Research article Special Issues

Endpoint Sobolev regularity of bilinear maximal commutators

  • Published: 04 September 2025
  • MSC : 42B25, 46E35

  • In this paper our objective of investigation was the endpoint Sobolev regularity of the bilinear maximal commutator

    $ \mathfrak{M}_{b, \alpha}(f, g)(x) = \sup\limits_{r>0}\frac{1}{(2r)^{1-\alpha}}\int_{-r}^{r}|(b(x)-b(x+y))f(x+y)g(x-y)|dy, $

    where $ \alpha\in[0, 1) $ and $ b\in{Lip}(\mathbb{R}) $ with $ b'\in L^1(\mathbb{R}) $. We showed that the map $ \mathfrak{M}_{b, \alpha}:W^{1, 1}(\mathbb{R})\times W^{1, 1}(\mathbb{R})\rightarrow W^{1, q}(\mathbb{R}) $ was bounded and continuous for $ q\in(\frac{1}{1-\alpha}, \infty) $. The main result essentially answered a question motivated by Wang and Liu in 2022.

    Citation: Feng Liu, Xueying Zhu. Endpoint Sobolev regularity of bilinear maximal commutators[J]. AIMS Mathematics, 2025, 10(9): 20199-20218. doi: 10.3934/math.2025902

    Related Papers:

  • In this paper our objective of investigation was the endpoint Sobolev regularity of the bilinear maximal commutator

    $ \mathfrak{M}_{b, \alpha}(f, g)(x) = \sup\limits_{r>0}\frac{1}{(2r)^{1-\alpha}}\int_{-r}^{r}|(b(x)-b(x+y))f(x+y)g(x-y)|dy, $

    where $ \alpha\in[0, 1) $ and $ b\in{Lip}(\mathbb{R}) $ with $ b'\in L^1(\mathbb{R}) $. We showed that the map $ \mathfrak{M}_{b, \alpha}:W^{1, 1}(\mathbb{R})\times W^{1, 1}(\mathbb{R})\rightarrow W^{1, q}(\mathbb{R}) $ was bounded and continuous for $ q\in(\frac{1}{1-\alpha}, \infty) $. The main result essentially answered a question motivated by Wang and Liu in 2022.



    加载中


    [1] J. M. Aldaz, J. P. Lázaro, Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities, Trans. Am. Math. Soc., 359 (2007), 2443–2461. https://doi.org/10.1090/S0002-9947-06-04347-9 doi: 10.1090/S0002-9947-06-04347-9
    [2] D. Beltran, C. González-Riquelme, J. Madrid, J. Weigt, Continuity of the gradient of the fractional maximal operator on $W^{1, 1}(\mathbb{R}^d)$, Math. Res. Lett., 30 (2023), 689–707. https://doi.org/10.4310/MRL.2023.v30.n3.a3 doi: 10.4310/MRL.2023.v30.n3.a3
    [3] D. Beltran, J. Madrid, Regularity of the centered fractional maximal function on radial functions, J. Funct. Anal., 279 (2020), 108686. https://doi.org/10.1016/j.jfa.2020.108686 doi: 10.1016/j.jfa.2020.108686
    [4] D. Beltran, J. Madrid, Endpoint Sobolev continuity of the fractional maximal function in higher dimensions, Int. Math. Res. Not., 2021 (2021), 17316–17342. https://doi.org/10.1093/imrn/rnz281 doi: 10.1093/imrn/rnz281
    [5] E. Carneiro, J. Madrid, L. B. Pierce, Endpoint Sobolev and BV continuity for maximal operators, J. Funct. Anal., 273 (2017), 3262–3294. https://doi.org/10.1016/j.jfa.2017.08.012 doi: 10.1016/j.jfa.2017.08.012
    [6] E. Carneiro, J. Madrid, Derivative bounds for fractional maximal functions, Trans. Am. Math. Soc., 369 (2017), 4063–4092. https://doi.org/10.1090/tran/6844 doi: 10.1090/tran/6844
    [7] E. Carneiro, D. Moreira, On the regularity of maximal operators, Proc. Am. Math. Soc., 136 (2008), 4395–4404. https://doi.org/10.1090/S0002-9939-08-09515-4 doi: 10.1090/S0002-9939-08-09515-4
    [8] T. Chen, F. Liu, Derivative bounds and continuity of maximal commutators, Stud. Math., 266 (2022), 93–119. https://doi.org/10.4064/sm210920-25-10 doi: 10.4064/sm210920-25-10
    [9] T. Chen, F. Liu, Endpoint Sobolev regularity of the fractional maximal commutators, J. Fourier Anal. Appl., 28 (2022), 1–39. https://doi.org/10.1007/s00041-022-09965-z doi: 10.1007/s00041-022-09965-z
    [10] C. González-Riquelme, Continuity for the one-dimensional centered Hardy–Littlewood maximal opeator at the derivative level, J. Funct. Anal., 285 (2023), 110097. https://doi.org/10.1016/j.jfa.2023.110097 doi: 10.1016/j.jfa.2023.110097
    [11] P. Hajłasz, J. Onninen, On boundedness of maximal functions in Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 29 (2004), 167–176.
    [12] J. Kinnunen, The Hardy–Littlewood maximal function of a Sobolev function, Israel J. Math., 100 (1997), 117–124. https://doi.org/10.1007/BF02773636 doi: 10.1007/BF02773636
    [13] J. Kinnunen, P. Lindqvist, The derivative of the maximal function, J. Reine Angew. Math., 503 (1998), 161–167. https://doi.org/10.1515/crll.1998.095 doi: 10.1515/crll.1998.095
    [14] J. Kinnunen, E. Saksman, Regularity of the fractional maximal function, Bull. London Math. Soc., 35 (2003), 529–535. https://doi.org/10.1112/S0024609303002017 doi: 10.1112/S0024609303002017
    [15] O. Kurka, On the variation of the Hardy–Littlewood maximal function, Ann. Acad. Sci. Fenn. Math., 40 (2015), 109–133. https://doi.org/10.5186/aasfm.2015.4003 doi: 10.5186/aasfm.2015.4003
    [16] F. Liu, Y. Ma, Endpoint Sobolev regularity of higher order maximal commutators, Banach J. Math. Anal., 17 (2023), 1–25. https://doi.org/10.1007/s43037-023-00288-9 doi: 10.1007/s43037-023-00288-9
    [17] F. Liu, G. Wang, Regularity of commutators of maximal operators with Lipschitz symbols, Taiwan. J. Math., 25 (2021), 1007–1039.
    [18] F. Liu, S. Xi, Sobolev regularity for commutators of the fractional maximal functions, Banach J. Math. Anal., 15 (2021), 1–36. https://doi.org/10.1007/s43037-020-00095-6 doi: 10.1007/s43037-020-00095-6
    [19] F. Liu, Q. Xue, P. Zhang, Regularity and continuity of commutators of the Hardy–Littlewood maximal function, Math. Nachr., 293 (2020), 491–509. https://doi.org/10.1002/mana.201900013 doi: 10.1002/mana.201900013
    [20] H. Luiro, Continuity of the maixmal operator in Sobolev spaces, P. Am. Math. Soc., 135 (2007), 243–251. https://doi.org/10.1090/S0002-9939-06-08455-3 doi: 10.1090/S0002-9939-06-08455-3
    [21] H. Luiro, On the regularity of the Hardy–Littlewood maximal operator on subdomains of $\mathbb{R}^n$, Proc. Edinburgh Math. Soc., 53 (2010), 211–237. https://doi.org/10.1017/S0013091507000867 doi: 10.1017/S0013091507000867
    [22] H. Luiro, The variation of the maximal function of a radial function, Ark. Mat., 56 (2018), 147–161. https://doi.org/10.19195/0301-7966.56.11 doi: 10.19195/0301-7966.56.11
    [23] H. Luiro, J. Madrid, The variation of the fractional maximal function of a radial function, Int. Math. Res. Not., 2019 (2019), 5284–5298. https://doi.org/10.1093/imrn/rnx277 doi: 10.1093/imrn/rnx277
    [24] J. Madrid, Endpoint Sobolev continuity for maximal operators, Ⅱ, Rev. Mat. Iberoam., 35 (2019), 2151–2168. https://doi.org/10.4171/rmi/1115 doi: 10.4171/rmi/1115
    [25] H. Tanaka, A remark on the derivative of the one-dimensional Hardy–Littlewood maximal function, Bull. Austral. Math. Soc., 65 (2002), 253–258. https://doi.org/10.1017/S0004972700020293 doi: 10.1017/S0004972700020293
    [26] G. Wang, F. Liu, Regularity of commutator of bilinear maximal operator with Lipschitz symbols, Math. Inequal. Appl., 25 (2022), 573–600. http://dx.doi.org/10.7153/mia-2022-25-35 doi: 10.7153/mia-2022-25-35
    [27] J. Weigt, Endpoint Sobolev bounds for fractional Hardy–Littlewood maximal operators, Math. Z., 301 (2022), 2317–2337. https://doi.org/10.1017/S0004972700020293 doi: 10.1017/S0004972700020293
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(584) PDF downloads(42) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog