Research article

Modified $ \Re $-rational contractions and fixed point results with applications to boundary value problems

  • Published: 05 September 2025
  • MSC : 47H09, 47H10

  • This manuscript introduces modified $ \Re $-rational contractions for single self-maps, leveraging $ \omega $-distance in a relational-theoretic metric space. This novel approach establishes the existence and uniqueness of a fixed point for self-maps, specifically by applying the locally $ \Theta $-transitivity property. We support our theoretical advancements with compelling examples and demonstrate their practical significance by solving a fourth-order boundary value problem related to transverse oscillation in a homogeneous bar and a first-order periodic boundary value problem.

    Citation: Hasanen A. Hammad, Manal Elzain Mohamed Abdalla. Modified $ \Re $-rational contractions and fixed point results with applications to boundary value problems[J]. AIMS Mathematics, 2025, 10(9): 20385-20411. doi: 10.3934/math.2025911

    Related Papers:

  • This manuscript introduces modified $ \Re $-rational contractions for single self-maps, leveraging $ \omega $-distance in a relational-theoretic metric space. This novel approach establishes the existence and uniqueness of a fixed point for self-maps, specifically by applying the locally $ \Theta $-transitivity property. We support our theoretical advancements with compelling examples and demonstrate their practical significance by solving a fourth-order boundary value problem related to transverse oscillation in a homogeneous bar and a first-order periodic boundary value problem.



    加载中


    [1] I. Fredholm, Sur une classe d'équations fonctionnelles, Acta Math., 27 (1903), 365–390. https://doi.org/10.1007/BF02421317 doi: 10.1007/BF02421317
    [2] M. D. Rus, A note on the existence of positive solution of Fredholm integral equations, Fixed Point Theor., 5 (2004), 369–377.
    [3] M. Berenguer, M. Munoz, A. Guillem, M. Galan, Numerical treatment of fixed point applied to the nonlinear Fredholm integral equation, Fixed Point Theory Appl., 2009 (2009), 735638. https://doi.org/10.1155/2009/735638 doi: 10.1155/2009/735638
    [4] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181.
    [5] R. Kannan, Some results on fixed points, Ⅱ, The American Mathematical Monthly, 76 (1969), 405–408. https://doi.org/10.2307/2316437 doi: 10.2307/2316437
    [6] Y. Alber, S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces, In: New results in operator theory and its applications, Basel: Birkhäuser, 1997, 7–22. https://doi.org/10.1007/978-3-0348-8910-0_2
    [7] B. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal.-Theor., 47 (2001), 2683–2693. https://doi.org/10.1016/S0362-546X(01)00388-1 doi: 10.1016/S0362-546X(01)00388-1
    [8] L. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273. https://doi.org/10.1090/S0002-9939-1974-0356011-2 doi: 10.1090/S0002-9939-1974-0356011-2
    [9] A. Ran, M. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435–1443.
    [10] V. Lakshmikantham, L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal.-Theor., 70 (2009), 4341–4349. https://doi.org/10.1016/j.na.2008.09.020 doi: 10.1016/j.na.2008.09.020
    [11] I. Altun, A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory Appl., 2011 (2011), 508730. https://doi.org/10.1155/2011/508730 doi: 10.1155/2011/508730
    [12] A. Alam, M. Imdad, Relation-theoretic metrical coincidence theorems, Filomat, 31 (2017), 4421–4439. https://doi.org/10.2298/FIL1714421A doi: 10.2298/FIL1714421A
    [13] B. Samet, M. Turinici, Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications, Commun. Math. Anal., 13 (2012), 82–97.
    [14] G. Prasad, D. Khantwal, Fixed point theorems in relational metric spaces with an application to boundary value problems, J. Part. Diff. Eq., 34 (2021), 83–93. https://doi.org/10.4208/jpde.v34.n1.6 doi: 10.4208/jpde.v34.n1.6
    [15] S. Antal, D. Khantwal, S. Negi, U. Gairola, Fixed points theorems for $(\varphi, \psi, p)$-weakly contractive mappings via $w$- distance in relational metric spaces with applications, Filomat, 37 (2023), 7319–7328. https://doi.org/10.2298/FIL2321319A doi: 10.2298/FIL2321319A
    [16] S. Lipschutz, Schaum's outlines of theory and problems of set theory and related topics, New York: McGraw-Hill, 1964.
    [17] A. Alam, M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl., 17 (2015), 693–702. https://doi.org/10.1007/s11784-015-0247-y doi: 10.1007/s11784-015-0247-y
    [18] A. Alam, R. George, M. Imdad, Refinements to relation-theoretic contraction principle, Axioms, 11 (2022), 316. https://doi.org/10.3390/axioms11070316 doi: 10.3390/axioms11070316
    [19] B. Kolman, R. Busby, S. Ross, Discrete mathematical structures, New York: Prentice Hall, 1995.
    [20] T. Senapati, L. Dey, Relation-theoretic metrical fixed-point results via $w$-distance with applications, J. Fixed Point Theory Appl., 19 (2017), 2945–2961. https://doi.org/10.1007/s11784-017-0462-9 doi: 10.1007/s11784-017-0462-9
    [21] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340 (2008), 1088–1095. https://doi.org/10.1016/j.jmaa.2007.09.023 doi: 10.1016/j.jmaa.2007.09.023
    [22] P. Dutta, B. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl., 2008 (2008), 406368. https://doi.org/10.1155/2008/406368 doi: 10.1155/2008/406368
    [23] V. Gupta, N. Mani, N. Sharma, Fixed-point theorems for weak $ (\psi, \beta)$-mappings satisfying generalized $C$-condition and its application to boundary value problem, Comput. Math. Methods, 1 (2019), e1041, https://doi.org/10.1002/cmm4.1041 doi: 10.1002/cmm4.1041
    [24] H. Ben-El-Mechaiekh, The Ran-Reurings fixed point theorem without partial order: a simple proof, J. Fixed Point Theory Appl., 16 (2014), 373–383. https://doi.org/10.1007/s11784-015-0218-3 doi: 10.1007/s11784-015-0218-3
    [25] H. Aydi, E. Karapinar, H. Yazidi, Modified $F$-contractions via $\alpha$-admissible mappings and application to integral equations, Filomat, 31 (2017), 1141–1148. https://doi.org/10.2298/FIL1705141A doi: 10.2298/FIL1705141A
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(496) PDF downloads(33) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog