B i1

Which immediately yields

f !
f VSl ds + f 0.V p3lI5,»ds
0 0
/ !
< [ wop s+ [ ptl s
0

!
ss2f||<9z112||m-1||32 A, 1dS+f||(9BIIm1IIBZII Lds
0

f t
snszfo |<9§UZIIfn_1dS+§f0|I3z(u8,Bs)||§1_1dS+foII(US,BS)IIids,

where 17 and ¢ are sufficiently small positive constants.

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

In summary, combining Eqs (6.23) with (6.28) yields the required estimate in the proposition. O
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7. Proof of Theorem 1.1

We now present the complete proof of our main result, Theorem 1.1. The argument begins by
synthesizing the results from (4.1) and (6.1), which gives

! !
f 16,0, BEYSIE,_, + 21102 (uf, BEY(s)I2_ds + f 16,9 p"(9)I13pdls
0 0
! !
<& f IV, (u?, BO)(s)[2ds + & f IV ()I_ s (7.1)
0 0

+(1+ sup II(HS,BS)(S)H%W)IO lI(u®, B)(s)l5,ds.

0<s<t

Recalling the definition of the energy functional in (1.13), substituting (5.1) and (7.1) into (3.1), and
taking ¢ sufficiently small, we obtain

!
N() + f 10.V P ()P, ods
0

<llw’, ®, BE)(O)If, + (1 + sup [|(u®, ", By o0 + ||6zw8||i¢;) (7.2)

0<s<t

f
f I(u®, °, BY(Il7, + [10:-(°, °, BO)($)II7,_ ds.
0

The completion of our ultimate estimate requires additional control of the L™ norm. And to obtain
the required regularity and complete the closure of the energy estimates, applying (2.4) with the
arbitrary integer m > 7 yields

2
sup [I(w’, ", BE)(S)Iy .1
0<s<t

SlW®, @, By, 5 +110.(0", 0°, By,

¢ (7.3)
+ f 1%, %, Bl + 10-0%, 0, B o5
0
SC(My) + P(Nu(1)).
Moreover, the application of (2.2) and (5.1) yields
6 wll7:,
!
S8 0)I3 + 102" (O)II; + f 10:0° (I3 + 1102 °(s)|3ds (7.4)
0
SC(Mo) + P(Nu(1)).
Finally, from Eqgs (7.2)—(7.4), we obtain
!
N (t) + f 10.Vp° ()l _2ds < C(Mp) + (t + &)P(Nu(1)). (7.5)
0
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By selecting the time scale ¢ and the parameter & appropriately small, we derive

!
Nm(t)"'f 16V p* ()2 ds < M, (7.6)
0

in which the constant M depends exclusively on the initial parameter M,.

The justification of the vanishing dissipation limit proceeds as follows. Owing to the uniform-in-&
regularity estimates derived previously, the smooth solutions (u?, w?, B®) of (1.6) admit, for arbitrary
time ¢, the following properties:

(v®, w®,B%) € H,,(Q), (7.7)
and

Vu?®, w®, B%) € H'(Q). (7.8)

co

This yields that for each ¢, (u®(¢), w®(¢), B(¢)) is compact in HZ.'})‘I(Q), where

HI(Q) = {£(1.%) |2°f € LX(Q), el < m}.

Next, by using the Eq (1.6),, we get that

T T
f 18,007, dt Sf (lu® - Vu?l2,_; + [IB® - VBE|[>,_, +[IVp°II7,_,
0 0

+ 4% A2, + 4e|lV X f|2_, + [10.B°|2_))dt.

(7.9)

Hence, by using (2.10), (4.1), (5.1) and (6.1), we obtain 0,u® is uniformly bounded in
L*(0,T; H (), i.e., H ([0, T] x Q). Similarly, one has

(0u®, 8", 8,B%) € L*(0,T; Hyy ' (), (7.10)

and yield that
(v’ w°,B%) € L*(0,T; H. (Q)). (7.11)

co

Using the Aubin-Lions Lemma, we obtain
W, 0, B%) —» @, w’,B°) in L0, T; H" ' (Q)). (7.12)

Notice that H" () is a Hilbert space, and since (9.u?, 8.w?, 8.B?%) € L*(0, T; H™ '(Q)), by (7.6), then
there exists a vector-valued function v € L*(0, T; Hfo‘l(Q)), such that
(0,u%, 0w, 0,B°) — v. (7.13)
Combining the definition of weak derivatives, we find that

v = (0,u°,0,w°, 0,B), (7.14)

then
10,0, 0.0°, 0.B%) — (9.u°, 0.0°,0.BO)I;,,
<11(6.u%, 9,0, 0.B°)(0) — (0,u’, 5.0°, é’zBO)(O)IIi0
. 7.15
+ f 1(0,0°, 8.w°, 8.B°) — (0,u°,0.0°,0.BO);, . ds (7-15)
0

SC(Mp) + P(Npu(1)).
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It follows from the anisotropic Sobolev embedding (2.3)
I(w®, 0®, B%) = (0’, °, BY)|7

S SUP (”(azug’ aza)s, azBs) - (azuoa azwo, aZBO)”mg : ||(ug’ ws, Bg) - (uO, wO’ Bo)llmg (7 1 6)

0<s<t

+I(u’, @°,B%) = (u’, ", BY)II7, ) — 0,

with my > 1 and & — 0, and it is easy to know that (u’, w°, BY) is a weak solution to the corresponding
limiting magneto-micropolar fluid Eqs (1.10)—(1.12). Thus we have completed the proof of
Theorem 1.1.
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