Research article

Stability of nonlinear stochastic systems with delayed impulses under self-triggered impulsive control

  • Published: 05 September 2025
  • MSC : 93C30

  • This paper investigates the stability problem of nonlinear stochastic systems with delayed impulses based on a self-triggered impulsive control (STIC) strategy. By employing the Lyapunov method, an explicit self-triggering mechanism (STM) with state-dependent waiting time parameters is designed, which ensures system stability while effectively avoiding Zeno behavior. Compared with traditional event-triggered impulsive control (ETIC) methods, this strategy does not require continuous state monitoring and can determine the next triggering instant based on the currently available state information. Furthermore, the developed theoretical results are applied to the STIC problem of nonlinear stochastic systems. Finally, the effectiveness and feasibility of the proposed method are validated through two numerical examples.

    Citation: Bing Shang, Jin-E Zhang. Stability of nonlinear stochastic systems with delayed impulses under self-triggered impulsive control[J]. AIMS Mathematics, 2025, 10(9): 20368-20384. doi: 10.3934/math.2025910

    Related Papers:

  • This paper investigates the stability problem of nonlinear stochastic systems with delayed impulses based on a self-triggered impulsive control (STIC) strategy. By employing the Lyapunov method, an explicit self-triggering mechanism (STM) with state-dependent waiting time parameters is designed, which ensures system stability while effectively avoiding Zeno behavior. Compared with traditional event-triggered impulsive control (ETIC) methods, this strategy does not require continuous state monitoring and can determine the next triggering instant based on the currently available state information. Furthermore, the developed theoretical results are applied to the STIC problem of nonlinear stochastic systems. Finally, the effectiveness and feasibility of the proposed method are validated through two numerical examples.



    加载中


    [1] T. Yang, Impulsive control theory, Lecture Notes in Control and Information Sciences, Springer, 2001.
    [2] Z. W. Liu, Y. L. Shi, H. C. Yan, B. X. Han, Z. H. Guan, Secure consensus of multiagent systems via impulsive control subject to deception attacks, IEEE Trans. Circuits Syst. Ⅱ, Express Briefs, 70 (2022), 166–170. https://doi.org/10.1109/TCSII.2022.3196042 doi: 10.1109/TCSII.2022.3196042
    [3] B. X. Jiang, J. G. Lou, J. Q. Lu, K. B. Shi, Synchronization of chaotic neural networks: Average-delay impulsive control, IEEE Trans. Neural Netw. Learn. Syst., 33 (2021), 6007–6012. https://doi.org/10.1109/TNNLS.2021.3069830 doi: 10.1109/TNNLS.2021.3069830
    [4] T. Stamov, I. Stamova, Design of impulsive controllers and impulsive control strategy for the Mittag-Leffler stability behavior of fractional gene regulatory networks, Neurocomputing, 424 (2021), 54–62. https://doi.org/10.1016/j.neucom.2020.10.112 doi: 10.1016/j.neucom.2020.10.112
    [5] M. Chernick, S. D'Amico, Closed-form optimal impulsive control of spacecraft formations using reachable set theory, J. Guid. Control Dyn., 44 (2021), 25–44. https://doi.org/10.2514/1.G005218 doi: 10.2514/1.G005218
    [6] X. Y. Ding, J. Q. Lu, X. Y. Chen, Lyapunov-based stability of time-triggered impulsive logical dynamic networks, Nonlinear Anal. Hybrid Syst., 51 (2024), 101417. https://doi.org/10.1016/j.nahs.2023.101417 doi: 10.1016/j.nahs.2023.101417
    [7] Q. Z. Wang, B. Z. Fu, C. Lin, P. Li, Exponential synchronization of chaotic Lur'e systems with time-triggered intermittent control, Commun. Nonlinear Sci. Numer. Simul., 109 (2022), 106298. https://doi.org/10.1016/j.cnsns.2022.106298 doi: 10.1016/j.cnsns.2022.106298
    [8] Z. H. Guan, B. Hu, M. Chi, D. X. He, X. M. Cheng, Guaranteed performance consensus in second-order multi-agent systems with hybrid impulsive control, Automatica, 50 (2014), 2415–2418. https://doi.org/10.1016/j.automatica.2014.07.008 doi: 10.1016/j.automatica.2014.07.008
    [9] W. H. Chen, W. X. Zheng, X. Lu, Impulsive stabilization of a class of singular systems with time-delays, Automatica, 83 (2017), 28–36. https://doi.org/10.1016/j.automatica.2017.05.008 doi: 10.1016/j.automatica.2017.05.008
    [10] D. Kuang, D. Gao, J. Li, Stabilization of nonlinear stochastic systems via event-triggered impulsive control, Math. Comput. Simul., 233 (2025), 389–399. https://doi.org/10.1016/j.matcom.2025.01.025 doi: 10.1016/j.matcom.2025.01.025
    [11] M. Z. Wang, S. C. Shu, X. D. Li, Event-triggered delayed impulsive control for nonlinear systems with applications, J. Franklin Inst., 358 (2021), 4277–4291. https://doi.org/10.1016/j.jfranklin.2021.03.021 doi: 10.1016/j.jfranklin.2021.03.021
    [12] D. X. Peng, X. D. Li, R. Rakkiyappan, Y. H. Ding, Stabilization of stochastic delayed systems: Event-triggered impulsive control, Appl. Math. Comput., 401 (2021), 126054. https://doi.org/10.1016/j.amc.2021.126054 doi: 10.1016/j.amc.2021.126054
    [13] Z. H. Hu, X. W. Mu, Event-triggered impulsive control for nonlinear stochastic systems, IEEE Trans. Cybern., 52 (2021), 7805–7813. https://doi.org/10.1109/TCYB.2021.3052166 doi: 10.1109/TCYB.2021.3052166
    [14] J. Li, Q. X. Zhu, Event-triggered impulsive control of stochastic functional differential systems, Chaos Solitons Fractals, 170 (2023), 113416. https://doi.org/10.1016/j.chaos.2023.113416 doi: 10.1016/j.chaos.2023.113416
    [15] L. N. Li, J. E. Zhang, Input-to-state stability of nonlinear systems with delayed impulse based on event-triggered impulse control, AIMS Math., 9 (2024), 26446–26461. https://doi.org/10.3934/math.20241287 doi: 10.3934/math.20241287
    [16] X. D. Li, Y. H. Wang, S. J. Song, Stability of nonlinear impulsive systems: Self-triggered comparison system approach, IEEE Trans. Autom. Control, 68 (2022), 4940–4947. https://doi.org/10.1109/TAC.2022.3209441 doi: 10.1109/TAC.2022.3209441
    [17] D. Ding, Z. Tang, Y. Wang, Z. C. Ji, J. H. Park, Secure synchronization for cyber-physical complex networks based on self-triggering impulsive control: Static and dynamic method, IEEE Trans. Netw. Sci. Eng., 8 (2021), 3167–3178. https://doi.org/10.1109/TNSE.2021.3106943 doi: 10.1109/TNSE.2021.3106943
    [18] X. G. Tan, C. C. Xiang, J. D. Cao, W. Y. Xu, G. H. Wen, L. Rutkowski, Synchronization of neural networks via periodic self-triggered impulsive control and its application in image encryption, IEEE Trans. Cybern., 52 (2021), 8246–8257. https://doi.org/10.1109/TCYB.2021.3049858 doi: 10.1109/TCYB.2021.3049858
    [19] X. D. Li, M. Z. Wang, Stability for nonlinear delay systems: Self-triggered impulsive control, Automatica, 160 (2024), 111469. https://doi.org/10.1016/j.automatica.2023.111469 doi: 10.1016/j.automatica.2023.111469
    [20] M. Z. Wang, X. Y. He, X. D. Li, Self-triggered impulsive control for Lyapunov stability of nonlinear systems in discrete time, IEEE Trans. Cybern., 54 (2024), 4852–4858. https://doi.org/10.1109/TCYB.2024.3349528 doi: 10.1109/TCYB.2024.3349528
    [21] H. N. Zheng, W. Zhu, X. D. Li, Quasi-synchronization of parameter mismatch drive-response systems: A self-triggered impulsive control strategy, Chaos Soliton. Fract., 180 (2024), 114496. https://doi.org/10.1016/j.chaos.2024.114496 doi: 10.1016/j.chaos.2024.114496
    [22] L. N. Liu, C. L. Pan, J. Y. Fang, Event‐triggered impulsive control of nonlinear stochastic systems with exogenous disturbances, Int. J. Robust Nonlinear Control, 35 (2025), 1654–1665. https://doi.org/10.1002/rnc.7746 doi: 10.1002/rnc.7746
    [23] A. Mapui, S. Mukhopadhyay, Lyapunov-like prescribed-time stability of impulsive systems via event & self-triggered impulsive control, Nonlinear Anal. Hybrid Syst., 57 (2025), 101598. https://doi.org/10.1016/j.nahs.2025.101598 doi: 10.1016/j.nahs.2025.101598
    [24] T. Zhan, Y. Ji, Y. B. Gao, H. Y. Li, Y. Q. Xia, Self-triggered impulsive control for nonlinear stochastic systems, IEEE/CAA J. Autom. Sinica, 12 (2025), 264–266. https://doi.org/10.1109/JAS.2024.124581 doi: 10.1109/JAS.2024.124581
    [25] Z. Zhang, S. Chen, Y. Zheng, Cooperative output regulation for linear multiagent systems via distributed fixed-time event-triggered control, IEEE Trans. Neural Netw. Learn. Syst., 35 (2022), 338–347. https://doi.org/10.1109/TNNLS.2022.3174416 doi: 10.1109/TNNLS.2022.3174416
    [26] C. H. Long, Z. Z. Liu, C. Ma, Synchronization dynamics in fractional-order FitzHugh–Nagumo neural networks with time-delayed coupling, AIMS Math., 10 (2025), 8673–8687. https://doi.org/10.3934/math.2025397 doi: 10.3934/math.2025397
    [27] Y. Liu, N. Li, Y. L. Huang, Stability of highly nonlinear impulsive coupled networks with multiple time delays, Nonlinear Dyn., 113 (2025), 8741–8756. https://doi.org/10.1007/s11071-024-10745-1 doi: 10.1007/s11071-024-10745-1
    [28] T. Hong, P. C. Hughes, Effect of time delay on the stability of flexible structures with rate feedback control, J. Vib. Control, 7 (2001), 33–49. https://doi.org/10.1177/107754630100700103 doi: 10.1177/107754630100700103
    [29] M. Z. Wang, X. D. Li, S. J. Song, Local synchronization for delayed complex dynamical networks via self-triggered impulsive control involving delays, IEEE Trans. Neural Netw. Learn. Syst., 36 (2025), 9663–9669. https://doi.org/10.1109/TNNLS.2024.3414126 doi: 10.1109/TNNLS.2024.3414126
    [30] H. Zhou, Y. T. Chen, D. H. Chu, W. X. Li, Impulsive stabilization of complex-valued stochastic complex networks via periodic self-triggered intermittent control, Nonlinear Anal. Hybrid Syst., 48 (2023), 101304. https://doi.org/10.1016/j.nahs.2022.101304 doi: 10.1016/j.nahs.2022.101304
    [31] H. Zhou, D. Kong, J. H. Park, W. X. Li, Periodic self-triggered impulsive synchronization of hybrid stochastic complex-valued delayed networks, IEEE Trans. Control Netw. Syst., 11 (2023), 42–52. https://doi.org/10.1109/TCNS.2023.3269005 doi: 10.1109/TCNS.2023.3269005
    [32] W. Zhang, B. Y. Gong, X. Wang, H. Y. Li, Leader-following consensus of stochastic delayed multiagent systems with input saturation under self-triggered impulsive control, Sci. China Technol. Sci., 68 (2025), 1420404. https://doi.org/10.1007/S11431-024-2715-5 doi: 10.1007/S11431-024-2715-5
    [33] K. It$\hat{o}$, On stochastic differential equations, American Mathematical Society, 1951.
    [34] W. Ma, Z. Yao, B. Yang, Practical stability of continuous-time stochastic nonlinear system via event-triggered feedback control, J. Franklin Inst., 360 (2023), 1733–1751. https://doi.org/10.1016/j.jfranklin.2022.12.018 doi: 10.1016/j.jfranklin.2022.12.018
    [35] Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control, IEEE Trans. Autom. Control, 2018 (64), 3764–3771. https://doi.org/10.1109/TAC.2018.2882067 doi: 10.1109/TAC.2018.2882067
    [36] D. Ding, Z. Tang, J. H. Park, Y. Wang, Z. C. Ji, Dynamic self-triggered impulsive synchronization of complex networks with mismatched parameters and distributed delay, IEEE Trans. Cybern., 53 (2022), 887–899. https://doi.org/10.1109/TCYB.2022.3168854 doi: 10.1109/TCYB.2022.3168854
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(603) PDF downloads(50) Cited by(0)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog