Research article Special Issues

Fractional Hermite functions associated with the Atangana–Baleanu Caputo derivative power series solutions, Rodrigues representation, and orthogonality analysis

  • Published: 08 September 2025
  • MSC : 26A33, 33C05, 33C15, 33C45

  • This article established a comprehensive analytical framework for fractional Hermite functions using the Atangana-Baleanu Caputo (ABC) derivative. We derived a convergent power series solution (radius $ |x| < 1 $ for $ \alpha\in(0, 1) $) with explicit recurrence relations for its coefficients. Even and odd fractional Hermite functions were constructed via novel termination conditions, and a generalized Rodrigues-type formula was presented. A central result was the proof of orthogonality with respect to the weight function $ W_{\alpha}(x) = e^{-x^{2}}E_{\alpha}\bigl(-\frac{\alpha}{1-\alpha}|x|^{2/\alpha}\bigr) $, accompanied by the derivation of exact normalization constants $ \Lambda_{n}(\alpha) $. Numerical validation confirmed theoretical predictions, with errors $ < 0.5\%. $ The functions $ H^{ABC}_{n, \alpha}(x) $ preserved key classical properties while exhibiting distinct fractional behavior, such as cusp-like formation at the origin. Quantitative analysis demonstrated convergence to classical Hermite polynomials as $ \alpha\to 1^{-} $, with root errors $ < 1\% $ for $ \alpha = 0.95 $. This work extends Hermite theory into the fractional domain, providing essential tools for modeling systems with memory and non-local interactions.

    Citation: Muath Awadalla. Fractional Hermite functions associated with the Atangana–Baleanu Caputo derivative power series solutions, Rodrigues representation, and orthogonality analysis[J]. AIMS Mathematics, 2025, 10(9): 20586-20605. doi: 10.3934/math.2025919

    Related Papers:

  • This article established a comprehensive analytical framework for fractional Hermite functions using the Atangana-Baleanu Caputo (ABC) derivative. We derived a convergent power series solution (radius $ |x| < 1 $ for $ \alpha\in(0, 1) $) with explicit recurrence relations for its coefficients. Even and odd fractional Hermite functions were constructed via novel termination conditions, and a generalized Rodrigues-type formula was presented. A central result was the proof of orthogonality with respect to the weight function $ W_{\alpha}(x) = e^{-x^{2}}E_{\alpha}\bigl(-\frac{\alpha}{1-\alpha}|x|^{2/\alpha}\bigr) $, accompanied by the derivation of exact normalization constants $ \Lambda_{n}(\alpha) $. Numerical validation confirmed theoretical predictions, with errors $ < 0.5\%. $ The functions $ H^{ABC}_{n, \alpha}(x) $ preserved key classical properties while exhibiting distinct fractional behavior, such as cusp-like formation at the origin. Quantitative analysis demonstrated convergence to classical Hermite polynomials as $ \alpha\to 1^{-} $, with root errors $ < 1\% $ for $ \alpha = 0.95 $. This work extends Hermite theory into the fractional domain, providing essential tools for modeling systems with memory and non-local interactions.



    加载中


    [1] G. E. Andrews, R. Askey, R. Roy, Special functions, Vol. 71, Cambridge: Cambridge university press, 1999. https://doi.org/10.1017/CBO9781107325937
    [2] F. W. J. Olver, NIST handbook of mathematical functions hardback and CD-ROM, Cambridge university press, 2010.
    [3] D. E. Knuth, H. Lorin, E. Hall, Special functions, Encyclopedia of Computer Science and Technology, Vol. 13, Marcel Dekker, Inc., 1979.
    [4] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, North-Holland Mathematics Studies, Elsevier, 2006.
    [5] D. Caratelli, P. E. Ricci, Fractional Hermite-Kampé de Fériet and related polynomials, Adv. Studies: Euro-Tbilisi Math. J., 17 (2024), 11–19. https://doi.org/10.32513/asetmj/1932200824012 doi: 10.32513/asetmj/1932200824012
    [6] N. A. Pirim, F. Ayaz, A new technique for solving fractional order systems: Hermite collocation method, Appl. Math., 7 (2016), 2307–2323. https://doi.org/10.4236/am.2016.718182 doi: 10.4236/am.2016.718182
    [7] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel theory and application to heat transfer model, arXiv, 2016. https://doi.org/10.48550/arXiv.1602.03408
    [8] T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 2017 (2017), 130. https://doi.org/10.1186/s13660-017-1400-5 doi: 10.1186/s13660-017-1400-5
    [9] I. Podlubny, Fractional differential equations, An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications, Vol. 198, Mathematics in Science and Engineering, Elsevier, 1998.
    [10] R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. https://doi.org/10.1142/9789812817747
    [11] M. I. Syam, M. Al-Refai, Fractional differential equations with Atangana–Baleanu fractional derivative: analysis and applications, Chaos Soliton. Fract.: X, 2 (2019), 100013. https://doi.org/10.1016/j.csfx.2019.100013 doi: 10.1016/j.csfx.2019.100013
    [12] A. Atangana, J. F. Gómez-Aguilar, Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws, Chaos Soliton. Fract., 102 (2017), 285–294. https://doi.org/10.1016/j.chaos.2017.03.022 doi: 10.1016/j.chaos.2017.03.022
    [13] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 1.
    [14] Z. Xu, C. Liu, T. Liang, Tempered fractional neural grey system model with Hermite orthogonal polynomial, Alexandria Eng. J., 123 (2025), 403–414. https://doi.org/10.1016/j.aej.2025.03.037 doi: 10.1016/j.aej.2025.03.037
    [15] M. E. Beroudj, A. Mennouni, C. Cattani, Hermite solution for a new fractional inverse differential problem, Math. Methods Appl. Sci., 48 (2025), 3811–3824. https://doi.org/10.1002/mma.10516 doi: 10.1002/mma.10516
    [16] B. Shiri, Y. Guang, D. Baleanu, Inverse problems for discrete Hermite nabla difference equation, Appl. Math. Sci. Eng., 33 (2025), 2431000. https://doi.org/10.1080/27690911.2024.2431000 doi: 10.1080/27690911.2024.2431000
    [17] B. Shiri, D. Baleanu, System of fractional differential algebraic equations with applications, Chaos Soliton. Fract., 120 (2019), 203–212. https://doi.org/10.1016/j.chaos.2019.01.028 doi: 10.1016/j.chaos.2019.01.028
    [18] D. Baleanu, B. Shiri, Collocation methods for fractional differential equations involving non-singular kernel, Chaos Soliton. Fract., 116 (2018), 136–145. https://doi.org/10.1016/j.chaos.2018.09.020 doi: 10.1016/j.chaos.2018.09.020
    [19] E. Huynh, A second Raabe's test and other series tests, Am. Math. Mon., 129 (2022), 865–875. https://doi.org/10.1080/00029890.2022.2104072 doi: 10.1080/00029890.2022.2104072
    [20] A. I. Zayed, Handbook of function and generalized function transformations, 1 Ed., CRC Press, 1996. https://doi.org/10.1201/9780138752859
    [21] B. Shiri, D. Baleanu, All linear fractional derivatives with power functions' convolution kernel and interpolation properties, Chaos Soliton. Fract., 170 (2023), 113399. https://doi.org/10.1016/j.chaos.2023.113399 doi: 10.1016/j.chaos.2023.113399
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(444) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog