In this work, we develop the harmonic analysis associated with the second-order differential operator $ \mathscr{L}_\gamma = -\frac{d^2}{dx^2} -2\gamma\, \frac{d}{dx} - \gamma^2 $. Fractional powers of $ \mathscr{L}_\gamma $ are defined via spectral representation, and a singular integral representation is provided. Furthermore, we establish the equivalence between the fractional powers of $ \mathscr{L}_\gamma $ and a tempered Riesz derivative.
Citation: Fethi Bouzeffour. Spectral analysis and integral representations of the tempered fractional Riesz derivative[J]. AIMS Mathematics, 2025, 10(9): 20571-20585. doi: 10.3934/math.2025918
In this work, we develop the harmonic analysis associated with the second-order differential operator $ \mathscr{L}_\gamma = -\frac{d^2}{dx^2} -2\gamma\, \frac{d}{dx} - \gamma^2 $. Fractional powers of $ \mathscr{L}_\gamma $ are defined via spectral representation, and a singular integral representation is provided. Furthermore, we establish the equivalence between the fractional powers of $ \mathscr{L}_\gamma $ and a tempered Riesz derivative.
| [1] |
O. E. Barndorff-Nielsen, N. Shephard, Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics, J. Roy. Stat. Soc. B, 63 (2001), 167–241. https://doi.org/10.1111/1467-9868.00282 doi: 10.1111/1467-9868.00282
|
| [2] | O. E. Barndorff-Nielsen, N. Shephard, Normal modified stable processes, Theor. Probab. Math. Stat., 65 (2002), 1–20. |
| [3] |
F. Bouzeffour, M. Garayev, On the fractional Bessel operator, Integr. Transf. Spec. F., 33 (2022), 230–246. https://doi.org/10.1080/10652469.2021.1925268 doi: 10.1080/10652469.2021.1925268
|
| [4] |
F. Bouzeffour, On the generalized fractional Laplace-Bessel operator, Georgian Math. J., 32 (2025), 371–379. https://doi.org/10.1515/gmj-2024-2074 doi: 10.1515/gmj-2024-2074
|
| [5] |
F. Bouzeffour, On the singular integral representation of the fractional powers of Jacobi differential operators, AIMS Math., 10 (2025), 18641–18659. https://doi.org/10.3934/math.2025833 doi: 10.3934/math.2025833
|
| [6] |
F. Bouzeffour, W. Jedidi, On the fractional Dunkl-Laplacian, Fract. Calc. Appl. Anal., 27 (2024), 433–457. https://doi.org/10.1007/s13540-023-00225-5 doi: 10.1007/s13540-023-00225-5
|
| [7] | J. Cao, C. Li, Y. Chen, On tempered and substantial fractional calculus, In: 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), Senigallia, Italy, 2014. |
| [8] |
P. Carr, H. Geman, D. B. Madan, M. Yor, The fine structure of asset returns: An empirical investigation, J. Business, 75 (2002), 305–332. https://doi.org/10.1086/338705 doi: 10.1086/338705
|
| [9] |
P. Carr, H. Geman, D. B. Madan, M. Yor, Stochastic volatility for Lévy processes, Math. Financ., 13 (2003), 345–382. https://doi.org/10.1111/1467-9965.00020 doi: 10.1111/1467-9965.00020
|
| [10] |
A. Chakrabarty, M. M. Meerschaert, Tempered stable laws as random walk limits, Stat. Probab. Lett., 81 (2011), 989–997. https://doi.org/10.1016/j.spl.2011.01.019 doi: 10.1016/j.spl.2011.01.019
|
| [11] | H. Chébli, Opérateurs de translation généralisée et semi-groupe de convolution, Lect. Notes, 404 (1974), 35–59. |
| [12] |
D. del-Castillo-Negrete, Truncation effects in superdiffusive front propagation with Lévy flights, Phys. Rev. E, 79 (2009), 031120. https://doi.org/10.1103/PhysRevE.79.031120 doi: 10.1103/PhysRevE.79.031120
|
| [13] |
Y. L. Feng, X. D. Zhang, Y. Chen, L. L. Wei A compact finite difference scheme for solving fractional Black-Scholes option pricing model, J. Inequal. Appl., 2025 (2025). https://doi.org/10.1186/s13660-025-03261-2 doi: 10.1186/s13660-025-03261-2
|
| [14] |
J. Gajda, M. Magdziarz, Fractional Fokker-Planck equation with tempered $\alpha$-stable waiting times: Langevin picture and computer simulation, Phys. Rev. E, 82 (2010), 011117. https://doi.org/10.1103/PhysRevE.82.011117 doi: 10.1103/PhysRevE.82.011117
|
| [15] |
A. Hanyga, V. E. Rok, Wave propagation in micro-heterogeneous porous media: A model based on an integro-differential wave equation, J. Acoust. Soc. Am., 107 (2000), 2965–2972. https://doi.org/10.1121/1.429326 doi: 10.1121/1.429326
|
| [16] |
B. Halouani, F. Bouzeffour, On the fractional Laplace-Bessel operator, AIMS Math., 9 (2024), 21524–21537. https://doi.org/10.3934/math.20241045 doi: 10.3934/math.20241045
|
| [17] |
I. Koponen, Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process, Phys. Rev. E, 52 (1995), 1197–1199. https://doi.org/10.1103/PhysRevE.52.1197 doi: 10.1103/PhysRevE.52.1197
|
| [18] |
D. B. Madan, P. P. Carr, E. C. Chang, The variance gamma process and option pricing, Rev. Financ., 2 (1998), 79–105. https://doi.org/10.1023/A:1009703431535 doi: 10.1023/A:1009703431535
|
| [19] | F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal., 4 (2001), 153–192. |
| [20] |
R. N. Mantegna, H. E. Stanley, Stochastic process with ultraslow convergence to a Gaussian: The Truncated Lévy Flight, Phys. Rev. Lett., 73 (1994), 2946–2949. https://doi.org/10.1103/PhysRevLett.73.2946 doi: 10.1103/PhysRevLett.73.2946
|
| [21] | O. I. Marichev, Handbook of integral transforms of higher transcendental functions: Theory and algorithmic tables, Ellis Horwood, Chichester, 1983. (Translation from the Russian edition (1978)) |
| [22] | M. M. Meerschaert, Fractional calculus, anomalous diffusion, and probability, Fractional Dynamics: Recent Advances, World Scientific, Singapore, 2011,265–284. https://doi.org/10.1142/9789814340595_0011 |
| [23] |
M. D. Ortigueira, J. A. T. Machado, Which derivative?, Fractal Fract., 1 (2017), 3. https://doi.org/10.3390/fractalfract1010003 doi: 10.3390/fractalfract1010003
|
| [24] |
M. D. Ortigueira, G. Bengochea, J. T. Machado, Substantial, tempered, and shifted fractional derivatives: Three faces of a tetrahedron, Math. Method. Appl. Sci., 44 (2021), 9191–9209. https://doi.org/10.1002/mma.7343 doi: 10.1002/mma.7343
|
| [25] | S. Pilipović, The $\alpha$-tempered derivative and some spaces of exponential distributions, Publ. L'Institut Math., Nouv. Sér., 34 (1983), 183–192. |
| [26] |
J. Rosiński, Tempering stable processes, Stoch. Proc. Appl., 117 (2007), 677–707. https://doi.org/10.1016/j.spa.2006.10.003 doi: 10.1016/j.spa.2006.10.003
|
| [27] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, New York and London, 1993. (Translation from the Russian edition, Minsk: Nauka i Tekhnika, 1987) |
| [28] | K. Skotnik, On tempered integrals and derivatives of non-negative orders, Ann. Pol. Math., 40 (1981), 47–57. |
| [29] |
X. Zhang, L. Wei, J. Liu, Application of the LDG method using generalized alternating numerical flux to the fourth-order time-fractional sub-diffusion model, Appl. Math. Lett., 168 (2025), 109580. https://doi.org/10.1016/j.aml.2025.109580 doi: 10.1016/j.aml.2025.109580
|