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Abstract: This paper investigates the stability problem of nonlinear stochastic systems with delayed
impulses based on a self-triggered impulsive control (STIC) strategy. By employing the Lyapunov
method, an explicit self-triggering mechanism (STM) with state-dependent waiting time parameters
is designed, which ensures system stability while effectively avoiding Zeno behavior. Compared with
traditional event-triggered impulsive control (ETIC) methods, this strategy does not require continuous
state monitoring and can determine the next triggering instant based on the currently available state
information. Furthermore, the developed theoretical results are applied to the STIC problem of
nonlinear stochastic systems. Finally, the effectiveness and feasibility of the proposed method are
validated through two numerical examples.
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1. Introduction

In recent years, impulsive control (IC) has gradually become an important tool for solving complex
dynamic system control problems due to its advantages of simple structure, discrete control signals, low
consumption of communication resources, and strong robustness. It has been widely applied in fields
such as multi-agent systems, neural network synchronization, biological systems, and aerospace [1–5].
As a discontinuous control method, IC achieves effective regulation of system behavior by applying
instantaneous impulses to the system at specific moments. It is particularly suitable for dealing with
challenges such as system nonlinearity, uncertainty, and limited network bandwidth. Traditional IC is
usually based on a time-triggered mechanism, which means that control signals are applied according
to a preset and fixed time sequence without relying on real-time changes in system states. Due to its
simple analysis and easy implementation, this method has dominated early research [6–9]. However,
the fixed time intervals often fail to accurately reflect the dynamic characteristics of the system, which
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can result in unnecessarily high control frequency and inefficient resource usage, thus limiting both
practicality and control performance.

In response to the aforementioned issues, event-triggered impulsive control (ETIC) has emerged.
This strategy integrates the merits of event-triggered control (ETC) and IC, applying control only
when specific triggering conditions are satisfied. This approach significantly improves the efficiency
of resource utilization and effectively alleviates the contradiction between control frequency and
performance inherent in traditional methods [10–15]. For example, Kuang et al. [10] investigated
the multi-type stability problems of nonlinear stochastic systems within the framework of ETIC; Hu
et al. [13] designed two types of event-triggering mechanisms for analyzing the stability of stochastic
systems; and Li et al. [15] explored the input-to-state stability of nonlinear systems subject to delayed
impulses using the ETIC approach. Despite substantial theoretical progress, implementing this strategy
still faces challenges. The triggering conditions typically rely on continuous or periodic monitoring of
system states, which places high demands on computational resources and communication capabilities,
especially for resource-constrained systems.

To overcome this limitation, the self-triggered impulsive control (STIC) strategy has been proposed.
The core idea is to predict the next control triggering time based on the currently available system
state at each control execution instant, thereby eliminating the need for continuous sampling and
monitoring of the system state. Especially as of recently, STIC has become a research hotspot
and has achieved a series of meaningful results [16–21]. For instance, Li et al. [16] designed a
self-triggering mechanism (STM) grounded in the comparison principle to analyze the asymptotic
stability of nonlinear systems; Tan et al. [18] proposed a periodic STIC strategy for neural network
synchronization and image encryption; and Wang [21] investigated the quasi-synchronization problem
of parameter-adaptive drive-response systems under the framework of STIC. However, most existing
studies focus on deterministic systems or specific structured models and often rely on comparison-
based analysis methods, which limits their practicality and scalability.

It is worth noting that most existing studies neglect the influence of time delays [16, 22–25].
However, in practical applications, such as biological signal transmission [26], communication
networks [27], and aerospace systems [28], the evolution of the system state is often significantly
affected by delays. In IC, such delays are particularly critical, as they may not only interfere
with the system’s real-time response but also degrade control performance and even threaten system
stability. For example, Li et al. [16] studied the stability of nonlinear systems under STIC; Mapui
et al. [23] analyzed the Lyapunov-type prescribed-time stability of impulsive systems under two
triggering mechanisms; Zhang [25] investigated the cooperative output regulation of linear multi-agent
systems via distributed fixed-time ETC. However, none of these studies considered the presence of
time delays in the impulses. Although some studies [11, 14, 15] have addressed delayed impulses in
the ETIC framework, their triggering mechanisms require continuous state sampling, leading to high
computational costs. While [29] investigated the local synchronization of time-delay systems under the
STIC framework, the study employed the comparison principle to design the triggering mechanism,
which has certain limitations. In [30], a periodic self-triggered intermittent impulsive control strategy
with an implicit expression form was designed for the stabilization of complex-valued stochastic
complex networks, but this control mechanism is relatively complex and not easily implementable.
In addition to delay effects, stochastic disturbances are also a common challenge in practical systems.
Their primary sources include sensor measurement noise, external environmental perturbations, and
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uncertainties in the communication process, all of which significantly increase the complexity of
modeling and control design. Despite extensive research on stochastic systems [14, 24, 31–35],
certain limitations remain in engineering applications. For example, Li et al. [14] proved the
stability of stochastic systems by introducing state-dependent waiting times; however, the associated
Lyapunov functionals rely on strongly restrictive conditions, making the theoretical verification process
cumbersome. In [24], the stability of nonlinear stochastic systems was analyzed under the STIC
framework, but the impact of delays in impulses was neglected, and the mechanism employed fixed
waiting times, limiting its flexibility. Mapui et al. [32] focused on consensus in stochastic delayed
multi-agent systems with input saturation under STIC, yet the impulse jump design depended solely on
current state information without considering potential delay effects. Furthermore, [34,35] investigated
the practical exponential mean-square stability from input to state for stochastic nonlinear systems
under event-triggered feedback control, taking external disturbances into account. Nevertheless, such
methods require continuous state monitoring, which results in high energy consumption, and they
are difficult to implement in scenarios where actuators are constrained and cannot maintain output
for extended periods. In summary, designing an STIC strategy that guarantees stability for nonlinear
stochastic systems in the presence of delayed impulses remains a challenging problem.

Based on the above insights, this paper aims to investigate the p-th moment asymptotic stability
(p-AS) and p-th moment exponential stability (p-ES) of nonlinear stochastic systems with delayed
impulses using an STIC strategy. By employing the Lyapunov method, a set of verifiable sufficient
conditions for system stability are proposed. This paper makes the following key contributions:

(i) An STM with state-dependent waiting times is designed. Compared with the triggering
mechanisms with fixed waiting times in [13, 24], it not only enhances flexibility but also overcomes
the analytical difficulties brought by the stochastic nature of state-dependent waiting time parameters
through the introduction of new conditions, while ensuring the exclusion of Zeno behavior.

(ii) The coupled effects of delayed impulses and stochastic disturbances are systematically
considered, which expands the scope of theoretical applicability. At the control instants, the state
jumps of the system integrate information from both the current state and the historical state, and an
explicit relationship between the triggering parameters and the impulse intensity is established.

(iii) An explicitly formulated STIC strategy is proposed. Compared with the complex implicit
mechanisms in [18, 31, 36], the proposed strategy has a clearer structure, making it more suitable for
practical implementation.

The rest of this paper is structured as follows: Section 2 introduces the system model, along with
basic definitions and notation. Section 3 presents the main theoretical results in detail. Section 4
demonstrates the application of the proposed results to nonlinear stochastic systems. Section 5 provides
two numerical examples for validation. In Section 6, the paper is concluded, and potential future
research directions are discussed.

2. Preliminaries

Notation: N, N+, R, and R+ denote the sets of non-negative integers, positive integers, real
numbers, and non-negative real numbers, respectively. Ra and Ra×b represent the a-dimensional
real space and the space of a × b real matrices, respectively. Let |·| denote the Euclidean norm. E
and P denote the mathematical expectation and probability measure, respectively. PC([−ι, 0];Ra) =
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~ : [−ι, 0]→ Ra with norm ‖·‖ι , where ‖~‖ι = supς∈[−ι,0] |~(ς)|

}
. PCd

F0
([−ι, 0];Ra) denotes a class of

bounded F0-measurable, PC([−ι, 0];Ra)-valued random variables. (Ω,F , {Ft}t≥t0 ,P) is a complete
probability space equipped with a filtration {Ft}t≥t0 that satisfies the usual conditions. For any matrix
S, S−1, ST , and trace(S) denote the inverse, transpose, and trace of S, respectively. Ξ is the identity
matrix of appropriate dimension. G > 0 (or G < 0) indicates that the matrix G is symmetric and
positive definite (or negative definite).

The following nonlinear stochastic system influenced by delayed impulses is considered:
dz(t) = Φ(t, z(t))dt + Ψ(t, z(t))dω(t), t , tr,

z(tr) = Πr(z(t−r ), z(tr − ι)), r ∈ N+,

z(t0 + ς) = ~(ς), ς ∈ [−ι, 0] ,

(1)

where z(t) ∈ Ra is the system state, the initial function ~ = {~(ς),−ι ≤ ς ≤ 0} ∈ PCd
F0

([−ι, 0];Ra), ι > 0
is the constant time delay. ω(t) be a b-dimensional Brownian motion defined on the filtered probability
space (Ω,F , {Ft}t≥t0 ,P). Let {tr, r ∈ N+} denote the sequence of impulse times. Suppose that the
functions Φ : R+ ×R

a → Ra,Ψ : R+ ×R
a → Ra×b,Πr : Ra ×Ra → Ra are Borel measurable and satisfy

both the Lipschitz condition and the linear growth condition. For any initial state ~ ∈ PCd
F0

([−ι, 0];Ra),
a unique global solution z(t) exists for system (1). Furthermore, assume Φ(0, 0) = 0,Ψ(0, 0) = 0 and
Πr(0, 0) = 0 for t ∈ R+, r ∈ N+, which implies that system (1) has a trivial solution z(t) ≡ 0.

Definition 1. [13] Let χ1,2 represent the set of all non-negative functions V(t, z) : [t0,+∞) × Ra that
are continuously once differentiable at t and twice differentiable at z. For function V(t, z) ∈ χ1,2, we
define the following operator L associated with system (1):

LV(t, z) =
∂V(t, z)
∂t

+
∂V(t, z)
∂z

Φ(t, z) +
1
2

trace[ΨT (t, z)
∂2V(t, z)
∂z2 Ψ(t, z)].

Definition 2. [12, 14] The trivial solution of system (1) is regarded as:
(A1) p-th moment stable: ∀ε > 0, ∃ δ > 0 such that ‖~‖p

ι < δ, implies

E |z(t)|p < ε;

(A2) p-th moment asymptotically stable (p-AS): it is p-th moment stable and for any ~ ∈
PC

d
F0

([−ι, 0];Ra),
E |z(t)|p → 0 as t → +∞;

(A3) p-th moment exponentially stable (p-ES): exist positive constants α and β such that for any ~ ∈
PC

d
F0

([−ι, 0];Ra),
E |z(t)|p ≤ αe−β(t−t0)E ‖~‖p

ι .

In the particular case where p = 2, it is referred to as exponential stability in the mean-square sense.

Assumption 1. Assume that there exists a functionV(t, z(t)) ∈ χ1,2 and a function θ(t) : [t0,+∞)→ R,
as well as some positive constants u1, u2 and ξ1,r ∈ [0, 1), ξ2,r ∈ [0, 1) for each r ∈ N+, which are not
simultaneously zero, such that the following inequality conditions are satisfied:
(B1) u1 |z(t)|p ≤ V(t, z) ≤ u2 |z(t)|p , ∀z(t) ∈ Ra;
(B2) ELV(t, z(t)) ≤ θ(t)EV(t, z(t)), where θ(t) is bounded on [t0,+∞), and we define θ =

sups∈[t0,+∞) θ(s) > 0;
(B3) EV(t,Πr(z(t−r ), z(tr − ι)) ≤ ξ1,rEV(t−r , z(t−r )) + ξ2,rEV(tr − ι, z(tr − ι)), r ∈ N+.
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Remark 1. Condition (B2) characterizes the evolution trend of the Lyapunov function during the
continuous dynamics of the system, ensuring that its expected value does not grow unboundedly.
Condition (B3) describes the jump characteristics of the Lyapunov function under the effect of impulses,
indicating that the impulses may be influenced by the current or previous system states, or possibly by
only one of them. Here, ξ1,r and ξ2,r are the scaling factors of the impulse on the current state and the
delayed state, respectively, reflecting the magnitude of the impulse strength and the delay effect. This
condition is used to restrict the expected value of the Lyapunov function under the effect of impulses
from exceeding the weighted sum of the Lyapunov values corresponding to the current and delayed
states (typically requiring ξ1,r +ξ2,r < 1), thereby suppressing non-physical energy growth and ensuring
system stability.

3. Main results

This section aims to develop a class of STM for the stability analysis of system (1). To address
the potential occurrence of Zeno behavior, a waiting time parameter is introduced into the mechanism.
The detailed design is as follows:

tr+1 = inf

t > tr + π(z(tr)) : t − tr − π(z(tr)) −
`r + ln V(tr ,z(tr))

V(t̃r ,z(t̃r))

θ
≥ 0

 , (2)

where π(z(tr)) denotes the waiting time parameter associated with the system state z(tr), and π(z(tr)) :
Ra → (0,A] (A > 0). `r > 0 is the triggering parameter and ` � maxr∈N {`r}. Here we set t̃r = tr +

π(z(tr)). According to the STM (2), the next triggering instant tr+1 must occur strictly after tr + π(z(tr)),
which inherently prevents the emergence of Zeno behavior.

Theorem 1. Under Assumption 1, if the parameters of STM (2) satisfy:

P(ι < π(z(tr)) ≤ ι̂) = 1, f or each r ∈ N, (3)

θι̂ < `r, e(r+1)`
r∏

i=1

(ξ1,i + ξ2,i) → 0 as r → +∞, (4)

where ι̂ > 0 denotes the upper bound of the waiting time, then system (1) is p-AS under STM (2).
Proof. By integrating both sides of condition (B2) over the interval t ∈ [tr, tr+1), we derive∫ t

tr

ELV(t, z(s))ds
EV(t, z(s))

≤

∫ t

tr
θ(s)ds ≤ θ(t − tr).

Applying Itô’s formula yields
EV(t, z(t)) ≤ eθ(t−tr)EV(tr, z(tr)), (5)

this implies that
EV(t̃r, z(t̃r)) ≤ eθ(t̃r−tr)EV(tr, z(tr)) ≤ eθπ(z(tr))EV(tr, z(tr)),

then, from conditions (3) and (4), we have

`r + ln V(tr ,z(tr))
V(t̃r ,z(t̃r))

θ
> 0.
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Clearly, inequality (5) holds for all t ∈ [tr, t̃r). Based on STM (2), on the interval t ∈ [t̃r, tr+1), one

has t − tr − π(z(tr)) −
`r+ln V(tr ,z(tr ))

V(t̃r ,z(t̃r ))

θ
< 0, from which it follows that

eθ(t−t̃r)EV(t̃r, z(t̃r)) < e`rEV(tr, z(tr)). (6)

Then, for t ∈ [t0, t̃0), by (3)–(5), we get that

EV(t, z(t)) ≤ eθ(t−t0)EV(t0, z(t0)) ≤ eθι̂EV(t0, z(t0)) ≤ e`0EV(t0, z(t0)), (7)

and if t ∈
[
t̃0, t1

)
, then according to (5) and (6), one can derive that

EV(t, z(t)) ≤ eθ(t−t̃0)EV(t̃0, z(t̃0) ≤ e`0EV(t0, z(t0))). (8)

At the first triggering instant t1, it can be deduced from condition (B3) and inequalities (7) and (8)
that

EV(t1, z(t1)) ≤ ξ1,1EV(t−1 , z(t−1 )) + ξ2,1EV(t1 − ι, z(t1 − ι))
≤ e`0(ξ1,1 + ξ2,1)EV(t0, z(t0)).

(9)

For t ∈ (t1, t̃1), by combining (3)–(5) and (9), we obtain

EV(t, z(t)) ≤ eθ(t−t1)EV(t1, z(t1)) ≤ eθι̂EV(t1, z(t1)) ≤ e`1+`0(ξ1,1 + ξ2,1)EV(t0, z(t0)). (10)

If t ∈ [t̃1, t2), in accordance with (5), (6), and (9), it follows that

EV(t, z(t)) ≤ eθ(t−t̃1)EV(t̃1, z(t̃1)) ≤ e`1EV(t1, z(t1)) ≤ e`1+`0(ξ1,1 + ξ2,1)EV(t0, z(t0)). (11)

At the second triggering time t2, the combination of (B3), (10), and (11) yields

EV(t2, z(t2)) ≤ ξ1,2EV(t−2 , z(t−2 )) + ξ2,2EV(t2 − ι, z(t2 − ι))

≤ e`1+`0

2∏
i=1

(ξ1,i + ξ2,i)EV(t0, z(t0)).
(12)

For t ∈ (t2, t̃2), based on (3)–(5) and (12), one can have

EV(t, z(t)) ≤ eθ(t−t2)EV(t2, z(t2)) ≤ eθι̂EV(t2, z(t2)) ≤ e
∑2

j=0 ` j

2∏
i=1

(ξ1,i + ξ2,i)EV(t0, z(t0)). (13)

If t ∈ [t̃2, t3), by applying (5), (6), and (12), we obtain the following

EV(t, z(t)) ≤ eθ(t−t̃2)EV(t̃2, z(t̃2)) ≤ e`2EV(t2, z(t2)) ≤ e
∑2

j=0 ` j

2∏
i=1

(ξ1,i + ξ2,i)EV(t0, z(t0)). (14)

By recursively repeating this process for any r ∈ N+, we obtain, when t = tr,

EV(tr, z(tr)) ≤ ξ1,rEV(t−r , z(t−r )) + ξ2,rEV(tr − ι, z(tr − ι))

≤ e
∑r−1

j=0 ` j

r∏
i=1

(ξ1,i + ξ2,i)EV(t0, z(t0)), (15)
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and for t ∈ (tr, t̃r), in accordance with the argument used in (13), it follows that

EV(t, z(t)) ≤ eθ(t−tr)EV(tr, z(tr)) ≤ eθι̂EV(tr, z(tr)) ≤ e
∑r

j=0 ` j

r∏
i=1

(ξ1,i + ξ2,i)EV(t0, z(t0)). (16)

Similarly to the derivation in (14), for t ∈ [t̃r, tr+1), we have

EV(t, z(t)) ≤ eθ(t−t̃r)EV(t̃r, z(t̃r)) ≤ e`rEV(tr, z(tr)) ≤ e
∑r

j=0 ` j

r∏
i=1

(ξ1,i + ξ2,i)EV(t0, z(t0)). (17)

Hence, from ` = maxr∈N {`r}, for t ∈ [tr, tr+1), r ∈ N+, the inequality

EV(t, z(t)) ≤ e(r+1)`
r∏

i=1

(ξ1,i + ξ2,i)EV(t0, z(t0))

always holds. Furthermore, by applying condition (B1), we obtain

E |z(t)|p ≤ u−1
1 e(r+1)`

r∏
i=1

(ξ1,i + ξ2,i)EV(t0, z(t0)), ∀t ≥ t0,

in conjunction with (4), it then follows that

E |z(t)|p → 0 as t → +∞.

Accordingly, system (1) can be concluded to be p-AS under STM (2). The proof is completed.

Remark 2. To ensure the effectiveness of the triggering mechanism, it is crucial to first exclude the
possibility of Zeno behavior. In the STM (2), this is achieved by introducing a state-dependent waiting
time π(z(tr)) and by imposing a new condition (3), which prevents the case π(z(tr)) = 0 from occurring.

Consequently, Zeno behavior is effectively avoided. In fact, since tr+1 − tr − π(z(tr))−
`r+ln V(tr ,z(tr ))

V(t̃r ,z(t̃r ))

θ
= 0, it

follows from inequality (6) that eθ(tr+1−tr−π(z(tr)))EV(tr + π(z(tr)), z(tr + π(z(tr))) = e`rEV(tr, z(tr)). On the
other hand, inequality (5) yields EV(tr +π(z(tr)), z(tr +π(z(tr))) ≤ eθ(tr+π(z(tr))−tr)EV(tr, z(tr)). Combining
the above, we obtain e−θ(tr+1−tr−π(z(tr)))+`rEV(tr, z(tr)) ≤ eθ(tr+π(z(tr))−tr)EV(tr, z(tr)), which further implies
tr+1 − tr ≥

`r
θ

. This establishes a strictly positive lower bound between any two consecutive triggering
instants, thereby ensuring the exclusion of Zeno behavior.

Remark 3. Based on Theorem 1, condition (3) ensures that the waiting time π(z(tr)) at each triggering
instant almost surely falls within the interval (ι, ι̂]. This implies the existence of a strictly positive
minimum inter-event time between any two consecutive triggering instants, hence eliminating the
possibility of Zeno phenomena. Moreover, since π(z(tr)) is a state-dependent waiting time, the length
of the triggering interval [tr, tr +π(z(tr))) dynamically varies with the evolution of the system state. As a
result, π(z(tr)) can be suitably designed based on the system state to flexibly regulate the "sleep time" of
the observer: The interval can be prolonged when the system approaches stability or shortened when
the system deviates from equilibrium. This state-dependent characteristic grants the proposed STM
greater flexibility, which helps to reduce communication and computational costs while preserving
system performance.
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Remark 4. Condition (4) characterizes the connection between the triggering parameters and
the impulse intensity. Its primary purpose is to leverage this coupling effect to ensure that the
Lyapunov function decreases over the system’s evolution and asymptotically converges to zero, thereby
guaranteeing the asymptotic stability of the system. In addition, if the strict inequality θι̂ < `r in
condition (4) is relaxed to θι̂ ≤ `r, the stability conclusion still holds. However, in the critical case

θι̂ = `r,
`r+ln V(tr ,z(tr ))

V(t̃r ,z(t̃r ))

θ
may become zero, which causes the interval [t̃r, tr+1) to degenerate into a single

point. Nevertheless, this does not affect the inductive estimation process or the conclusion of p-AS. To
avoid such a situation and to simplify the derivation, this paper adopts the strict inequality form.

Corollary 1. On the basis of Theorem 1, if condition (4) is substituted with θι̂ < `r, e2r ˘̀ι̂+(r+1)` ∏r
i=1(ξ1,i+

ξ2,i) ≤ =, r ∈ N+. And the STM (2) is replaced by

tr+1 = inf

t > tr + π(z(tr)) : t − tr − π(z(tr)) −
`r + ln V(tr ,z(tr))

V(t̃r ,z(t̃r))

θ + ˘̀
≥ 0

 , (18)

where = is a positive constant, `r > 0 and ˘̀ > 0 are both triggering parameters, then system (1) is
p-ES under STM (18).

Proof. Based on STM (18) and following a similar line of reasoning as in Theorem 1, the detailed
proof is not repeated here.

Remark 5. In Corollary 1, the parameter ˘̀ > 0 is used to set the exponential convergence rate of
the system and, through the STM (18), affects the event triggering frequency. Under the condition
e2r ˘̀ι̂+(r+1)` ∏r

i=1(ξ1,i + ξ2,i) ≤ =, the parameter ˘̀ together with `, ι̂, ξ1,i, ξ2,i determines the overall
convergence behavior of the Lyapunov function V(t, z(t)). Apart from this condition, there are no
additional constraints, and ˘̀ can be flexibly chosen to balance the desired stability rate and triggering
frequency.

Remark 6. Compared with the ETIC strategies proposed in [11–15], which require continuous or
periodic monitoring of the system state, the STIC strategy proposed in this paper does not require
such continuous monitoring. This is because the adopted STM can predict the next triggering instant
based on the available information at the previous triggering moment, thereby effectively reducing
communication costs. Although STIC methods have also been studied in [16, 19–21], they mainly
focus on deterministic systems and primarily use comparison-principle-based approaches, making
their applicability relatively limited. In contrast, this paper introduces stochastic disturbances under
the framework of nonlinear impulsive systems and designs a state-dependent waiting time parameter to
effectively eliminate Zeno behavior. Although [24] addresses a similar problem, its method is based on
a constant waiting time, which lacks flexibility and does not consider delay effects during the impulsive
process. In summary, this paper designs a Lyapunov-based STM, which offers a rigorous assurance of
the stability of system (1).

4. Applications

Next, we apply the previously proposed theoretical findings to a class of nonlinear stochastic
systems affected by delayed impulses in order to confirm the effectiveness of the theoretical results.
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Consider the following system:
dz(t) = [Pz(t) + QΦ(z(t))]dt + Ψ(t, z(t))dω(t), t , tr,

z(tr) = (Ξ +H)z(tr − ι), r ∈ N+,

z(t0 + ς) = z(ς), ς ∈ [−ι, 0],

(19)

where Φ(z(t)) : Ra → Ra is a Lipschitz function with Φ(0) = 0 and a Lipschitz matrix ℵ. P and Q are
two a × a real matrices. Ψ(·) is locally Lipschitz continuous, and there exists a compatible dimension
matrixA such that trace[ΨT (z)Ψ(z)] ≤ z(t)TATAz(t). The sequence {tr, r ∈ N+} represents the impulse
times. Ξ is defined as an identity matrix with requisite dimensions. H is an a × a control gain matrix,
and ι is the time delay.

Lemma 1. [12] For any given real matrices B1,B2,C with C > 0, and a positive scalar γ, the
inequality given below holds:

BT
1B2 + BT

2B1 ≤ γB
T
1CB1 + γ−1BT

2C
−1B2.

Theorem 2. Given matrices A and ℵ, if there exists an a × a matrix D > 0, a × a diagonal matrix
J > 0, a × a real matrixM, and positive constants ζ, ξ, θ, ι, `, ˘̀ with ˘̀ > 0 such thatD ≤ ζΞ and the
following linear matrix inequalities conditions are satisfied:(

PTD +DP + ℵJℵ + ζATA− θD DQ
∗ −J

)
< 0, (20)(

−ξD D +M

∗ −D

)
< 0, (21)

then system (19) is mean-square exponentially stable under the control gainH = D−1MT and STM:

tr+1 = inf

t > tr + π(z(tr)) : t − tr − π(z(tr)) −
` + ln z(tr)Dz(tr)

z(tr+π(z(tr)))Dz(tr+π(z(tr)))

θ + ˘̀
≥ 0

 . (22)

Proof. Choose an Lyapunov function V(t, z(t)) = z(t)TDz(t). According to (19), (20), and Lemma 1,
it can be readily obtained that

LV(t, z(t)) = 2zT (t)D(Pz(t) + QΦ(z(t))) + trace[ΨT (t, z(t))DΨ(t, z(t))]
≤ zT (t)(DP + PTD)z(t) + 2zT (t)DQΦ(z(t)) + ζzT (t)ATAz(t)
≤ zT (t)(DP + PTD +DQJ−1QTD + ℵJℵ + ζATA)z(t)
≤ θzT (t)Dz(t)
= θV(t, z(t)). (23)

Taking the expectation on both sides of formula (23) yields

ELV(t, z(t)) ≤ θEV(t, z(t)).

According to (19) and (21), we have at the impulse time t = tr,

EV(tr, z(tr)) = E
[
zT (tr)Dz(tr)

]
≤ E

[
zT (tr − ι)(Ξ +H)TD(Ξ +H)z(tr − ι)

]
≤ ξE[zT (tr − ι)Dz(tr − ι)] = ξEV(z(tr − ι)).

Therefore, system (19) achieves mean-square exponential stability under the impulsive control gainH
and the STM given in (22).
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5. Numerical examples

This section verifies the feasibility and effectiveness of the proposed theoretical findings through
two numerical simulations.

Example 1. Investigate a stochastic nonlinear system with delayed impulsive effects:
ż(t) = 0.2z(t)dt + 0.5z(t)dω(t), t , tr,

z(t) = 0.69z(t − 0.2), t = tr,

z(t0) = 1,

(24)

where ι = 0.2, {tr, r ∈ N+} be the set of self-triggered impulse instants to be determined. In the absence
of control input, system (24) is clearly unstable, as shown in Figure 1.

To achieve mean-square exponential stability of system (24), we choose the Lyapunov function
V(t, z(t)) = |z(t)|2, and design the following STM:

tr+1 = inf

t > tr + π(z(tr)) : t − tr − π(z(tr)) −
` + ln |z(tr)|2

|z(tr+π(z(tr)))|2

θ + ˘̀
≥ 0

 , (25)

where the waiting time is given by π(z(tr)) = 0.4e−100|z(tr)| + 0.2 and set ι̂ = 0.6. The parameters are
selected as ` = 0.39, θ = 0.65, ˘̀ = 0.01, ξ = 0.48. Based on Corollary 1, Figure 2 demonstrates that
system (24) is mean-square exponentially stable under STM (25).

Moreover, to verify the control performance of the STIC mechanism proposed in this paper, the
ETIC method presented in [13] is applied to the system (24) considered herein, and a comparative
simulation is conducted. The results are shown in Figure 3. It should be noted that although the
ETIC method in [13] was originally designed for systems without impulsive delays and adopts an
event-triggered mechanism with a fixed waiting time, its control objective is consistent with that of
this paper, namely, to achieve mean-square exponential stability of the system. Therefore, under the
same system model and parameter settings, a comparison between Figures 2 and 3 shows that the
STIC strategy exhibits better performance in terms of convergence speed and state fluctuations, further
verifying its effectiveness in dealing with complex impulsive structures and state-dependent triggering
mechanisms.
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Figure 1. State trajectories of system (24) without control input.
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Figure 2. State trajectories of system (24) under STM (25).
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Figure 3. State trajectories of system (24) under the continuous ETM proposed in [13].

Example 2. The analysis of system (19) is carried out under the following conditions:

P =


−1.3 1.1 0.6
0.9 −1.6 1.2
−0.8 1 −1.2

 , Q =


0.5 −0.7 0.2
−0.4 0.9 0.6
0.7 −0.3 −0.5

 , ℵ = A =


1 0 0
0 1 0
0 0 1

 ,
Φ j(z) = 0.5(|z + 1| − |z − 1|), j = 1, 2, 3, Ψ =

√
2

2 diag {z1(t), z2(t), z3(t)}, z(ς) = [−0.5, 0.3,−0.1]T . As
shown in Figure 4, system (19) is unstable without the implementation of control input.

To achieve mean-square exponential stability of system (19), an STM is designed. We set the
parameters as ι = 0.15, ξ = 0.95, θ = 2, ζ = 2, ` = 0.5, ˘̀ = 0.01, choose π(z(tr)) = 0.1e−100|z(tr)|+0.15
and let ι̂ = 0.25. By solving the linear matrix inequalities (20) and (21) using MATLAB, the following
STM can be designed:

tr+1 = inf

t > tr + π(z(tr)) : t − tr − π(z(tr)) −
` + ln z(tr)Dz(tr)

z(tr+π(z(tr)))Dz(tr+π(z(tr)))

θ + ˘̀
≥ 0

 , (26)

where D =


1.3958 0.3619 −0.0095
0.3619 1.4150 0.5926
−0.0095 0.5926 1.6127

, M =


−0.7453 −0.3619 0.0095
−0.3619 −0.7645 −0.5926
0.0095 −0.5926 −0.9621

. Thus, from H =

D−1MT , we obtain H =


−0.4934 −0.1546 0.0598
−0.1546 −0.4094 −0.2179
0.0598 −0.2179 −0.5162

. Based to Theorem 2, the system (19) is

mean-square exponentially stable under STM (26), as shown in Figure 5.
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Figure 4. State trajectories of system (19) without control input.
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Figure 5. State trajectories of system (19) under STIC (26).

6. Conclusions and outlook

Based on Lyapunov theory, this paper had designed an explicit STIC mechanism, which had
not only derived sufficient conditions for ensuring the p-th moment stability of the system but also
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effectively avoided the occurrence of Zeno behavior. Compared with traditional ETIC strategies,
this mechanism had eliminated the need for continuous monitoring of system states, significantly
reducing the consumption of communication and computational resources. Moreover, unlike STM
constructed based on the comparison principle, this paper had introduced state-dependent waiting time
parameters, enhancing the flexibility and adaptability of the triggering mechanism. The theoretical
findings established were applied to nonlinear stochastic systems, and a feasible joint design scheme
for the STM and impulsive controller was proposed based on the linear matrix inequalities. Finally,
the effectiveness and practicality of the proposed method were verified through two numerical
examples. Future research can further extend to state-dependent impulsive stochastic systems with
state-dependent delays, or explore the input-to-state stability of time-delay systems under the STIC
framework.
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