Research article Special Issues

Spectral analysis and integral representations of the tempered fractional Riesz derivative

  • Published: 08 September 2025
  • MSC : 26A33, 42B10

  • In this work, we develop the harmonic analysis associated with the second-order differential operator $ \mathscr{L}_\gamma = -\frac{d^2}{dx^2} -2\gamma\, \frac{d}{dx} - \gamma^2 $. Fractional powers of $ \mathscr{L}_\gamma $ are defined via spectral representation, and a singular integral representation is provided. Furthermore, we establish the equivalence between the fractional powers of $ \mathscr{L}_\gamma $ and a tempered Riesz derivative.

    Citation: Fethi Bouzeffour. Spectral analysis and integral representations of the tempered fractional Riesz derivative[J]. AIMS Mathematics, 2025, 10(9): 20571-20585. doi: 10.3934/math.2025918

    Related Papers:

  • In this work, we develop the harmonic analysis associated with the second-order differential operator $ \mathscr{L}_\gamma = -\frac{d^2}{dx^2} -2\gamma\, \frac{d}{dx} - \gamma^2 $. Fractional powers of $ \mathscr{L}_\gamma $ are defined via spectral representation, and a singular integral representation is provided. Furthermore, we establish the equivalence between the fractional powers of $ \mathscr{L}_\gamma $ and a tempered Riesz derivative.



    加载中


    [1] O. E. Barndorff-Nielsen, N. Shephard, Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics, J. Roy. Stat. Soc. B, 63 (2001), 167–241. https://doi.org/10.1111/1467-9868.00282 doi: 10.1111/1467-9868.00282
    [2] O. E. Barndorff-Nielsen, N. Shephard, Normal modified stable processes, Theor. Probab. Math. Stat., 65 (2002), 1–20.
    [3] F. Bouzeffour, M. Garayev, On the fractional Bessel operator, Integr. Transf. Spec. F., 33 (2022), 230–246. https://doi.org/10.1080/10652469.2021.1925268 doi: 10.1080/10652469.2021.1925268
    [4] F. Bouzeffour, On the generalized fractional Laplace-Bessel operator, Georgian Math. J., 32 (2025), 371–379. https://doi.org/10.1515/gmj-2024-2074 doi: 10.1515/gmj-2024-2074
    [5] F. Bouzeffour, On the singular integral representation of the fractional powers of Jacobi differential operators, AIMS Math., 10 (2025), 18641–18659. https://doi.org/10.3934/math.2025833 doi: 10.3934/math.2025833
    [6] F. Bouzeffour, W. Jedidi, On the fractional Dunkl-Laplacian, Fract. Calc. Appl. Anal., 27 (2024), 433–457. https://doi.org/10.1007/s13540-023-00225-5 doi: 10.1007/s13540-023-00225-5
    [7] J. Cao, C. Li, Y. Chen, On tempered and substantial fractional calculus, In: 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), Senigallia, Italy, 2014.
    [8] P. Carr, H. Geman, D. B. Madan, M. Yor, The fine structure of asset returns: An empirical investigation, J. Business, 75 (2002), 305–332. https://doi.org/10.1086/338705 doi: 10.1086/338705
    [9] P. Carr, H. Geman, D. B. Madan, M. Yor, Stochastic volatility for Lévy processes, Math. Financ., 13 (2003), 345–382. https://doi.org/10.1111/1467-9965.00020 doi: 10.1111/1467-9965.00020
    [10] A. Chakrabarty, M. M. Meerschaert, Tempered stable laws as random walk limits, Stat. Probab. Lett., 81 (2011), 989–997. https://doi.org/10.1016/j.spl.2011.01.019 doi: 10.1016/j.spl.2011.01.019
    [11] H. Chébli, Opérateurs de translation généralisée et semi-groupe de convolution, Lect. Notes, 404 (1974), 35–59.
    [12] D. del-Castillo-Negrete, Truncation effects in superdiffusive front propagation with Lévy flights, Phys. Rev. E, 79 (2009), 031120. https://doi.org/10.1103/PhysRevE.79.031120 doi: 10.1103/PhysRevE.79.031120
    [13] Y. L. Feng, X. D. Zhang, Y. Chen, L. L. Wei A compact finite difference scheme for solving fractional Black-Scholes option pricing model, J. Inequal. Appl., 2025 (2025). https://doi.org/10.1186/s13660-025-03261-2 doi: 10.1186/s13660-025-03261-2
    [14] J. Gajda, M. Magdziarz, Fractional Fokker-Planck equation with tempered $\alpha$-stable waiting times: Langevin picture and computer simulation, Phys. Rev. E, 82 (2010), 011117. https://doi.org/10.1103/PhysRevE.82.011117 doi: 10.1103/PhysRevE.82.011117
    [15] A. Hanyga, V. E. Rok, Wave propagation in micro-heterogeneous porous media: A model based on an integro-differential wave equation, J. Acoust. Soc. Am., 107 (2000), 2965–2972. https://doi.org/10.1121/1.429326 doi: 10.1121/1.429326
    [16] B. Halouani, F. Bouzeffour, On the fractional Laplace-Bessel operator, AIMS Math., 9 (2024), 21524–21537. https://doi.org/10.3934/math.20241045 doi: 10.3934/math.20241045
    [17] I. Koponen, Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process, Phys. Rev. E, 52 (1995), 1197–1199. https://doi.org/10.1103/PhysRevE.52.1197 doi: 10.1103/PhysRevE.52.1197
    [18] D. B. Madan, P. P. Carr, E. C. Chang, The variance gamma process and option pricing, Rev. Financ., 2 (1998), 79–105. https://doi.org/10.1023/A:1009703431535 doi: 10.1023/A:1009703431535
    [19] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal., 4 (2001), 153–192.
    [20] R. N. Mantegna, H. E. Stanley, Stochastic process with ultraslow convergence to a Gaussian: The Truncated Lévy Flight, Phys. Rev. Lett., 73 (1994), 2946–2949. https://doi.org/10.1103/PhysRevLett.73.2946 doi: 10.1103/PhysRevLett.73.2946
    [21] O. I. Marichev, Handbook of integral transforms of higher transcendental functions: Theory and algorithmic tables, Ellis Horwood, Chichester, 1983. (Translation from the Russian edition (1978))
    [22] M. M. Meerschaert, Fractional calculus, anomalous diffusion, and probability, Fractional Dynamics: Recent Advances, World Scientific, Singapore, 2011,265–284. https://doi.org/10.1142/9789814340595_0011
    [23] M. D. Ortigueira, J. A. T. Machado, Which derivative?, Fractal Fract., 1 (2017), 3. https://doi.org/10.3390/fractalfract1010003 doi: 10.3390/fractalfract1010003
    [24] M. D. Ortigueira, G. Bengochea, J. T. Machado, Substantial, tempered, and shifted fractional derivatives: Three faces of a tetrahedron, Math. Method. Appl. Sci., 44 (2021), 9191–9209. https://doi.org/10.1002/mma.7343 doi: 10.1002/mma.7343
    [25] S. Pilipović, The $\alpha$-tempered derivative and some spaces of exponential distributions, Publ. L'Institut Math., Nouv. Sér., 34 (1983), 183–192.
    [26] J. Rosiński, Tempering stable processes, Stoch. Proc. Appl., 117 (2007), 677–707. https://doi.org/10.1016/j.spa.2006.10.003 doi: 10.1016/j.spa.2006.10.003
    [27] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, New York and London, 1993. (Translation from the Russian edition, Minsk: Nauka i Tekhnika, 1987)
    [28] K. Skotnik, On tempered integrals and derivatives of non-negative orders, Ann. Pol. Math., 40 (1981), 47–57.
    [29] X. Zhang, L. Wei, J. Liu, Application of the LDG method using generalized alternating numerical flux to the fourth-order time-fractional sub-diffusion model, Appl. Math. Lett., 168 (2025), 109580. https://doi.org/10.1016/j.aml.2025.109580 doi: 10.1016/j.aml.2025.109580
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(533) PDF downloads(33) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog