This manuscript introduces modified $ \Re $-rational contractions for single self-maps, leveraging $ \omega $-distance in a relational-theoretic metric space. This novel approach establishes the existence and uniqueness of a fixed point for self-maps, specifically by applying the locally $ \Theta $-transitivity property. We support our theoretical advancements with compelling examples and demonstrate their practical significance by solving a fourth-order boundary value problem related to transverse oscillation in a homogeneous bar and a first-order periodic boundary value problem.
Citation: Hasanen A. Hammad, Manal Elzain Mohamed Abdalla. Modified $ \Re $-rational contractions and fixed point results with applications to boundary value problems[J]. AIMS Mathematics, 2025, 10(9): 20385-20411. doi: 10.3934/math.2025911
This manuscript introduces modified $ \Re $-rational contractions for single self-maps, leveraging $ \omega $-distance in a relational-theoretic metric space. This novel approach establishes the existence and uniqueness of a fixed point for self-maps, specifically by applying the locally $ \Theta $-transitivity property. We support our theoretical advancements with compelling examples and demonstrate their practical significance by solving a fourth-order boundary value problem related to transverse oscillation in a homogeneous bar and a first-order periodic boundary value problem.
| [1] |
I. Fredholm, Sur une classe d'équations fonctionnelles, Acta Math., 27 (1903), 365–390. https://doi.org/10.1007/BF02421317 doi: 10.1007/BF02421317
|
| [2] | M. D. Rus, A note on the existence of positive solution of Fredholm integral equations, Fixed Point Theor., 5 (2004), 369–377. |
| [3] |
M. Berenguer, M. Munoz, A. Guillem, M. Galan, Numerical treatment of fixed point applied to the nonlinear Fredholm integral equation, Fixed Point Theory Appl., 2009 (2009), 735638. https://doi.org/10.1155/2009/735638 doi: 10.1155/2009/735638
|
| [4] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. |
| [5] |
R. Kannan, Some results on fixed points, Ⅱ, The American Mathematical Monthly, 76 (1969), 405–408. https://doi.org/10.2307/2316437 doi: 10.2307/2316437
|
| [6] | Y. Alber, S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces, In: New results in operator theory and its applications, Basel: Birkhäuser, 1997, 7–22. https://doi.org/10.1007/978-3-0348-8910-0_2 |
| [7] |
B. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal.-Theor., 47 (2001), 2683–2693. https://doi.org/10.1016/S0362-546X(01)00388-1 doi: 10.1016/S0362-546X(01)00388-1
|
| [8] |
L. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273. https://doi.org/10.1090/S0002-9939-1974-0356011-2 doi: 10.1090/S0002-9939-1974-0356011-2
|
| [9] | A. Ran, M. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435–1443. |
| [10] |
V. Lakshmikantham, L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal.-Theor., 70 (2009), 4341–4349. https://doi.org/10.1016/j.na.2008.09.020 doi: 10.1016/j.na.2008.09.020
|
| [11] |
I. Altun, A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory Appl., 2011 (2011), 508730. https://doi.org/10.1155/2011/508730 doi: 10.1155/2011/508730
|
| [12] |
A. Alam, M. Imdad, Relation-theoretic metrical coincidence theorems, Filomat, 31 (2017), 4421–4439. https://doi.org/10.2298/FIL1714421A doi: 10.2298/FIL1714421A
|
| [13] | B. Samet, M. Turinici, Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications, Commun. Math. Anal., 13 (2012), 82–97. |
| [14] |
G. Prasad, D. Khantwal, Fixed point theorems in relational metric spaces with an application to boundary value problems, J. Part. Diff. Eq., 34 (2021), 83–93. https://doi.org/10.4208/jpde.v34.n1.6 doi: 10.4208/jpde.v34.n1.6
|
| [15] |
S. Antal, D. Khantwal, S. Negi, U. Gairola, Fixed points theorems for $(\varphi, \psi, p)$-weakly contractive mappings via $w$- distance in relational metric spaces with applications, Filomat, 37 (2023), 7319–7328. https://doi.org/10.2298/FIL2321319A doi: 10.2298/FIL2321319A
|
| [16] | S. Lipschutz, Schaum's outlines of theory and problems of set theory and related topics, New York: McGraw-Hill, 1964. |
| [17] |
A. Alam, M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl., 17 (2015), 693–702. https://doi.org/10.1007/s11784-015-0247-y doi: 10.1007/s11784-015-0247-y
|
| [18] |
A. Alam, R. George, M. Imdad, Refinements to relation-theoretic contraction principle, Axioms, 11 (2022), 316. https://doi.org/10.3390/axioms11070316 doi: 10.3390/axioms11070316
|
| [19] | B. Kolman, R. Busby, S. Ross, Discrete mathematical structures, New York: Prentice Hall, 1995. |
| [20] |
T. Senapati, L. Dey, Relation-theoretic metrical fixed-point results via $w$-distance with applications, J. Fixed Point Theory Appl., 19 (2017), 2945–2961. https://doi.org/10.1007/s11784-017-0462-9 doi: 10.1007/s11784-017-0462-9
|
| [21] |
T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340 (2008), 1088–1095. https://doi.org/10.1016/j.jmaa.2007.09.023 doi: 10.1016/j.jmaa.2007.09.023
|
| [22] |
P. Dutta, B. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl., 2008 (2008), 406368. https://doi.org/10.1155/2008/406368 doi: 10.1155/2008/406368
|
| [23] |
V. Gupta, N. Mani, N. Sharma, Fixed-point theorems for weak $ (\psi, \beta)$-mappings satisfying generalized $C$-condition and its application to boundary value problem, Comput. Math. Methods, 1 (2019), e1041, https://doi.org/10.1002/cmm4.1041 doi: 10.1002/cmm4.1041
|
| [24] |
H. Ben-El-Mechaiekh, The Ran-Reurings fixed point theorem without partial order: a simple proof, J. Fixed Point Theory Appl., 16 (2014), 373–383. https://doi.org/10.1007/s11784-015-0218-3 doi: 10.1007/s11784-015-0218-3
|
| [25] |
H. Aydi, E. Karapinar, H. Yazidi, Modified $F$-contractions via $\alpha$-admissible mappings and application to integral equations, Filomat, 31 (2017), 1141–1148. https://doi.org/10.2298/FIL1705141A doi: 10.2298/FIL1705141A
|