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Abstract: In this paper our objective of investigation was the endpoint Sobolev regularity of the
bilinear maximal commutator

Mb,α( f , g)(x) = sup
r>0

1
(2r)1−α

∫ r

−r
|(b(x) − b(x + y)) f (x + y)g(x − y)|dy,

where α ∈ [0, 1) and b ∈ Lip(R) with b′ ∈ L1(R). We showed that the mapMb,α : W1,1(R)×W1,1(R)→
W1,q(R) was bounded and continuous for q ∈ ( 1

1−α ,∞). The main result essentially answered a question
motivated by Wang and Liu in 2022.
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1. Introduction

Recently, the authors [26] established the boundedness of the following bilinear maximal
commutator

Mb,α( f , g)(x) = sup
r>0

1
(2r)1−α

∫ r

−r
|(b(x) − b(x + y)) f (x + y)g(x − y)|dy,

on W1,p1(R)×W1,p2(R) for 1 < p1, p2 < ∞where α, p1, p2, and b satisfy certain conditions. It is natural
to wonder the differentiable behavior ofMb,α acting on a vector-valued function ( f , g) with f ∈ W1,1(R)
and g ∈ W1,1(R). This is the main motivation of this paper.

The study of regularity theory for maximal operators has become a focal point in numerous recent
publications within the field of harmonic analysis. Kinnunen [12] first proved that the usual centered
Hardy–Littlewood maximal operator M is bounded on the first order Sobolev spaces W1,p(Rn) for all
1 < p ≤ ∞. This foundational result has been broadened to include various modifications of the
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maximal operator (see [7,13,14]). It is worth noting that the derivative of a maximal function does not
inherently possess sublinearity. The continuity of M : W1,p(Rn) → W1,p(Rn) for 1 < p < ∞ is indeed
an intriguing issue. Luiro [20] affirmatively tackled this question, and it was later extended to the local
version in [21] and the bilinear version in [7]. Owing to the absence of L1-boundedness for M, the
W1,1-regularity for the maximal operator is a highly nontrivial issue. A pivotal question was raised by
Hajłasz and Onninen in [11]:

Question 1. Is the map f 7→ |∇M f | bounded from W1,1(Rn) to L1(Rn)?

The above question was initially examined by Tanaka [25] who first considered the endpoint
Sobolev regularity of the one-dimensional uncentered Hardy–Littlewood maximal operator M̃ and
showed that if f ∈ W1,1(R), then M̃ f is weakly differentiable and

‖(M̃ f )′‖L1(R) ≤ 2‖ f ′‖L1(R). (1.1)

The constant C = 2 in (1.1) was improved by Aldaz and Pérez Lázaro [1] to the sharp constant
C = 1. Later on, Kurka [15] established that if f ∈ W1,1(R), then inequality (1.1) holds for M (with
constant C = 240, 004). Based on the above bounds, Carneiro, Madrid, and Pierce [5] (resp., González-
Riquelme [10]) proved that the map f 7→ (M̃ f )′ (resp., f 7→ (M f )′) is continuous from W1,1(R)
to L1(R), respectively. The aforementioned findings have been recently expanded to the fractional
variants (see [3, 6, 24]). The higher dimensional W1,1-regularity of the Hardy–Littlewood maximal
operator and fractional maximal operator can be found in [2–4, 16, 22, 27].

On the other hand, the investigation on the regularity issues of maxmial commutators has similarly
garnered considerable attention from numerous scholars (see [8, 9, 16–19]). Particularly, Chen and
Liu [8, 9] studied the endpoint Sobolev regularity of the one dimensional maximal commutator and its
fractional variant

Mb,α f (x) = sup
r>0

1
(2r)1−α

∫ x+r

x−r
|(b(x) − b(y)) f (y)|dy,

where 0 ≤ α < 1, b ∈ L1
loc(R), and f ∈ L1

loc(R). The main results of [8, 9] can be formulated as follows.
Theorem A. ([8, 9]) Let α ∈ [0, 1), q ∈ (1,∞) and, b ∈ W1,1(R) with b′ ∈ L∞(R). Then, the map
f 7→ (Mb,α f )′ is bounded and continuous from W1,1(R) to Lq(R). Particularly, if f ∈ W1,1(R), then
Mb,α f is differentiable almost everywhere in R. Moreover,

‖(Mb,α f )′‖Lq(R) ≤ Cb‖ f ‖W1,1(R).

Later on, Liu and Ma [16] improved Theorem A by weakening the condition of b. Let us recall one
definition. We denote by Lip(R) the homogeneous Lipschitz space, i.e.,

Lip(R) := { f : R→ C continuous : ‖ f ‖Lip(R) < ∞},

where
‖ f ‖Lip(R) := sup

x∈R,
h∈R\{0}

| f (x + h) − f (x)|
|h|

< ∞.

The inhomogeneous Lipschitz space Lip(R) is given by

Lip(R) := { f : R→ C continuous : ‖ f ‖Lip(R) := ‖ f ‖Lip(R) + ‖ f ‖L∞(R) < ∞}.
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The improvement of Theorem A can be enumerated as follows.
Theorem B. ([16]) Let q ∈ (1,∞), α ∈ [0, 1), b ∈ Lip(R), and b′ ∈ L1(R). Then, the map f 7→ (Mb,α f )′

is bounded and continuous from W1,1(R) to Lq(R). Particularly, if f ∈ W1,1(R), then Mb,α f ∈ Lip(R).
Moreover,

‖(Mb,α f )′‖Lq(R) ≤ Cb‖ f ‖W1,1(R).

Remark 2. Let

F1 := { f ∈ W1,1(R) : f ′ ∈ L∞(R)}, F2 := { f ∈ Lip(R) : f ′ ∈ L1(R)}.

It was noted in [16] that F1 ( F2, which is a proper inclusion. We also point out that if b ∈ Lip(R),
then the derivative b′ exists almost everywhere. Moreover, we have that b′(x) = limh→0

b(x+h)−b(x)
h and

|b′(x)| ≤ ‖b‖Lip(R) for almost every x ∈ R. It follows that ‖b′‖L∞(R) ≤ ‖b‖Lip(R). Particularly, if b ∈ Lip(R)
and b′ ∈ L1(R), then |b(x) − b(y)| ≤ ‖b′‖L1(R) for any x, y ∈ R.

In this paper we focus on the endpoint Sobolev regularity of bilinear maximal commutator Mb,α.
This type of commutator was original introduced by Wang and Liu [26], who established the following
result.
Theorem C. ([26]) Let 1 < p1, p2, p1 p2/(p1 + p2) < ∞, 0 ≤ α < 1/p1 + 1/p2, 1/q = 1/p1 + 1/p2 − α,
and b ∈ Lip(R). If f ∈ W1,p1(R) and g ∈ W1,p2(R), then we have

‖Mb,α( f , g)‖W1,q(R) ≤ Cα,p1,p2‖b‖Lip(R)‖ f ‖W1,p1 (R)‖g‖W1,p2 (R).

Based on the above, it is interesting to ask the following question.

Question 3. Let 0 ≤ α < 1. Is Mb,α bounded and continuous from W1,1(R) × W1,1(R) to W1,q(R) for
some q ∈ (1,∞) if b ∈ Lip(R) with b′ ∈ L1(R)?

This question can be addressed by the following result.

Theorem 1. Let α ∈ [0, 1), q ∈ ( 1
1−α ,∞) and b ∈ Lip(R) with b′ ∈ L1(R). Then Mb,α is bounded

and continuous from W1,1(R) × W1,1(R) to Lq(R). Particularly, if f ∈ W1,1(R) and g ∈ W1,1(R), then
Mb,α( f , g) is differentiable almost everywhere in R and

‖(Mb,α( f , g))′‖Lq(R) ≤ Cα,q(‖b‖1−1/q−α
Lip(R) ‖b

′‖
1/q+α

L1(R) ‖ f
′‖L1(R)‖g′‖L1(R) + ‖b‖Lip(R)‖g′‖L1(R)‖ f ‖W1,1(R)).

Remark 4. It is worth noting that the conclusions of Theorem 1 also hold for the uncentered bilinear
maximal commutator

M̃b,α( f , g)(x) = sup
r, s≥0,
r+s>0

1
(r + s)1−α

∫ s

−r
|(b(x) − b(x + y)) f (x + y)g(x − y)|dy, x ∈ R.

More precisely, it can be proved that M̃b,α is bounded and continuous from W1,1(R) ×W1,1(R) to Lq(R)
if α ∈ [0, 1), q ∈ ( 1

1−α ,∞), and b ∈ Lip(R) with b′ ∈ L1(R).
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This paper is organized as follows. In Section 2 we shall establish some preliminary lemmas, which
contains some formulas and pointwise convergence of the derivatives of bilinear maximal commutators
(see Lemmas 4 and 5). These are the main ingredients of proving Theorem 1. The proof of Theorem 1
will be given in Section 3. It should be pointed out that the methods used to prove the main theorem
are motivated by [5, 8, 9].

Throughout the paper, the letter C, which may be accompanied by specific parameters, denotes
positive constants not necessarily the same one at each occurrence, but are independent of the essential
variables. For a set A ⊂ R, the notation |A| = 0 means that A is a set of measure zero. For any function
f : R→ R and h ∈ R, we define

dh f (x) =
fτ(h)(x) − f (x)

h
and fτ(h)(x) = f (x + h).

For any arbitrary functions F(x, y) defined on R × R, we denote by DxF (resp., DyF) as the partial
derivative of F in x (resp., y).

2. Preliminaries

In this section we shall establish some lemmas, which are the main ingredients of proving
Theorem 1. Let us begin with some properties of a W1,1(R) function.

Lemma 2. Let f ∈ W1,1(R). Then,
(i) supx∈R | f (x)| ≤ ‖ f ′‖L1(R).
(ii) ‖ f ‖Lip(R) ≤ ‖ f ′‖L∞(R).
(iii) dh f → f ′ in L1(R) as h→ 0.
(iv) Let 0 ≤ α < 1. Then, the fractional maximal function

Mα f (x) = sup
r>0

1
(2r)1−α

∫ x+r

x−r
| f (y)|dy,

satisfies the estimate supx∈R Mα f (x) ≤ ‖ f ‖W1,1(R).

(v) Let { f j} j≥1 ⊂ W1,1(R) be such that ‖ f j − f ‖W1,1(R) → 0 as j → ∞. Then, ‖| f j| − | f |‖W1,1(R) → 0 as
j→ ∞.

(vi) Let α ∈ [0, 1) and b ∈ Lip(R) with b′ ∈ L1(R). Let { f j} j≥1 ⊂ W1,1(R) be such that ‖ f j− f ‖W1,1(R) →

0 as j → ∞. Let g ∈ W1,1(R) and {g j} j≥1 ⊂ W1,1(R) be such that g j → g in W1,1(R) as j → ∞. Then
Mb,α( f j, g j) converges uniformly toMb,α( f , g) on R.

Proof. Parts (i)–(iii) were shown in [8, Lemma 2.2]. Part (iv) follows from Remark 1.1 in [9,
Remark 1.1]. Part (v) follows from [5]. Part (vi) follows from the following inequality:

sup
x∈R
|Mb,α( f j, g j)(x) −Mb,α( f , g)(x)|

≤ sup
x∈R

(Mb,α( f j − f , g j)(x) +Mb,α( f , g j − g)(x))

≤ 2‖b′‖L1(R) sup
x∈R

(‖g j‖L∞(R)Mα( f j − f )(x) + ‖ f ‖L∞(R)Mα(g j − g)(x))

≤ 2‖b′‖L1(R)(‖g′j‖L1(R)‖ f j − f ‖W1,1(R) + ‖ f ′‖L1(R)‖g j − g‖W1,1(R))→ 0 as j→ ∞.

�
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Let α ∈ [0, 1), b ∈ Lip(R) and b′ ∈ L1(R), f ∈ L1(R) ∩ L∞(R) and g ∈ L∞(R). For any x ∈ R, we
define the function Ax,b, f ,g : [0,∞)→ R by

Ax,b, f ,g(r) =


0, if r = 0;

1
(2r)1−α

∫ r

−r
|(b(x) − b(x + y))|| f (x + y)g(x − y)|dy, if r > 0.

Given a point x ∈ R, we define the family of good radii for a pair ( f , g) at x as

Rα( f , g)(x) = {r ≥ 0 : Mb,α( f , g)(x) = Ax,b, f ,g(r)}.

Observe that for any x ∈ R, the function Ax,b, f ,g is continuous on [0,∞). In addition, we get by Remark 2
that

Ax,b, f ,g(r) ≤ (2r)α−1‖b′‖L1(R)‖ f ‖L1(R)‖g‖L∞(R) → 0 as r → ∞. (2.1)

It follows that for every x ∈ R, the function Ax,b, f ,g has at least one maximum point in [0,∞).
Consequently, the set Rα( f , g)(x) is nonempty for every x ∈ R.

Lemma 3. Let α ∈ [0, 1) and b ∈ Lip(R) with b′ ∈ L1(R). Assume that f ∈ L∞(R) ∩ L1(R) and
g ∈ L∞(R). Then,

(i) For any x ∈ R for whichMb,α( f , g)(x) > 0, we have inf Rα( f , g)(x) > 0 and supRα( f , g)(x) < ∞.
(ii) Let { f j} j≥1 ⊂ W1,1(R) and {g j} j≥1 ⊂ W1,1(R). Assume that f j → f in L1(R) ∩ L∞(R) and g j → g

in L∞(R) as j → ∞. For any fixed x ∈ R, let r j ∈ Rα( f j, g j)(x) for j ≥ 1. If r is an accumulation point
of {r j} j≥1, then r ∈ Rα( f , g)(x).

Proof. At first we prove part (i). Let x ∈ R for which Mb,α( f , g)(x) > 0. If inf Rα( f , g)(x) = 0, then
there exists {rk}k≥1 ⊂ Rα( f , g)(x) ∩ (0,∞) such that limk→∞ rk = 0. Hence, we have

Ax,b, f ,g(rk) ≤ 2αrα+1
k ‖b‖Lip(R)‖ f ‖L∞(R)‖g‖L∞(R) → 0 as k → ∞.

This implies Mb,α( f , g)(x) = 0, which leads to a contradiction. So, inf Rα( f , g)(x) > 0. The claim
supRα( f , g)(x) < ∞ follows by (2.1).

Next, we prove part (ii). We may suppose, without loss of generality, that r j → r as j → ∞. Two
cases will be examined:

Case 1 (r = 0). To prove r ∈ Rα( f , g)(x), it suffices to show that Mb,α( f , g)(x) = 0. If there exists
N0 ∈ N such that r j = 0 for any j ≥ N0, then Mb,α( f j, g j)(x) = 0 for all j ≥ N0. This together with
Lemma 2(vi) impliesMb,α( f , g)(x) = 0. If there exists a subsequence { jk}k≥1 ⊂ { j} j≥1 such that r jk > 0,
then

Ax,b, f jk ,g jk
(rk) ≤ 2αrα+1

jk ‖b‖Lip(R)‖ f jk‖L∞(R)‖g jk‖L∞(R) → 0 as k → ∞.

This together with Lemma 2(vi) implies that

Mb,α( f , g)(x) = lim
k→∞
Mb,α( f jk , g jk)(x) = lim

k→∞
Ax,b, f jk ,g jk

(rk) = 0.

Case 2 (r > 0). We may assume, without loss of generality, that all r j > 0. By Lemma 2 and

AIMS Mathematics Volume 10, Issue 9, 20199–20218.
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Remark 2, one has∣∣∣∣ ∫ r j

−r j

|(b(x) − b(x + y)) f j(x + y)g j(x − y)|dy

−

∫ r

−r
|(b(x) − b(x + y)) f (x + y)g(x − y)|dy

∣∣∣∣
≤

∫ r j

−r j

|(b(x) − b(x + y))||| f j(x + y)g j(x − y)| − | f (x + y)g(x − y)||dy

+

∫
R

|(b(x) − b(x + y))|| f (x + y)g(x − y)||χ[−r j,r j](y) − χ[−r,r](y)|dy

≤ ‖b′‖L1(R)

∫ r j

−r j

| f j(x + y) − f (x + y)||g j|(x − y)dy

+‖b′‖L1(R)

∫ r j

−r j

| f |(x + y)|g j(x − y) − g(x − y)|dy + 2‖b′‖L1(R)‖ f ‖L∞(R)‖g‖L∞(R)|r j − r|

≤ ‖b′‖L1(R)(‖g j‖L∞(R)‖ f j − f ‖L1(R) + ‖ f ‖L∞(R)‖g j − g‖L∞(R))
+2‖b′‖L1(R)‖ f ‖L∞(R)‖g‖L∞(R)|r j − r| → 0 as j→ ∞.

This together with Lemma 2(vi) yields that

Mb,α( f , g)(x) = lim
j→∞
Mb,α( f j, g j)(x) = lim

j→∞
Ax,b, f j,g j(r j) = Ax,b, f ,g(r),

which leads to r ∈ Rα( f , g)(x). �

The following lemma presents the differentiability and derivative formulas of bilinear maximal
commutator.

Lemma 4. Let α ∈ [0, 1), b ∈ Lip(R) with b′ ∈ L1(R), f ∈ W1,1(R), and g ∈ W1,1(R). Then,
Mb,α( f , g) ∈ Lip(R). Let E = {x ∈ R : Mb,α( f , g)(x) > 0}. Then, we have

(a) Let x ∈ R \ E for whichMb,α( f , g) is differentiable at x. Then

(Mb,α( f , g))′(x) = 0. (2.2)

(b) For almost every x ∈ E for whichMb,α( f , g) is differentiable at x, we have that if r ∈ Rα( f , g)(x)
and r > 0, then

(Mb,α( f , g))′(x) =
1

(2r)1−α

∫ r

−r
|b(x) − b(x + y)|(| f |′(x + y)|g|(x − y) + | f |(x + y)|g|′(x − y))dy

+
1

(2r)1−α

∫ x+r

x−r
(Dx|b(x) − b(y)| + Dy|b(x) − b(y)|)| f (y)g(2x − y)|dy.

(2.3)

Proof. Let x, h ∈ R. Observe that

|Mb,α( f , g)(x + h) −Mb,α( f , g)(x)|

≤ sup
r>0

1
(2r)1−α

∫ r

−r
|(b(x + h) − b(x + h + y)) f (x + h + y)g(x + h − y)

−(b(x) − b(x + y)) f (x + y)g(x − y)|dy
≤ 2‖b‖Lip(R)Mα f (x + h)‖g‖L∞(R)|h|

+‖g‖L∞(R) sup
r>0

1
(2r)1−α

∫ r

−r
|b(x) − b(x + y)|| f (x + y + h) − f (x + y)|dy

+‖ f ‖L∞(R) sup
r>0

1
(2r)1−α

∫ r

−r
|b(x) − b(x + y)||g(x − y + h) − g(x − y)|dy.

AIMS Mathematics Volume 10, Issue 9, 20199–20218.
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By Remark 2, one gets

sup
r>0

1
(2r)1−α

∫ r

−r
|b(x) − b(x + y)|| f (x + y + h) − f (x + y)|dy

= sup
r>0

1
(2r)1−α

∫ r

−r
|b(x) − b(x + y)||dh f (x + y)|dy|h|

≤ sup
r>1/2

1
(2r)1−α

∫ r

−r
|b(x) − b(x + y)||dh f (x + y)|dy|h|

+ sup
0<r≤1/2

1
(2r)1−α

∫ r

−r
|b(x) − b(x + y)||dh f (x + y)|dy|h|

≤ (‖b′‖L1(R) + ‖b‖Lip(R))‖dh f ‖L1(R)|h|.

Similarly, we obtain

sup
r>0

1
(2r)1−α

∫ r

−r
|b(x) − b(x + y)||g(x − y + h) − g(x − y)|dy ≤ (‖b′‖L1(R) + ‖b‖Lip(R))‖dhg‖L1(R)|h|.

These estimates together with Lemma 2(iv) imply that

|Mb,α( f , g)(x + h) −Mb,α( f , g)(x)|
≤ ‖b‖Lip(R)‖ f ‖W1,1(R)‖g′‖L1(R)|h| + (‖b′‖L1(R) + ‖b‖Lip(R)(‖g′‖L1(R)‖dh f ‖L1(R) + ‖ f ′‖L1(R)‖dhg‖L1(R))|h|.

By Lemma 2(iii), we observe that ‖dh f − f ′‖L1(R) → 0 and ‖dhg− g′‖L1(R) → 0 as h→ 0. Consequently,
there exists δ > 0 such that for any |h| < δ,

‖dh f ‖L1(R) ≤ ‖dh f − f ′‖L1(R) + ‖ f ′‖L1(R) ≤ 1 + ‖ f ′‖L1(R),

‖dhg‖L1(R) ≤ ‖dhg − g′‖L1(R) + ‖g′‖L1(R) ≤ 1 + ‖g′‖L1(R).

Furthermore, for any z ∈ R,

Mb,α( f , g)(z) ≤ ‖b′‖L1(R)‖g‖L∞(R)Mα f (x) ≤ ‖b′‖L1(R)‖g′‖L1(R)‖ f ‖W1,1(R).

Hence, we have

‖Mb,α( f , g)‖Lip(R) ≤ ‖b‖Lip(R)‖ f ‖W1,1(R)‖g′‖L1(R) + 2‖b′‖L1(R)‖g′‖L1(R)‖ f ‖W1,1(R)δ
−1

+(‖b′‖L1(R) + ‖b‖Lip(R))(‖g′‖L1(R)(1 + ‖ f ′‖L1(R)) + ‖ f ′‖L1(R)(1 + ‖g′‖L1(R))).

This yieldsMb,α( f , g) ∈ Lip(R).
Let x ∈ R \ E for whichMb,α( f , g) is differentiable at x. Observe that

(Mb,α( f , g))′(x) = lim
h→0

Mb,α( f , g)(x + h) −Mb,α( f , g)(x)
h

= lim
h→0

Mb,α( f , g)(x + h)
h

.

Then, we have

0 ≤ lim
h→0+

Mb,α( f , g)(x + h)
h

= (Mb,α( f , g))′(x) = lim
h→0−

Mb,α( f , g)(x + h)
h

≤ 0.

This yields (2.2).

AIMS Mathematics Volume 10, Issue 9, 20199–20218.
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Next we prove (2.3). Without loss of generality, we may assume that f , g ≥ 0. Let F be the set of
all x ∈ R for which Mb,α( f , g) is differentiable at x. By part (i), it has been observed that |R \ F| = 0.
Let x ∈ E ∩ F. Write

(Mb,α( f , g))′(x) = lim
h→0

Mb,α( f , g)(x + h) −Mb,α( f , g)(x)
h

. (2.4)

Let r ∈ Rα( f , g)(x). Note that r > 0. The application of a change of variable yields thatMb,α( f , g)(x −
h) = Mbτ(−h),α( fτ(−h), gτ(−h))(x). Subsequently, we obtain the following:

Mb,α( f , g)(x) −Mb,α( f , g)(x − h)
= Mb,α( f , g)(x) −Mbτ(−h),α( fτ(−h), gτ(−h))(x)
≤ Ax,b, f ,g(r) − Ax,bτ(−h), fτ(−h),gτ(−h)(r)

≤
1

(2r)1−α

∫ r

−r
|b(x) − b(x + y)|( f (x + y)g(x − y) − fτ(−h)(x + y)gτ(−h)(x − y))dy

+
1

(2r)1−α

∫ r

−r
(|b(x) − b(x + y)| − |b(x − h) − b(x + y − h)|) fτ(−h)(x + y)gτ(−h)(x − y)dy

(2.5)

for all h > 0. Note that

f (x + y)g(x − y) − fτ(−h)(x + y)gτ(−h)(x − y)
h

= f−h(x + y)g(x − y) + fτ(−h)(x + y)g−h(x − y).

Consequently, for any h > 0,

1
h

∫ r

−r
|b(x) − b(x + y)|( f (x + y)g(x − y) − fτ(−h)(x + y)gτ(−h)(x − y))dy

=

∫ r

−r
|b(x) − b(x + y)|(d−h f (x + y)g(x − y) + f (x + y)d−hg(x − y))dy

+

∫ r

−r
|b(x) − b(x + y)|( fτ(−h)(x + y) − f (x + y))d−hg(x − y)dy.

By Remark 2 and Lemma 2,∣∣∣∣ ∫ r

−r
|b(x) − b(x + y)|( f−h(x + y)g(x − y) + f (x + y)d−hg(x − y))dy

−

∫ r

−r
|b(x) − b(x + y)|( f ′(x + y)g(x − y) + f (x + y)g′(x − y))dy

∣∣∣∣
≤ ‖b′‖L1(R)‖g‖L∞(R)

∫ r

−r
|d−h f (x + y) − f ′(x + y)|dy

+‖b′‖L1(R)‖ f ‖L∞(R)

∫ r

−r
|d−hg(x − y) − g′(x − y)|dy

≤ ‖b′‖L1(R)(‖g′‖L1(R)‖d−h f − f ′‖L1(R) + ‖ f ′‖L1(R)‖d−hg − g′‖L1(R))
→ 0 as h→ 0.

Thus, we have

lim
h→0

∫ r

−r
|b(x) − b(x + y)|(d−h f (x + y)g(x − y) + f (x + y)d−hg(x − y))dy

=

∫ r

−r
|b(x) − b(x + y)|( f ′(x + y)g(x − y) + f (x + y)g′(x − y))dy.

(2.6)
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We also note that∫ r

−r
|b(x) − b(x + y)||( fτ(−h)(x + y) − f (x + y))d−h f (x − y)|dy

≤

∫ r

−r
|b(x) − b(x + y)||( fτ(−h)(x + y) − f (x + y))||d−hg(x − y) − g′(x − y)|dy

+

∫ r

−r
|b(x) − b(x + y)||( fτ(−h)(x + y) − f (x + y))||g′(x − y)|dy

≤ 2‖b‖Lip(R)‖ f ′‖L1(R)r‖d−hg − g′‖L1(R) + ‖b‖Lip(R)r
∫ r

−r
|( fτ(−h)(x + y) − f (x + y))||g′(x − y)|dy.

Since |( fτ(−h)(x + y) − f (x + y))||g′(x − y)| ≤ 2‖ f ′‖L1(R)|g′(x − y)|, g′ ∈ L1(R), and limh→0( fτ(−h)(x + y) −
f (x + y)) = 0, then we derive from the dominated convergence theorem that

lim
h→0

∫ r

−r
|( fτ(−h)(x + y) − f (x + y))||g′(x − y)|dy = 0.

Hence, we obtain

lim
h→0

∫ r

−r
|b(x) − b(x + y)|( fτ(−h)(x + y) − f (x + y))d−hg(x − y)dy = 0. (2.7)

In view of (2.6) and (2.7), the following conclusion can be drawn.

lim
h→0

1
h

∫ r

−r
|b(x) − b(x + y)|( f (x + y)g(x − y) − fτ(−h)(x + y)gτ(−h)(x − y))dy

=

∫ r

−r
|b(x) − b(x + y)|( f ′(x + y)g(x − y) + f (x + y)g′(x − y))dy.

(2.8)

Subsequently, we proceed to prove that

lim
h→0

1
h

∫ r

−r
(|b(x) − b(x + y)| − |b(x − h) − b(x + y − h)|) fτ(−h)(x + y)gτ(−h)(x − y)dy

=

∫ x+r

x−r
(Dx|b(x) − b(y)| + Dy|b(x) − b(y)|) f (y)g(2x − y)dy.

(2.9)

For convenience, we set Fb(x, y) = |b(x) − b(y)| and

(Fx,b)h(y) =
1
h

(Fb(x, y + h) − Fb(x, y)), (Fy,b)h(x) =
1
h

(Fb(x + h, y) − Fb(x, y)).

Observe that

Fb(x, y) − Fb(x − h, y − h)
h

=
Fb(x, y) − Fb(x, y − h)

h
+

Fb(x, y − h) − Fb(x − h, y − h)
h

= (Fx,b)−h(y) + (Fy−h,b)−h(x).
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By a change of variable, we have

1
h

∫ r

−r
(|b(x) − b(x + y)| − |b(x − h) − b(x + y − h)|) fτ(−h)(x + y)gτ(−h)(x − y)dy

=

∫ x+r

x−r

Fb(x, y) − Fb(x − h, y − h)
h

fτ(−h)(y)gτ(−h)(2x − y)dy

=

∫ x+r

x−r
((Fx,b)−h(y) + (Fy−h,b)−h(x)) fτ(−h)(y)gτ(−h)(2x − y)dy

=

∫ x+r

x−r
((Fx,b)−h(y) + (Fy−h,b)−h(x))( fτ(−h)(y)gτ(−h)(2x − y) − f (y)g(2x − y))dy

+

∫ x+r

x−r
((Fx,b)−h(y) + (Fy−h,b)−h(x)) f (y)g(2x − y)dy.

(2.10)

Since b ∈ Lip(R), then ‖Fb(x, ·)‖Lip(R) ≤ ‖b‖Lip(R) and ‖Fb(·, y)‖Lip(R) ≤ ‖b‖Lip(R) for any x ∈ R and
y ∈ R. By Lemma 2, we see that | fτ(−h)(y)gτ(−h)(2x − y) − f (y)g(2x − y)| ≤ 2‖ f ′‖L1(R)‖g′‖L1(R) and
fτ(−h)(y)gτ(−h)(2x− y)− f (y)g(2x− y)→ 0 as h→ 0. According to the dominated convergence theorem,
it can be deduced that∣∣∣∣ ∫ x+r

x−r
((Fx,b)−h(y) + (Fy−h,b)−h(x))( fτ(−h)(y)gτ(−h)(2x − y) − f (y)g(2x − y))dy

∣∣∣∣
≤ 2‖b‖Lip(R)

∫ x+r

x−r
| fτ(−h)(y)gτ(−h)(2x − y) − f (y)g(2x − y)|dy→ 0 as h→ 0.

(2.11)

By the fact that Fb(x, ·) ∈ Lip(R) and Remark 2, it follows that for almost every y ∈ R,

(Fx,b)−h(y)→ Dy|b(x) − b(y)| as h→ 0+

and
|(Fx,b)−h(·)|| f (·)g(2x − ·)| ≤ ‖b‖Lip(R)‖g′‖L1(R)| f (·)| ∈ L1(R).

These facts together with the dominated convergence theorem imply

lim
h→0+

∫ x+r

x−r
(Fx,b)−h(y) f (y)g(2x − y)dy =

∫ x+r

x−r
Dy|b(x) − b(y)| f (y)g(2x − y)dy. (2.12)

On the other hand, by a change of variable, we can write∫ x+r

x−r
(Fy−h,b)−h(x) f (y)g(2x − y)dy =

∫ x+r−h

x−r−h
(Fy,b)−h(x) fτ(h)(y)gτ(−h)(2x − y)dy. (2.13)

Observe that∣∣∣∣ ∫ x+r−h

x−r−h
(Fy,b)−h(x) fτ(h)(y)gτ(−h)(2x − y)dy −

∫ x+r

x−r
(Fy,b)−h(x) fτ(h)(y)gτ(−h)(2x − y)dy

∣∣∣∣
≤ 2‖b‖Lip(R)‖ f ′‖L1(R)‖g′‖L1(R)|h| → 0 as h→ 0.

(2.14)

Note that Fb(·, y) ∈ Lip(R) for all y ∈ R. Then, by Remark 2, we have that for almost every x ∈ R,

lim
h→0+

(Fy,b)−h(x) = Dx|b(x) − b(y)|, ∀y ∈ R.
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By employing arguments analogous to those utilized in the derivation (2.12), we have that for almost
every x ∈ R,

lim
h→0+

∫ x+r

x−r
(Fy,b)−h(x) f (y)g(2x − y)dy =

∫ x+r

x−r
Dx|b(x) − b(y)| f (y)g(2x − y)dy. (2.15)

An argument similar to (2.11) leads to∣∣∣∣ ∫ x+r

x−r
(Fy,b)−h(x)( fτ(h)(y)gτ(−h)(2x − y) − f (y)g(2x − y))dy→ 0 as h→ 0.

This, in conjunction with (2.13)–(2.15), suggests that

lim
h→0+

∫ x+r

x−r
(Fy−h,b)−h(x) f (y)g(2x − y)dy =

∫ x+r

x−r
Dx|b(x) − b(y)| f (y)g(2x − y)dy. (2.16)

Then, (2.9) follows from (2.10)–(2.12) and (2.16).
It follows from (2.4), (2.5), (2.8), and (2.9) that

(Mb,α( f , g))′(x) = lim
h→0+

Mb,α( f , g)(x) −Mb,α( f , g)(x − h)
h

≤
1

(2r)1−α

∫ r

−r
|b(x) − b(x + y)|( f ′(x + y)g(x − y) + f (x + y)g′(x − y))dy

+
1

(2r)1−α

∫ x+r

x−r
(Dx|b(x) − b(y)| + Dy|b(x) − b(y)|)| f (y)g(2x − y)|dy.

(2.17)

On the other hand, we have

Mb,α( f , g)(x + h) −Mb,α( f , g)(x)
= Mbτ(h),α( fτ(h), gτ(h))(x) −Mb,α( f , g)(x)

≥
1

(2r)1−α

∫ r

−r
|bτ(h)(x) − bτ(h)(x + y)| fτ(h)(x + y)gτ(h)(x − y)dy

−
1

(2r)1−α

∫ r

−r
|b(x) − b(x + y)| f (x + y)g(x − y)dy

≥
1

(2r)1−α

∫ r

−r
|b(x) − b(x + y)|( fτ(h)(x + y)gτ(h)(x − y) − f (x + y)g(x − y))dy

+
1

(2r)1−α

∫ r

−r
(|b(x + h) − b(x + y + h)| − |b(x) − b(x + y)|) fτ(h)(x + y)gτ(h)(x − y)dy

for all h > 0. By (2.4) and the arguments similar to those used in getting (2.8) and (2.9),

(Mb,α( f , g))′(x) = lim
h→0+

Mb,α( f , g)(x + h) −Mb,α( f , g)(x)
h

≥
1

(2r)1−α

∫ r

−r
|b(x) − b(x + y)|( f ′(x + y)g(x − y) + f (x + y)g′(x − y))dy

+
1

(2r)1−α

∫ x+r

x−r
(Dx|b(x) − b(y)| + Dy|b(x) − b(y)|) f (y)g(2x − y)dy.

(2.18)

Combining (2.18) with (2.17) leads to (2.3). This completes the proof. �
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We end this section by establishing some pointwise convergence of the derivative of bilinear
maximal functions.

Lemma 5. Let α ∈ [0, 1) and b ∈ Lip(R) with b′ ∈ L1(R). Let f , g ∈ W1,1(R), { f j} j≥1 ⊂ W1,1(R), and
{g j} j≥1 ⊂ W1,1(R). Assume that f j → f and g j → g in W1,1(R) as j→ ∞. Then, for almost every x ∈ R,

(Mb,α( f j, g j))′(x)→ (Mb,α( f , g))′(x) as j→ ∞. (2.19)

Proof. Without loss of generality, we may assume all f j, g j, f , g ≥ 0 because of Lemma 2(iv). Set
D0 = {x ∈ R : Mb,α( f , g) > 0}. The proof of (2.19) can be divided into two steps:

Step 1. Proof of (2.19) for almost every x ∈ D0.
We shall adapt the method as in the proof of [8, Lemma 2.10] to prove (2.19) for almost every

x ∈ D0. Given k ∈ Z, it suffices to show that (2.19) holds for almost every x ∈ D0,k := {x ∈ R : 2k <

Mb,α( f , g)(x) ≤ 2k+1}. By Lemma 2(vi), we see thatMb,α( f j, g j) converges uniformly toMb,α( f , g) on R.
Without loss of generality, we may assumeMb,α( f j, g j)(x) > 0 for all x ∈ D0,k. Let us fix k ∈ Z. Let A0

(resp., A j) be the set for which the functionMb,α( f , g) (resp.,Mb,α( f j, g j)) is differentiable on A0 (resp.,
A j) for j ≥ 1. Set A =

⋂∞
j=0 A j. Invoking Lemma 4, we have that |R\A j| = 0 for all j ≥ 0. So, |R\A| = 0.

Let G be the set for which b is differentiable on G. Let H = {x ∈ R : |Dx|b(x)−b(y)|| ≤ ‖b‖Lip(R),∀y ∈ R}.
It was pointed out in the proof of [8, Lemma 2.10] that |R\G| = 0, |R\H| = 0 and |R\ (A∩G∩H)| = 0.
Let B0 (resp., B j) be the set of all x ∈ A ∩ D0,k for which (2.3) holds for ( f , g) (resp., ( f j, g j)) at x.
Invoking Lemma 4, we see that |(A ∩ D0,k) \ B j| = 0. Let B =

⋂∞
j=0 B j. Clearly, |(A ∩ D0,k) \ B| = 0.

Based on the above analyses, it is sufficient to demonstrate that (2.19) holds for x ∈ B ∩G ∩ H.
Let x ∈ B ∩G ∩ H. By Lemma 3, there exist δ1 = inf Rα( f , g)(x) > 0 and δ2 = supRα( f , g)(x) > 0

such that δ1 < r < δ2 when r ∈ Rα( f , g)(x). Invoking Lemma 4, there exists {r j} j≥1 ⊂ Rα( f j, g j)(x) \ {0}
such that

(Mb,α( f j, g j))′(x)

=
1

(2r j)1−α

( ∫ r j

−r j

|b(x) − b(x + y)|( f ′j (x + y)g j(x − y) + f j(x + y)g′j(x − y))dy

+

∫ x+r j

x−r j

(Dx|b(x) − b(y)| + Dy|b(x) − b(y)|) f j(y)g j(2x − y)dy
)
.

(2.20)

According to our assumption, there exists C > 0 such that ‖ f j‖W1,1(R) ≤ C and ‖g j‖W1,1(R) < C for all
j ≥ 1. By Lemmas 2(vi) and 3 and the arguments similar to those used to derive [8, Lemma 2.10], there
exists N ∈ N such that r j ∈ [δ1/2, 2δ2] for any j ≥ N. Note that |b(x) − b(·)| ∈ Lip(R). By Remark 2,
we see that |Dy|b(x) − b(y)|| ≤ ‖b‖Lip(R). By Remark 2, Lemma 2, and (2.20), one gets

|(Mb,α( f j, g j))′(x)| ≤ 2(‖b′‖L1(R) + ‖b‖Lip(R))‖ f ′‖L1(R)‖g′‖L1(R) + 2‖b‖Lip(R)‖g′j‖L1(R)‖ f j‖W1,1(R).

This yields that the sequence {(Mb,α( f j, g j))′(x)} j≥1 is a bounded set.
Given a convergent subsequence {(Mb,α( f jı , g jı))

′(x)}ı≥1 of {(Mb,α( f j, g j))′(x)} j≥1, note that {r jı}ı≥1 is
a bounded sequence. There exist r > 0 and a subsequence {r jı`

}`≥1 ⊂ {r jı}ı≥1 such that lim`→∞ r jı`
= r.

By Lemma 3(ii), we see that r ∈ Rα( f , g)(x). Applying Lemma 4, one has

(Mb,α( f , g))′(x) =
1

(2r)1−α

∫ r

−r
|b(x) − b(x + y)|( f ′(x + y)g(x − y) + f (x + y)g′(x − y))dy

+
1

(2r)1−α

∫ x+r

x−r
(Dx|b(x) − b(y)| + Dy|b(x) − b(y)|) f (y)g(2x − y)dy.

(2.21)
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By the arguments similar to those used to derive the proof of Lemma 3, we have∫ r jı`

−r jı`

|b(x) − b(x + y)|( f ′jı` (x + y)g jı`
(x − y) + f jı`

(x + y)g′jı` (x − y))dy

→

∫ r

−r
|b(x) − b(x + y)|( f ′(x + y)g(x − y) + f (x + y)g′(x − y))dy as ` → ∞,

∫ x+r jı`

x−r jı`

(Dx|b(x) − b(y)| + Dy|b(x) − b(y)|) f jı`
(y)g jı`

(2x − y)dy

→

∫ x+r

x−r
(Dx|b(x) − b(y)| + Dy|b(x) − b(y)|) f (y)g(2x − y)dy as ` → ∞.

These together with (2.20) and (2.21) imply that

(Mb,α( f jı`
, g jı`

))′(x)→ (Mb,α( f , g))′(x) as ` → ∞.

So, (Mb,α( f jı , g jı))
′(x) → (Mb,α( f , g))′(x) as ı → ∞. Consequently, (Mb,α( f , g))′(x) is the unique

accumulation point of {(Mb,α( f jı , g jı))
′(x)} j≥1. This proves Step 1.

Step 2. Proof of (2.19) for almost every x ∈ R \ D0.
Let D j := {x ∈ R : Mb,α( f , g)(x) > 0}. By Lemma 4, we see that (Mb,α( f , g))′(x) = 0 for all

x ∈ A ∩ (R \ D0). Moreover, (Mb,α( f j, g j))′(x) = 0 for all x ∈ A ∩ (R \ D j). Thus, it suffices to show
that for almost every x ∈ R \ D0,

(Mb,α( f j, g j))′(x)χD j(x)→ 0 as j→ ∞. (2.22)

By Lemma 4, there exists a measurable set E j ⊂ D j such that |D j \E j| = 0, and for any x ∈ E j, there
exists r j ∈ Rα( f j, g j)(x) \ {0} such that

(Mb,α( f j, g j))′(x)

=
1

(2r j)1−α

( ∫ r j

−r j

|b(x) − b(x + y)|( f ′j (x + y)g j(x − y) + f j(x + y)g′j(x − y))dy

+

∫ x+r j

x−r j

(Dx|b(x) − b(y)| + Dy|b(x) − b(y)|) f j(y)g j(2x − y)dy
)
.

(2.23)

Let J := {x ∈ R : |b(x)−b(y)| be differentiable at x, ∀y ∈ R}. Since |b(·)−b(y)| ∈ Lip(R), then we have
that for almost x ∈ R, the function |b(·) − b(y)| is differentiable at x for all y ∈ R. Hence, |R \ J| = 0.
Therefore, it is enough to show that for all x ∈ A ∩G ∩ H ∩ J ∩ (R \ D0),

(Mb,α( f j, g j))′(x)χE j(x)→ 0 as j→ ∞. (2.24)

In view of (2.23), for (2.24) it suffices to prove that for all x ∈ A ∩G ∩ H ∩ J ∩ (R \ D0),

1
(2r j)1−α

∫ r j

−r j

|b(x) − b(x + y)|( f ′j (x + y)g j(x − y) + f j(x + y)g′j(x − y))dy→ 0 as j→ ∞; (2.25)

1
(2r j)1−α

∫ x+r j

x−r j

(Dx|b(x) − b(y)| + Dy|b(x) − b(y)|) f j(y)g j(2x − y)dy→ 0 as j→ ∞. (2.26)
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We first prove (2.25). Let us fix j ≥ 1 and x0 ∈ A∩G∩H∩J∩(R\D0)∩E j. SinceMb,α( f , g)(x0) = 0,
then |b(x0) − b(x0 + y)| f (x0 + y)g(x0 − y) = 0 for almost every y ∈ R. Let B := {y ∈ R; |(b(x0) − b(x0 +

y))| f (x0 + y)g(x0 − y) = 0}. It is readily apparent that |R \ B| = 0. Let

B1 := {y ∈ B : |b(x0) − b(x0 + y)| > 0}, B2 := {y ∈ B : f (x0 + y)g(x0 − y) > 0}.

Clearly, |B1 ∩ B2| = 0. Then, we have∣∣∣∣ 1
(2r j)1−α

∫ r j

−r j

|b(x0) − b(x0 + y)|( f ′j (x0 + y)g j(x0 − y) + f j(x0 + y)g′j(x0 − y))dy
∣∣∣∣

≤
1

(2r j)1−α

×
∫

[−r j,r j]∩B1∩(B\B2)
|b(x0) − b(x0 + y)|| f ′j (x0 + y)g j(x0 − y) + f j(x0 + y)g′j(x0 − y)|dy

≤ (‖b‖Lip(R) + ‖b′‖L1(R))
∫

B\B2

| f ′j (x0 + y)g j(x0 − y) + f j(x0 + y)g′j(x0 − y)|dy.

(2.27)

Let
B2,1 = {y ∈ B \ B2 : f (x0 + y) > 0}, B2,2 = {y ∈ B \ B2 : g(x0 − y) > 0}.

Clearly, B2,1 ∩ B2,2 = ∅. Moreover, f ′(x0 + y) = 0 for almost every y ∈ (B \ B2) \ B2,1 and g′(x0 − y) = 0
for almost every y ∈ (B \ B2) \ B2,2 since f , g ∈ W1,1(R). These facts together with Lemma 2 imply that∫

B\B2

|( f ′j (x0 + y)g j(x0 − y) + f j(x0 + y)g′j(x0 − y))|dy

≤

∫
(B\B2)\B2,2

| f ′j (x0 + y)g j(x0 − y) + f j(x0 + y)g′j(x0 − y)|dy

+

∫
B2,2∩((B\B2)\B2,1)

| f ′j (x0 + y)g j(x0 − y) + f j(x0 + y)g′j(x0 − y)|dy

=

∫
(B\B2)\B2,2

| f ′j (x0 + y)(g j(x0 − y) − g(x0 − y)) + f j(x0 + y)(g′j(x0 − y) − g′(x0 − y))|dy

+

∫
B2,2∩((B\B2)\B2,1)

|( f ′j (x0 + y) − f ′(x0 + y))g j(x0 − y)

+( f j(x0 + y) − f (x0 + y))g′j(x0 − y)|dy
≤ ‖(g j − g)′‖L1(R)‖ f ′j ‖L1(R) + ‖ f ′j ‖L1(R)‖g′j − g′‖L1(R)

+‖g′j‖L1(R)‖ f ′j − f ′‖L1(R) + ‖( f j − f )′‖L1(R)‖g′j‖L1(R)

≤ 2‖g′j − g′‖L1(R)(‖ f ′j − f ′‖L1(R) + ‖ f ′‖L1(R)) + 2(‖g′j − g′‖L1(R) + ‖g′‖L1(R))‖ f ′j − f ′‖L1(R)

→ 0 as j→ ∞.

(2.28)

Combining (2.28) with (2.27) implies (2.25).
Now we prove (2.26). The argument is analogous to (2.25). Since |(b(x0)−b(x0 + y)) f (x0 + y)g(x0−

y)| = 0 for almost every y ∈ R, then |(b(x0) − b(y)) f (y)g(2x0 − y)| = 0 for almost every y ∈ R. Let
I = {y ∈ R : |b(x0) − b(y)| f (y)g(2x0 − y) = 0}. It is clear that |R \ I| = 0. For convenience, we let
F(x, y) = |b(x) − b(y)| and denote

Fx(x, y) = Dx|b(x) − b(y)|, Fy(x, y) = Dy|b(x) − b(y)|.

Let
I1 = {y ∈ I; |b(x0) − b(y)| > 0}, I2 = {y ∈ I; f (y)g(2x0 − y) > 0}.

AIMS Mathematics Volume 10, Issue 9, 20199–20218.
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We have I1 ∩ I2 = ∅. Then, we have∣∣∣∣ 1
(2r j)1−α

∫ x0+r j

x0−r j

(Fx(x0, y) + Fy(x0, y)) f j(y)g j(2x0 − y)dy
∣∣∣∣

≤
1

(2r j)1−α

(∣∣∣∣ ∫
[x0−r j,x0+r j]∩I1∩(I\I2)

(Fx(x0, y) + Fy(x0, y)) f j(y)g j(2x0 − y)dy
∣∣∣∣

+
∣∣∣∣ ∫

[x0−r j,x0+r j]∩(I\I1)
(Fx(x0, y) + Fy(x0, y)) f j(y)g j(2x0 − y)dy

∣∣∣∣).
(2.29)

Let
I2,1 = {y ∈ I \ I2 : f (y) > 0}, I2,2 = {y ∈ I \ I2 : g(2x0 − y) > 0}.

Clearly, I2,1 ∩ I2,2 = ∅. We also note that |Fx(x0, y)| ≤ ‖b‖Lip(R) for any y ∈ R and |Fy(x0, y)| ≤ ‖b‖Lip(R)

for almost every y ∈ R. It follows that

1
(2r j)1−α

∫
[x0−r j,x0+r j]∩I1∩(I\I2)

|(Fx(x0, y) + Fy(x0, y))| f j(y)g j(2x0 − y)dy

≤ 2‖b‖Lip(R)
1

(2r j)1−α

∫
[x0−r j,x0+r j]∩(I\I2)

f j(y)g j(2x0 − y)dy.

By Lemma 2, one obtains

1
(2r j)1−α

∫
[x0−r j,x0+r j]∩I1∩(I\I2)

f j(y)g j(2x0 − y)dy

≤
1

(2r j)1−α

∫
[x0−r j,x0+r j]∩(I\I2)

f j(y)g j(2x0 − y)dy

≤
1

(2r j)1−α

∫
[x0−r j,x0+r j]∩(I\I2)\I2,2

f j(y)g j(2x0 − y)dy

+
1

(2r j)1−α

∫
[x0−r j,x0+r j]∩I2,2∩((I\I2)\I2,1)

f j(y)g j(2x0 − y)dy

=
1

(2r j)1−α

∫
[x0−r j,x0+r j]∩(I\I2)\I2,2

| f j(y)(g j(2x0 − y) − g(2x0 − y))|dy

+
1

(2r j)1−α

∫
[x0−r j,x0+r j]∩I2,2∩((I\I2)\I2,1)

|( f j(y) − f (y))g j(2x0 − y)|dy

≤ ‖ f j‖L∞(R)Mα(g j − g)(x0) + ‖g j‖L∞(R)Mα( f j − f )(x0)
≤ ‖ f ′j ‖L1(R)‖g j − g‖W1,1(R) + ‖g′j‖L1(R)‖ f j − f ‖W1,1(R) → 0 as j→ ∞.

Hence, we conclude that

1
(2r j)1−α

∫
[x0−r j,x0+r j]∩I1∩(I\I2)

(Fx(x0, y) + Fy(x0, y)) f j(y)g j(2x0 − y)dy→ 0 as j→ ∞. (2.30)

On the other hand, we see that F(x0, y) ≡ 0 for y ∈ I \ I1. It is inferred that Fy(x0, y) = 0 for almost
every y ∈ I \ I1. Consequently,

1
(2r j)1−α

∫
[x0−r j,x0+r j]∩(I\I1)

Fy(x0, y) f j(y)g j(2x0 − y)dy = 0. (2.31)
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By (2.29)–(2.31), for (2.26), it is sufficient to demonstrate that∫
[x0−r j,x0+r j]∩(I\I1)

Fx(x0, y) f j(y)g j(2x0 − y)dy→ 0 as j→ ∞. (2.32)

Since b(y) ≡ b(x0) for y ∈ I \ I1, then we have

F(x, y) ≡ F(x, x0) = |b(x) − b(x0)|, ∀y ∈ I \ I1.

Since x0 ∈ J, then for any y ∈ I \ I1, we have that F(·, y) is differentiable at x0. Fix y ∈ I \ I1, and we
note

0 ≥ lim
h→0+

|b(x0 − h) − b(x0)|
−h

= Fx(x0, y) = lim
h→0+

|b(x0 + h) − b(x0)|
h

≥ 0.

Hence, we have Fx(x0, y) = 0 for any y ∈ I \ I1. This yields (2.32). Then, Lemma 5 is proved. �

3. Proof of Theorem 1

We now present the proof of Theorem 1. We first prove the boundedness part in Theorem 1. Without
loss of generality, we may assume that all f , g ≥ 0. Let 1

1−α < q < ∞ and 0 < α < 1. Let p =

1/(1/q + α). Clearly, 1 < p < q < ∞ and 1/q = 1/p − α. Note that

‖ f ‖Lp(R) ≤ ‖ f ‖
1−1/p
L∞(R)‖ f ‖

1/p
L1(R) ≤ ‖ f

′‖
1−1/p
L1(R) ‖ f ‖

1/p
L1(R) ≤ ‖ f ‖W1,1(R).

Applying Remark 2 and Lemma 2.1, it is clear that

Mb,α( f , g)(x) ≤ ‖b′‖L1(R)‖g′‖L1(R)Mα f (x), x ∈ R.

This together with the bounds for Mα yields that

‖Mb,α( f , g)‖Lq(R) ≤ ‖b′‖L1(R)‖g′‖L1(R)‖Mα f ‖Lq(R)

≤ Cα,q‖b′‖L1(R)‖g′‖L1(R)‖ f ‖Lp(R) ≤ Cα,q‖b′‖L1(R)‖g′‖L1(R)‖ f ‖W1,1(R).
(3.1)

Hence, to prove the boundedness, it is adequate to establish that

‖(Mb,α( f , g))′‖Lq(R) ≤ Cα,q(‖b‖1−1/q−α
Lip(R) ‖b

′‖
1/q+α

L1(R) ‖ f
′‖L1(R)‖g′‖L1(R) + ‖b‖Lip(R)‖g′‖L1(R)‖ f ‖W1,1(R)). (3.2)

Let E be the set of all points x ∈ R for whichMb,α( f , g) is differentiable at x. In view of Lemma 4,
we have |R \ E| = 0. Let F = {x ∈ R : |Dx|b(x) − b(y)|| = |b′(x)|, ∀y ∈ R}. It was shown in [9] that
|R \ F| = 0. Let G = {x ∈ R : Mb,α( f , g)(x) > 0}. By Lemma 4 we see that for almost every x ∈ Gc,

(Mb,α( f , g))′(x) = 0. (3.3)

Moreover, for almost every x ∈ G, there exists r ∈ Rα( f , g)(x) \ {0} such that

(Mb,α( f , g))′(x) =
1

(2r)1−α

∫ r

−r
|b(x) − b(x + z)|( f ′(x + z)g(x − z) + f (x + z)g′(x − z))dz

+
1

(2r)1−α

∫ x+r

x−r
(Dx|b(x) − b(z)| + Dz|b(x) − b(z)|) f (z)g(2x − z)dz.

(3.4)
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Note that b ∈ Lip(R). By the fundamental theorem of calculus and Lemma 2(i), one gets∣∣∣∣ 1
(2r)1−α

∫ r

−r
|b(x) − b(x + z)| f ′(x + z)g(x − z)dz

∣∣∣∣
≤

1
(2r)1−α

∫ r

−r

∣∣∣∣ ∫ x+z

x
b′(t)dt

∣∣∣∣| f ′(x + z)g(x − z)|dz

≤ ‖g′‖L1(R)

∫ r

−r

1
(2r)1−α

∫ x+r

x−r
|b′(t)|dt| f ′(x + z)|dz

≤ ‖ f ′‖L1(R)‖g′‖L1(R)Mα|b′|(x).

Hence, we obtain that for almost every x ∈ R,

|(Mb,α( f , g))′(x)| ≤ 2‖g′‖L1(R)(‖ f ′‖L1(R)Mα|b′|(x) + ‖b‖Lip(R)Mα f (x)). (3.5)

By (3.5) and the Lq bounds for Mα, one gets

‖(Mb,α( f , g))′‖Lq(R) ≤ 2‖ f ′‖L1(R)‖g′‖L1(R)‖Mα|b′|‖Lq(R) + 2‖b‖Lip(R)‖g′‖L1(R)‖Mα f ‖Lq(R)

≤ Cα,q‖ f ′‖L1(R)‖g′‖L1(R)‖b′‖Lp(R) + 2‖b‖Lip(R)‖g′‖L1(R)‖ f ‖Lp(R)

≤ Cα,q(‖b‖1−1/q−α
Lip(R) ‖b

′‖
1/q+α

L1(R) ‖ f
′‖L1(R)‖g′‖L1(R) + ‖b‖Lip(R)‖g′‖L1(R)‖ f ‖W1,1(R)).

This proves (3.2).
Next, we prove the continuity part in Theorem 1. Let α ∈ [0, 1), 1

1−α < q < ∞, f ∈ W1,1(R), and
g ∈ W1,1(R). Let { f j} j≥1 ⊂ W1,1(R) be such that f j → f in W1,1(R) and {g j} j≥1 ⊂ W1,1(R) be such that
g j → g in W1,1(R) as j→ ∞. By the sublinearity ofMb,α, one obtains

|Mb,α( f j, g j)(x) −Mb,α( f , g)(x)| ≤ Mb,α( f j − f , g j − g)(x) +Mb,α( f j − f , g)(x) +Mb,α( f , g j − g)(x).

Consequently, in conjunction with Section (3.1) implies that

‖Mb,α( f j, g j) −Mb,α( f , g)‖Lq(R)

≤ Cα,q(‖ f j − f ‖W1,1(R)(‖g j − g‖W1,1(R) + ‖g‖W1,1(R)) + ‖ f ‖W1,1(R)‖g j − g‖W1,1(R))→ 0 as j→ ∞.

Thus, to establish continuity, it is sufficient to demonstrate that

‖(Mb,α( f j, g j))′ − (Mb,α( f , g))′‖Lq(R) → 0 as j→ ∞. (3.6)

Presume that (3.6) is incorrect. We may assume, without loss of generality, that

‖(Mb,α( f j, g j))′ − (Mb,α( f , g))′‖Lq(R) > c, ∀ j ≥ 1 (3.7)

for some c > 0. By our assumption, there exists C > 0 such that

‖ f j‖W1,1(R) + ‖g j‖W1,1(R) ≤ C, ∀ j ≥ 1. (3.8)

Through the proof of the boundedness segment and (3.8), we have that for any j ≥ 1 and almost every
x ∈ R,

|(Mb,α( f j, g j))′(x)| ≤ 2‖g′j‖L1(R)(‖ f ′j ‖L1(R)Mα|b′|(x) + ‖b‖Lip(R)Mα f j(x))
≤ 2C2Mα|b′|(x) + 2C‖b‖Lip(R)Mα f (x) + 2C‖b‖Lip(R)Mα( f j − f )(x).

(3.9)
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20216

Let p = 1/(1/q + α). Clearly, 1/q = 1/p − α and 1 < p < q < ∞. Note that

‖Mα( f j − f )‖Lq(R) ≤ Cq,α‖ f j − f ‖Lp(R) ≤ Cq,α‖ f j − f ‖W1,1(R) → 0 as j→ ∞.

This yields that there exists { jk}k≥1, satisfying the condition that∥∥∥∥ ∞∑
k=1

Mα( f jk − f )
∥∥∥∥

Lq(R)
≤

∞∑
k=1

‖Mα( f jk − f )‖Lq(R) ≤ 1.

By (3.9), we see that

|(Mb,α( f jk , g jk))
′(x) − (Mb,α( f , g))′(x)|

≤ 2C2Mα|b′|(x) + 2C‖b‖Lip(R)

(
Mα f (x) +

∞∑
k=1

Mα( f jk − f )(x)
)

+ |(Mb,α( f , g))′(x)| =: Φ(x).

Note that Φ ∈ Lq(R). By Lemma 5 and the dominated convergence theorem, we have (3.6). This
completes the proof of Theorem 1. �

4. Conclusions

In this paper we study the endpoint Sobolev regularity of the bilinear maximal commutator and its
fractional variantMb,α with α ∈ [0, 1) and the symbol function b. We prove that the above commutator
Mb,α is bounded and continuous from W1,1(R)×W1,1(R) to W1,q(R) if q ∈ ( 1

1−α ,∞) and b ∈ Lip(R) with
b′ ∈ L1(R). Our main result essentially answered a question motivated by Wang and Liu in 2022.
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