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Abstract: In this paper our objective of investigation was the endpoint Sobolev regularity of the
bilinear maximal commutator

1
My o (f, =
ba(f, 8)(X) Sup 5o
where a € [0, 1) and b € Lip(R) with b’ € L'(R). We showed that the map I, : WEI(R) x WH(R) —
W4(R) was bounded and continuous for g € (ﬁ, o0). The main result essentially answered a question
motivated by Wang and Liu in 2022.

f |(b(x) = b(x + y) f(x + y)g(x — y)ldy,
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1. Introduction

Recently, the authors [26] established the boundedness of the following bilinear maximal
commutator

1
Nipo(f, 8)(x) = sr1>10p i

f (B() — bx + W) fx + Vgr — idy,

on WP (R)x WhP2(R) for 1 < py, p» < co where @, pi, p», and b satisfy certain conditions. It is natural
to wonder the differentiable behavior of 9, acting on a vector-valued function (f, g) with f € WI(R)
and g € W (R). This is the main motivation of this paper.

The study of regularity theory for maximal operators has become a focal point in numerous recent
publications within the field of harmonic analysis. Kinnunen [12] first proved that the usual centered
Hardy-Littlewood maximal operator M is bounded on the first order Sobolev spaces W'*(R") for all
1 < p < oo. This foundational result has been broadened to include various modifications of the
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maximal operator (see [7, 13, 14]). It is worth noting that the derivative of a maximal function does not
inherently possess sublinearity. The continuity of M : W'P(R") — W'P(R") for 1 < p < oo is indeed
an intriguing issue. Luiro [20] affirmatively tackled this question, and it was later extended to the local
version in [21] and the bilinear version in [7]. Owing to the absence of L'-boundedness for M, the
Wl regularity for the maximal operator is a highly nontrivial issue. A pivotal question was raised by
Hajtasz and Onninen in [11]:

Question 1. Is the map f — |VM f| bounded from W"!(R") to L'(R")?

The above question was initially examined by Tanaka [25] who first considered the endpoint
Sobolev regularity of the one-dimensional uncentered Hardy—Littlewood maximal operator M and
showed that if f € W'!(R), then M f is weakly differentiable and

MY e < 207 1z (1.1)

The constant C = 2 in (1.1) was improved by Aldaz and Pérez Lazaro [1] to the sharp constant
C = 1. Later on, Kurka [15] established that if f € W!!(R), then inequality (1.1) holds for M (with
constant C = 240, 004). Based on the above bounds, Carneiro, Madrid, and Pierce [5] (resp., Gonzalez-
Riquelme [10]) proved that the map f — (Mf) (resp., f +— (Mf)) is continuous from W'"!'(R)
to L'(R), respectively. The aforementioned findings have been recently expanded to the fractional
variants (see [3, 6,24]). The higher dimensional W'!-regularity of the Hardy-Littlewood maximal
operator and fractional maximal operator can be found in [2—4,16,22,27].

On the other hand, the investigation on the regularity issues of maxmial commutators has similarly
garnered considerable attention from numerous scholars (see [8,9, 16-19]). Particularly, Chen and
Liu [8,9] studied the endpoint Sobolev regularity of the one dimensional maximal commutator and its
fractional variant

1 X+r
Maaf 0 =sup s [0 - NSOy
r>0 (21" ) xX—r

where0<a<1,b€ L}OC(R), and f € L}OC(R). The main results of [8,9] can be formulated as follows.
Theorem A. ([8,9]) Let « € [0,1), g € (1,00) and, b € WH(R) with b' € L®(R). Then, the map
f = (Mpof) is bounded and continuous from WUL(R) to LY(R). Particularly, if f € WHL(R), then

M, f is differentiable almost everywhere in R. Moreover,

(Mo f) sy < Coll fllwri .-

Later on, Liu and Ma [16] improved Theorem A by weakening the condition of b. Let us recall one
definition. We denote by Lip(R) the homogeneous Lipschitz space, i.e.,

Lip(R) :={f : R = Ccontinuous : ||f]lzip®) < o0},
where

et = fl _
z

fllzipery := sup
X€R,

heR\ {0}

The inhomogeneous Lipschitz space Lip(R) is given by

Lip(R) := {f : R — C continuous : I/ ILipw) == Ilflzipwy + 1 fllzomy < o0}
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The improvement of Theorem A can be enumerated as follows.
Theorem B. ([16]) Let g € (1,00), a € [0,1), b € Lip(R), and b’ € L'(R). Then, the map f — (M, of)’
is bounded and continuous from WH'(R) to LY(R). Particularly, if f € WUL(R), then Mo f € Lip(R).
Moreover;

(Mpof) sy < Cpllfllwriry-

Remark 2. Let
Fro={feW'R) : f e L°®)), F:={f€Lip®):f €L ®)}

It was noted in [16] that ¥, € &, which is a proper inclusion. We also point out that if b € Lip(R),
then the derivative b’ exists almost everywhere. Moreover, we have that b’(x) = limj,_,o w and
16" (x)| < 11bl|Lipr) for almost every x € R. It follows that |[5’||~®) < ||bllLipr)- Particularly, if b € Lip(R)
and b’ € L'(R), then |b(x) — b(y)| < 16"\l 1) for any x, y € R.

In this paper we focus on the endpoint Sobolev regularity of bilinear maximal commutator M, ,.
This type of commutator was original introduced by Wang and Liu [26], who established the following
result.

Theorem C. ([26]) Let 1 < p1, pa, p1p2/(p1+ p2) <0, 0 <@ <1/p1+1/ps, 1/g=1/p1+1/p2—«,
and b € Lip(R). If f € W'""'(R) and g € W"P(R), then we have

198, o (f, g)”le‘!(]R) < Ca,pl,pzllb”Lip(R)”f”Wl’Pl (R)”g”WLn(R)-

Based on the above, it is interesting to ask the following question.

Question 3. Let 0 < a < 1. Is M,,, bounded and continuous from W!(R) x WHI(R) to W'4(R) for
some g € (1,00) if b € Lip(R) with " € L'(R)?

This question can be addressed by the following result.

Theorem 1. Let « € [0,1), g € (ﬁ, o) and b € Lip(R) with b € L'(R). Then W, is bounded
and continuous from WHL(R) x WH(R) to LY(R). Particularly, if f € WHY(R) and g € WEHL(R), then
My, o (f, g) is differentiable almost everywhere in R and

1-1/g- 1/
1%, (s ) llzawy < Cag (bl WO N A 1S N @yllg ey + 1Bl ipe g ere Ll )-

Remark 4. It is worth noting that the conclusions of Theorem 1 also hold for the uncentered bilinear
maximal commutator

— 1 s
Mo (f, 8)(x) = SUp e f I(b(x) — b(x + y) f(x + y)g(x — yldy, xe€R.

r+5>0

More precisely, it can be proved that 9, , is bounded and continuous from W'(R) x W'(R) to LY(R)
if @ €[0,1), g € (=, ), and b € Lip(R) with b’ € L'(R).
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This paper is organized as follows. In Section 2 we shall establish some preliminary lemmas, which
contains some formulas and pointwise convergence of the derivatives of bilinear maximal commutators
(see Lemmas 4 and 5). These are the main ingredients of proving Theorem 1. The proof of Theorem 1
will be given in Section 3. It should be pointed out that the methods used to prove the main theorem
are motivated by [5,8,9].

Throughout the paper, the letter C, which may be accompanied by specific parameters, denotes
positive constants not necessarily the same one at each occurrence, but are independent of the essential
variables. For a set A C R, the notation |A| = 0 means that A is a set of measure zero. For any function
f:R — RandheR, we define

dufiny = DI

and frg)(x) = f(x+ h).

For any arbitrary functions F(x,y) defined on R X R, we denote by D.F (resp., DyF) as the partial
derivative of F in x (resp., y).

2. Preliminaries

In this section we shall establish some lemmas, which are the main ingredients of proving
Theorem 1. Let us begin with some properties of a W!!(R) function.

Lemma 2. Let f € WH(R). Then,
(i) sup ez | < 1 ey
) [1fzipwy < N =)
(i) dpf — f in L'(R) as h — O.
(iv) Let 0 < a < 1. Then, the fractional maximal function

1 X+r
Mo ) = sup f 1Oy,
satisfies the estimate sup ., M, f(x) < || fllwiw)-

(v) Let {fj} ;=1 € WHL(R) be such that ||f; — fllwuig — 0as j — oo. Then, |Ifjl = |flllwiiw — 0 as
j — oo.

(vi) Let @ € [0, 1) and b € Lip(R) withb’ € L'(R). Let {f;};z1 € W"'(R) be such that || f;— fllwiz) —
Oas j — oo. Let g € WH(R) and {gjlji=1 C WULL(R) be such that gi—gin WU (R) as j — oo. Then
My, o(fj, &) converges uniformly to My, ,(f, g) on R.

Proof. Parts (i)—(iii) were shown in [8, Lemma 2.2]. Part (iv) follows from Remark 1.1 in [9,
Remark 1.1]. Part (v) follows from [5]. Part (vi) follows from the following inequality:

sng 1Mo (fj5 &) (x) = My, o (f, (X

< Su}g(gﬁb,(x(ﬂ = £,8)(X) + Mo (f, g — &)(X)
XE
<2016l wy Su}g(”gj”L‘”(R)Ma/(fj = X)) + [ fllz=mMo(g; — 8)(X))
XE
< 2||b'||Ll(R)(”g}”Ll(R)Hfj = fllwugy + 1l @llg; — gllwiiw) — 0 as j — oo.

O
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Leta € [0,1), b € Lip(R) and b’ € L'(R), f € L'(R) N L*(R) and g € L*(R). For any x € R, we
define the function A, 7, : [0, 00) — R by
0, if r=0;

= 1 4
Asb.f(r) { e f I(b(x) = b(x + Y)IIf(x + y)glx = YIdy, ifr>0.

Given a point x € R, we define the family of good radii for a pair (f, g) at x as

Ro(f,8)(x) = {r = 0 : My o(f, 8)(X) = Ay 6(r)}.

Observe that for any x € R, the function A, s, is continuous on [0, co). In addition, we get by Remark 2
that

A () < CN D Nl fllo @ llgllie@ — 0 as r — co. 2.1)

It follows that for every x € R, the function A, s, has at least one maximum point in [0, c0).
Consequently, the set R,(f, g)(x) is nonempty for every x € R.

Lemma 3. Let « € [0,1) and b € Lip(R) with b’ € L'(R). Assume that f € L*(R) N L'(R) and
g € L(R). Then,
(i) For any x € R for which M, o (f, g)(x) > 0, we have inf R, (f, g)(x) > 0 and sup R,(f, g)(x) < co.
(ii) Let {f;}js1 € WH(R) and {g;} ;51 € WH(R). Assume that f; — fin L'R)N L (R) and g; — g
in L*(R) as j — oo. For any fixed x € R, let rj € R (fj, g;)(x) for j > 1. If r is an accumulation point
of {rj}jz1, then r € Ry (f, 8)(x).

Proof. At first we prove part (i). Let x € R for which 9, ,(f, g)(x) > 0. If inf R,(f, g)(x) = 0, then
there exists {r }i>1 C Ro(f, g)(x) N (0, o) such that lim;_,, 7, = 0. Hence, we have

1
Ay re(m) < 27 Dl Lip@ l fll=@llgll oy — O as k — oco.

This implies M, ,(f, g)(x) = 0, which leads to a contradiction. So, inf R,(f,g)(x) > 0. The claim
sup R, (f, g)(x) < oo follows by (2.1).

Next, we prove part (ii)). We may suppose, without loss of generality, that r; — r as j — co. Two
cases will be examined:

Case 1 (r = 0). To prove r € R,(f, g)(x), it suffices to show that M, ,(f, g)(x) = 0. If there exists
Ny € N such that r; = 0 for any j > Ny, then M, ,(fj, g;)(x) = O for all j > Ny. This together with
Lemma 2(vi) implies M, ,(f, g)(x) = 0. If there exists a subsequence {ji}i>1 C {j};>1 such that r; > 0,
then

1
Axpf e, (1) < 2775 Wl ip@ | fi Nl @ llg =y — O as k — oo,

This together with Lemma 2(vi) implies that
gﬁb,a(f9 g)(-x) = ]}1_)1’1;10 i]ﬁb,(t(fjka gjk)(-x) = ]}1—{1; Ax,b,fjk,gjk (Vk) =0.
Case 2 (r > 0). We may assume, without loss of generality, that all »; > 0. By Lemma 2 and
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Remark 2, one has
[ [ 1000 = b+ s+ g = iy
N I(b(X) b(x + ) f(x + y)g(x — y)ldy
f I(b(x) b(x + YIIfi(x + y)gj(x = »I = 1f (x + y)g(x — y)lidy
f (Bx) = b+ WDILFCE + DR = V(1) — K Iy
< Wl [ 1) = Fr+ s = )y

'
+16'l 1wy f IF1Ce+ p)lgi(x = y) = g(x = Wdy + 2/16" || @)l fll oo llgll oy lrj = 7
-

< ||b'||L1(R)(||gj||L°°(R)||fj - f”L‘(R) + ”f”L""(R)”gj - g||L°°(R))
+2||b’||L1(R)||f||L°°(R)||g||L°°(R)|rj —rl—>0as j— oo

This together with Lemma 2(vi) yields that
Ny o(f, )(X) = jhglo Mo (S g)(X) = }Lfglo Asvbfig (1) = Axprg(r),
which leads to r € R,(f, g)(x). O

The following lemma presents the differentiability and derivative formulas of bilinear maximal
commutator.

Lemma 4. Let « € [0,1), b € LipR) with b’ € L'R), f € W'(R), and g € WH(R). Then,
My o(f,8) € Lip(R). Let E = {x € R : My, (f, 8)(x) > 0}. Then, we have
(a) Let x € R\ E for which W, ,(f, g) is differentiable at x. Then

Mo (f,8))'(x) = 0. (2.2)

(b) For almost every x € E for which W, (f, g) is differentiable at x, we have that if r € R,(f, g)(x)
and r > 0, then

Mpa(f, ) () =

f 1b(x) = b(x + PIAST (x + lglx = y) + [f1(x + Y)Igl'(x = y))dy
hxdr (2.3)
(Dlb(x) — b + Dylb(x) — b)DIf(¥)g(2x — y)ldy.

Qr)i-a

Proof. Let x, h € R. Observe that
RUPIG g)(x + 1) = Mpo(f, ) (X))
< sup ar )1 ” (b(x+h)—=bx+h+y)f(x+h+y)gx+h-y)
r>0

—(b(x) - b(x + y))f(x +y)g(x — y)ldy
< 2/bllLipwy Mo f(x + h)”g”Lr""(R)lm

1
HIgllzz) SUp (5 e f Ib(x) = b(x + Y)IIf(x +y + h) = f(x +y)ldy

+I f1lzr) SUP

1 r
b @2ne f 1bCx) = blx +Ylg(x =y + 1) = g(x = y)ldy.

AIMS Mathematics Volume 10, Issue 9, 20199-20218.
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By Remark 2, one gets
1 7
Sup —— f () = b(x + YIF(x +y+ ) = Flx+ ldy
>0 (2r) @ -r -
= sup —— f 1b(x) — b(x + )y f(x + )yl
e )
< sup —— f 1B(X) = bx + Yl fCx + ldylA
r>1/2 (2” ) —r
1 r
b osup = [ 1bx) = bx + ldaf e+ iyl
0<r<1/2 (2” ) _r

< (101l + 1B Lip@)dnfllzieylhl.

Similarly, we obtain

1 r
sup e f Ib(x) — b(x + Yllg(x —y + h) — g(x = Y)ldy < (I llzrwy + 1BllLipe)ldrgllL @Al
r>0 —r

These estimates together with Lemma 2(iv) imply that

Do (f, &) x + h) = Ny o (f, (X))
< Bllzipe | fllwri @18 Nl @lhl + D Nty + 11l Lipey (18 L @lldnf 1wy + 1 L@ lldngll@)IAl.

By Lemma 2(iii), we observe that ||d),f — f'll.1z) — 0 and ||dyg — &'ll.1 ) — 0 as h — 0. Consequently,
there exists 0 > 0 such that for any |A| < 9,

Ndn SNl < Nldnf = flloe + 1 @ < T+ N,
ldnglli®y < lldng — &'l + 118 0@ < 1+ 118l w)-
Furthermore, for any z € R,
My o(f, 2@ <10l @llgllz=@ Maf(x) < 1Dl @llg @l f i)
Hence, we have

1Mo (f, g)”Lip(]R) < ||b||Lip(R)”f”lel(]R)”g,”Ll(R) + zllblllLl(R)”g/||L1(R)||f”W1~1(R)6_]
+(16 11y + 1B 2ip (R 21y (1 + 1 Nz wy) + 11 21y (1 + 1lE Nl w)))-

This yields M, (f, g) € Lip(R).
Let x € R\ E for which 9, ,(f, g) is differentiable at x. Observe that

Do (f ) (x + h) — My, o (f, 8)(X) ~ lim My o(f, ©)(x + h)
h h—0 h '

(mtb,a(f’ g))’(x) = }ll_l}(l)

Then, we have

Wyof Q) _
: <o.

0 < lim Dpo(f, )X + h)

h—0* h = (E"Rb,a(f’ g))'(x) = hli,r(l;l—

This yields (2.2).

AIMS Mathematics Volume 10, Issue 9, 20199-20218.
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Next we prove (2.3). Without loss of generality, we may assume that f, g > 0. Let F be the set of
all x € R for which M, ,(f, g) is differentiable at x. By part (i), it has been observed that [R \ F| = 0.
Let x € EN F. Write

EIR a\lJ s h _EIR a\J »
(M. )/ () = lim ba(f> &)(x + ;), bal(f>8)(X) 2.4)

Let r € R,(f, g)(x). Note that r > 0. The application of a change of variable yields that 9, ,(f, g)(x —
h) =My, o(fr-ny» &x(-m)(x). Subsequently, we obtain the following:

My o (f5 ©)(X) = Dy o (f, ©)(x — h)
= My o(f, (X)) = My, o frnys &een)(X)
< Ax,b,f »g(r ) _rAxsb‘r(—h)’fr(—h)sg'r(—h)(r )

< Gy | PO = B DI G+ )80 =) = frion(@ + g = 1)y 2
oo | :<|b<x> — b+ ) = [ = ) = bk + ¥ = W) fe(x + Vgen(x = Yy
for all 4 > 0. Note that
fx+yglx—y) - ﬁ;h)(x +V8n(X—Y) _ Far+ 80— ) + Frm(E+ Mg —).
Consequently, for any & > 0,
% [ 1b(x) = D(x + I (x + y)8(x = ¥) = fr(-my(x + Y)gr(-my(x — ¥))dy
- [ 1b(x) — bx + W f G+ ¥)gCx = ) + Fx+ V) gx — )y
al 1bG8) — e + DI e Cx +3) = O+ W)dagx = y)dy.
By Remark 2 and Lemma 2,
| [ 1000 = b 4 -+ gt =) + o+ s = 0y
[ 1) = b I g =) + -+ g =y
< W s llgli-co | L fCe+3) = £/ G+ yldy
0o e A g =) — /(v — ldy
< e g el f = £ ey + 1 Terlldng = &/l
— 0 ash—0.
Thus, we have
im | 1b(x) — bl + Wy fx+ ¥)gCx = 3) + FCx+ V) gx — )y -

_ f 1b(x) — b(x + I+ Vg — ) + f(x + g (x - y)dy.

AIMS Mathematics Volume 10, Issue 9, 20199-20218.
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We also note that

f () — b(x + WIom(x + ) — F(x + )donfCx = Vidy
< f DGO = BG4 DI oo+ 3) = F(x + Yo = y) — g'Cx = y)ldy
o [ 100 = b+ I Eamx +5) = FGr+ g’ (e = yldy

< 2||b||Lip(R)”f/”Ll(R)r”dfhg - g/”Ll(R) + ”b”Lip(R)rf |(f‘r(—h)(x +y) - fx+ y))||g'(x —y)ldy.

Since |(fr—n(x + ) = f(x + g’ (x = VI < 2/ @’ (x = I, & € L'(R), and limy,o( frm(x +y) —
f(x+y)) =0, then we derive from the dominated convergence theorem that

lim f Frm(x+3) = £G4 g’ (x = idy = 0.

Hence, we obtain

lim f 1b(x) = b(x + Y|(frem(x +y) = f(x + y)d_pg(x = y)dy = 0. 2.7)

In view of (2.6) and (2.7), the following conclusion can be drawn.

1 T
im [ 1600 = b+ DI+ 90805 =) = Frn(-+ Mgl = )y

A 2.8)
= [ 1) = b4 I 250530+ £+ g = 3y
Subsequently, we proceed to prove that
1 r
lim A f (16(x) = b(x + y)| = [b(x = h) = b(x +y = W) fr-m (X + Y)&(-m (X — y)dy
- (2.9)

= [ @b = b+ Db = DI - )y
For convenience, we set F,(x,y) = |b(x) — b(y)| and

1 1
(Fepn(y) = Z(Fb(x’y +h) = Fu(x,y), (Fypa(x) = Z(Fb(x +h,y) = Fp(x,y)).

Observe that

Fp(x,y) — Fp(x —h,y —h) _ Fp(x,y) — Fp(x,y — h) N Fp(x,y—h)—Fy(x—h,y—h)
h h

h
= (Frp)-n(y) + (Fy_pp)-n(x).

AIMS Mathematics Volume 10, Issue 9, 20199-20218.
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By a change of variable, we have

5 | (b)) = bx + ) = |b(x = h) = b(x +y = W) from (X + ¥)gren(x = y)dy

_ f Fy(x,y) = Fy(x—h,y = h)
; h

= f (Fep)-n(y) + (Fy—pnp)-n(X) fr-y D) &x(-my(2x = y)dy (2.10)

S &e-w(2x — y)dy

f(WMAwH ) n o Ngrm % = ¥) — F0)g(2x = y)dy
f«mmm<mmmmmww

Since b € Lip(R), then ||[Fy(x, Nzipw)y < bllzipry and |F5Co M eipw)y < 1bllLipw) for any x € R and

y € R. By Lemma 2, we see that |fr_n()g-n2x —y) = f(Mg2x = Y| < 2f Il @llg’ll ) and
JremD8r-n(2x—y)— f(»)g(2x—y) — 0as h — 0. According to the dominated convergence theorem,
it can be deduced that

X+r

‘ ((Frp)-n) + (Fy—np) - CO) frcy (D) &=y (2x — y) = f(1)g(2x — y))dy
o o @2.11)

ﬂmmfvmmwmwﬁmmwwwwww

By the fact that F(x, -) € Lip(R) and Remark 2, it follows that for almost every y € R,
(Fxp)-n(y) = Dylb(x) = b(y)l as h — 0"
and
[(F)-aOIf()g2x = ) < 11bllip@llg i@l f ()l € L'(R).

These facts together with the dominated convergence theorem imply

X+r

Jlim fx j:r(Fx,b)—h(y)f (7)g(2x — y)dy = f 3 D, |b(x) = b f(y)g(2x = y)dy. (2.12)
On the other hand, by a change of variable, we can write
fx :H(F y-hb)-n(X) f(¥)g(2x — y)dy = f j_:h(F v0)=n(X) fr(y) (V) 8- (2x = y)dy. (2.13)
Observe that
' f o h(Fy b)-1(X) fry V)& (2X = y)dy — f (Fy.5)-1(X) frny (D)8~ (2x = y)dy (2.14)

r—h
< 2||b||sz(R)||f ”L‘(R)“g ”Ll(R)lhl — 0 ash— 0.

Note that F,(-,y) € Lip(R) for all y € R. Then, by Remark 2, we have that for almost every x € R,

Bim (Fyp)-n(x) = Dlb(x) = O], ¥y € R.

AIMS Mathematics Volume 10, Issue 9, 20199-20218.
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By employing arguments analogous to those utilized in the derivation (2.12), we have that for almost

every x € R,

X+r

]}Lr(gg f (Fyp)-n(0) f()g2x — y)dy = f D,|b(x) — b)) f(»)g(2x — y)dy.

—r

An argument similar to (2.11) leads to

[ i g 2= = F012x = )y = 0 as = 0.

This, in conjunction with (2.13)—(2.15), suggests that

X+r1

Jim f (Fy-np)-n(0) f(¥)8(2x — y)dy = f D,|b(x) — b(y)If()g(2x — y)dy.
Then, (2.9) follows from (2.10)—(2.12) and (2.16).
It follows from (2.4), (2.5), (2.8), and (2.9) that

Mo (f, — My o(f,0)x —h
M0 (f,8) (x) = h]j_%l+ bo([f8)(X) . bo(f>8)(x = h)

1 r
< Gy |10 = B+ DI gl =)+ Fx g = )y

ania f (D«|b(x) = b(y) + Dylb(x) = bG)DIf (1)g(2x = y)ldy.

+

On the other hand, we have

9‘Rb,a(f’ g)(x + h) - gﬁb,a(f’ g)(x)
= My, .0 Srnys &r)(X) — My o (f, ©)(x)

1 r
> i f 1By (%) = By (X + V| ey (X + ¥) gy (x — )y

“ e |b(x) — b(x + y)|f(x + y)g(x — y)dy

> f |b(x) — b(x + VI (frm(x + ¥)gry(x —¥) — f(x + y)g(x — y))dy

(2,-)1—(1
+

'

(2r)l-a
for all 4 > 0. By (2.4) and the arguments similar to those used in getting (2.8) and (2.9),

n arJ > h) =M alJ s
(Wy0(f, ) () = lim = (f, 9)x + 2 palfs 2)(X)

1 r
> 20 f Ib(x) — b(x + YI(f'(x +y)g(x —y) + f(x +y)g'(x — y)dy

S | (Db = b + Dylbx) ~ OIS O)e(2 - .

+

Combining (2.18) with (2.17) leads to (2.3). This completes the proof.

f (1b(x + h) = b(x +y + h)| = |b(x) = b(x + Y)]) fran (X + Y)grin(x — y)dy

(2.15)

(2.16)

(2.17)

(2.18)

O
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We end this section by establishing some pointwise convergence of the derivative of bilinear
maximal functions.

Lemma 5. Let @ € [0,1) and b € Lip(R) with b’ € L'(R). Let f, g € WH(R), {filiz1 C WL(R), and
{g;}j>1 € WEY(R). Assume that f; — fand g; — g in W"'(R) as j — co. Then, for almost every x € R,

Mo (f7:8))) () = (Mpo(f,8))'(x) as j — oo. (2.19)

Proof. Without loss of generality, we may assume all f;, g;, f, ¢ > 0 because of Lemma 2(iv). Set
Dy = {x € R: My, (f,g) > 0}. The proof of (2.19) can be divided into two steps:

Step 1. Proof of (2.19) for almost every x € D,.

We shall adapt the method as in the proof of [§, Lemma 2.10] to prove (2.19) for almost every
x € Dy. Given k € Z, it suffices to show that (2.19) holds for almost every x € Dy, := {x e R : 2k <
My, o(f> g)(x) < 2571}, By Lemma 2(vi), we see that My, ,( fi» &;) converges uniformly to M, ,(f, g) onR.
Without loss of generality, we may assume I, (fj, g;)(x) > 0 for all x € Dy,. Let us fix k € Z. Let Ay
(resp., A;) be the set for which the function M, ,(f, g) (resp., M, (fj, g;)) 1s differentiable on A (resp.,
Aj)for j> 1. SetA = ﬂ;‘;o A;. Invoking Lemma 4, we have that [R\A ;| = O forall j > 0. So, |[R\A| = 0.
Let G be the set for which b is differentiable on G. Let H = {x € R : |D,|b(x)—bW)|| < 1bllLipw). Yy € R}.
It was pointed out in the proof of [8, Lemma 2.10] that [R\ G| = 0, |[R\ H| = 0 and |[R\(ANGNH)| = 0.
Let By (resp., B;) be the set of all x € A N Dy for which (2.3) holds for (f, g) (resp., (fj,g;)) at x.
Invoking Lemma 4, we see that [(A N Do) \ Bj| = 0. Let B = ﬂ;io B;. Clearly, |(A N Do) \ Bl = 0.
Based on the above analyses, it is sufficient to demonstrate that (2.19) holds forx e BN G N H.

Let x € BN G N H. By Lemma 3, there exist §; = inf R,(f, g)(x) > 0 and 6, = supR,(f, g)(x) >0
such that 6; < r < 8, when r € R,(f, g)(x). Invoking Lemma 4, there exists {r;} 1 C R,(fj, g;)(x) \ {0}
such that

(imb,a(lfj, 8 j))'(i?
= (2%)1_[,( 1b(x) — b(x + I(f;(x + y)g;(x —y) + fi(x + ¥)gi(x — y)dy
J —rj

+ [ D) - b + D) - OIS 025 - ).

—r;

(2.20)

According to our assumption, there exists C > 0 such that [[fjlly11r) < C and ||g;llwr1g) < C for all
Jj = 1. By Lemmas 2(vi) and 3 and the arguments similar to those used to derive [8, Lemma 2.10], there
exists N € N such that r; € [6,/2,20,] for any j > N. Note that |b(x) — b(-)| € Lip(R). By Remark 2,
we see that |Dy|b(x) — b(y)I| < [|bllLipwr)- By Remark 2, Lemma 2, and (2.20), one gets

D0 (f7: 8)) (O < 20161y + 1Bl Lip@)ILf @ llg Nl @y + 2Mbllip@ I8l @l fillwr -

This yields that the sequence {(M, ,(fj, g;)) (x)}j>1 is a bounded set.

Given a convergent subsequence {(Mi, o (fj,, £;,)) (X)}i=1 of {(Myo(fj, &7)) (X)}j>1, note that {r; },5; is
a bounded sequence. There exist r > 0 and a subsequence {rjl( }es1 C {rj }i>1 such that lim,_, rj, =T
By Lemma 3(ii), we see that r € R,(f, g)(x). Applying Lemma 4, one has

Q2r)i-

1 T
My o(f,8)) (x) = f 1b(x) = b(x + YI(f'(x +y)g(x = y) + f(x +y)g'(x = y)dy
1 “hxr
b f (Dulb(x) = b)) + DyJb(x) = BOI) F g2 — ¥)dy.

(2.21)
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By the arguments similar to those used to derive the proof of Lemma 3, we have

160 x4 30 =3+ 5, 308, = 3y

ri
Jip
¢ r

- f Ib(x) = b(x + PI(f'(x +y)g(x —y) + f(x + y)g'(x — y))dy as £ — oo,

—-r

f " (Dub(x) - b + Dylb(x) = b F;, 0)g5, (2x = Yy

x_rjl[
X7

- (Dlb(x) = b(y)| + Dy|b(x) = b(y))) f(¥)g(2x = y)dy as £ — oo.

X=r

These together with (2.20) and (2.21) imply that
Mpo(f,+ 85,)) (X) = Wy 0(f, )Y (x) as £ — co.

So, Mpa(fi,gi))(x) = Mpo(f,8))(x) as 1 — oo. Consequently, (M,,(f,g)) (x) is the unique
accumulation point of {(M,,(f;,&;,)) (x)}j=1. This proves Step 1.

Step 2. Proof of (2.19) for almost every x € R\ D,.

Let D; := {x € R : M,,(f,9)(x) > 0}. By Lemma 4, we see that (M, ,(f,g))' (x) = O for all
x € AN (R\ Dy). Moreover, (M, ,(fj,g;))'(x) = 0 forall x € AN (R \ D;). Thus, it suffices to show
that for almost every x € R\ Dy,

My.a(f7:8))) (Xxp,(x) = 0 as j— co. (2.22)

By Lemma 4, there exists a measurable set E; C D; such that |[D;\ E;| = 0, and for any x € E;, there
exists r; € Ry (fj, g;)(x) \ {0} such that
Mo (i 8))) (x

1 ri
B (27'.)1—(1( f Ib(x) = b(x + VI (x + y)g(x = ) + fi(x + y)g(x = y)dy
J —rj

+ [ D - b + D) - OIS 25 - ).

—r;

(2.23)

Let J := {x € R : |b(x)—b(y)| be differentiable at x, Yy € R}. Since |b(-)—b(y)| € Lip(R), then we have
that for almost x € R, the function |b(-) — b(y)| is differentiable at x for all y € R. Hence, |R \ J| = 0.
Therefore, it is enough to show that forallx e ANGNHNJ N R\ Dy),

Mo (7 8)) (X)xE;(x) = 0 as j — oo. (2.24)

In view of (2.23), for (2.24) it suffices to prove that forallx e ANGNHNJ N R\ Dy),

1 ’i
2 f 1b(x) = b(x + WIf;(x + y)gj(x = y) + filx + )gi(x —=y)dy — 0 as j > 005 (2.25)
J —rj
2 f (Dulb(x) - bl + Dylb(x) = b)) fi(¥)g;(2x — y)dy — 0 as j — 0. (2.26)
J X=rj
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We first prove (2.25). Letus fix j > 1 and xo € ANGNHNJNR\Dy)NE;. Since M, ,(f, g)(xp) = 0,
then |b(xp) — b(xo + V)| f(xo + y)g(xo —y) = O for almost every y € R. Let B := {y € R; |(b(xo) — b(xo +
WIf (xo + ¥)g(xo — y) = 0}. It is readily apparent that |[R \ B| = 0. Let

By :={y € B: |b(xp) — b(xo +y)| >0}, B, :={y€B: f(xo+y)g(xo—y) >0}
Clearly, |B; N B,| = 0. Then, we have
' 1
(Zl"j)l_a
1

Q2r)l-« (2.27)
X s gy 1PG0) = D00 + VIS (xo + )8 (X0 = ¥) + fj(x0 + ¥)g(x0 — Y)ldy

f J 1b(x0) — b(xo + I(f; (x0 + ¥)g(xo — ) + fi(xo + ¥)gi(x0 — y))dy

<

< (I0llLipw) + ||b'||L1(R))f |17 (%0 + ¥)g1(x0 = ¥) + fi(xo + ¥)g(x0 — y)ldy.
B\B;

Let

By ={y€B\By: f(xo+y) >0}, Bop={y€B\B;y:g(xo—y) >0}
Clearly, B, N B, = 0. Moreover, f'(xo +y) = 0 for almost every y € (B\ B;) \ B,y and g'(xo—y) =0
for almost every y € (B\ B,) \ By, since f, g € WH(R). These facts together with Lemma 2 imply that

f\ |(f7 (x0 + ¥)g (X0 = ¥) + fi(xo + ¥)g7(x0 — Y)Idy
B\B,

< |f7(xo +¥)gj(x0 = ¥) + fi(x0 + ¥)g(x0 — y)ldy
(B\B2)\B22

+ |f7(x0 + ¥)gj(x0 = ¥) + fi(xo + y)g7(x0 — Y)ldy
B a2N((B\B2)\B2,1)

= |7 (x0 + ¥)(g(x0 = ¥) — g(xo — ¥)) + fi(xo + ¥)(g(x0 — ¥) — &' (x0 — y)Idy
(B\B2)\Ba. (2.28)

+ |(f;(xo +y) = f(x0 +¥)gi(xo = y)
B 2N((B\B2)\B2.1)

+(fi(xo +¥) = f(xo + ¥)g(x0 — y)ldy
< ICg; - g)/”L'(R)”f;”LI(R) + ||f;||L1(R)”g;' — &l w)
g ol = Flloe + 15 = Y lnellg e
< 2||g; - g'”Ll(R)(”ff - f'||L1(R) + ”f,”L‘(R)) + 2(”8} - g'“Ll(R) + “g,”L‘(R))”fJ{ - f'||L1(R)

— 0 as j— oo.

Combining (2.28) with (2.27) implies (2.25).

Now we prove (2.26). The argument is analogous to (2.25). Since |(b(xy) — b(xo +¥)) f(xo +y)g(xo —
y)| = 0 for almost every y € R, then |(b(xy) — b(¥))f(y)g(2xo — y)| = 0 for almost every y € R. Let
I ={y € R:|blxgp) —by)If(y)g(2xy —y) = 0}. Itis clear that R \ /| = 0. For convenience, we let
F(x,y) = |b(x) — b(y)| and denote

F(x,y) = Dilb(x) = b()l,  Fy(x,y) = Dylb(x) — b(y)l.

Let
I ={y € I;|b(xo) = b()| > 0}, L ={yel f(y)g2xo—y) > 0}
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We have I} N I, = (. Then, we have

1 x0+rj
'(zr e f (Fx(x0, y) + Fy(x0, V) f;(¥)g(2x0 — y)dy'
J Xo—rj
| .
<5 l_a( f (Fx(x0,y) + Fy(x0, ) fi(0)g,;(2x0 — y)dy‘ (2.29)
2r j) [xo—rj,x0+r INL NI\ L)

| [ (F3.9) + Fy (0. D008, — ey,
[xo—rj.x0+r;INU\I1)

Let
Li={yel\L:f(y)>0}, Ly={yel\lL:g2x—y) >0}

Clearly, I,; N I,, = 0. We also note that |F(xo, )| < [|bllipw) for any y € R and |F(xo, Y)| < [|6l|Lipr)
for almost every y € R. It follows that

1
lﬂf (P00 3) + FyCion YL 0)852%0 — y)dy
(2”j) [xo—rj,x0+r; 1N NUIND)

< 211l Lipez) Jig;(2xo = y)dy.

Q2ryt-e [xo—r.x0+r1N(I\ )
By Lemma 2, one obtains

! f - =+ N
( j)l [xo rj,X0 rj]ﬂll (I\I>) ! !

1
Ji)g(2xo = y)dy
(zrj)l_a [xo—rj,x0+r_,~]ﬂ(1\[2) ! / ’
1

<

<

fi(0)gi(2xo — y)dy

Crp' Jixo-r)xotr 0N\ b

+

Jigi2xy — y)dy

l_
Cr)'™ Jixo—rjmotrinban(@\E\B)

1
|/iO0)(g(2x0 — y) — 8(2x0 — y)ldy

= 1_
(er) ¢ [xo=rjxo+r;INUNI\2 2

+

PRy (/i) = f()gj(2x0 — y)ldy
( rj) [xo=7j,x0+7; 1N 2N((IN\I2)\12,1)

<N fillee@yMo(gj — 8)(x0) + lIgjllzomMa(fi — F)(X0)
< ”f]{”L'(R)”gj = gllwiw + ||g;||L1(R)”fj = fllw@® — 0 as j— oo,

Hence, we conclude that

1 .
= (Fox0,) + Fy (o, (0230 — )y > 0 as j— 0. (230)
(2’f i) [xo—rj,x0+r 1N NI\ L)

On the other hand, we see that F(xp,y) = 0 fory € I\ I;. Itis inferred that Fy(xy,y) = O for almost
every y € I\ I;. Consequently,

1
Q2r)l-e

f‘ Fy (o0 ) £ )82 = y)dy = 0. 231)
[xo—rj,x0+7;10(I\11)
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By (2.29)—(2.31), for (2.26), it is sufficient to demonstrate that
f F.(x0,y)[i(y)gj(2x0 — y)dy — 0 as j — oo, (2.32)
[xo—=rj.xo+r;1NU\I1)

Since b(y) = b(xy) fory € I'\ I, then we have
F(x,y) = F(x, x0) = |b(x) = b(xo)l, Yy eI\l.

Since x € J, then for any y € I\ I, we have that F(-,y) is differentiable at x,. Fix y € I'\ I}, and we

note

|b(xo — h) — b(xo)l _ 1bGxo + 1) — b(xo)l

T _ _ 1
Rl S L >
Hence, we have F,(xy,y) = 0 forany y € I'\ I,. This yields (2.32). Then, Lemma 5 is proved. O

3. Proof of Theorem 1

We now present the proof of Theorem 1. We first prove the boundedness part in Theorem 1. Without
loss of generality, we may assume that all f,g > 0. Let ﬁ <g<oand 0 < a < 1. Let p =
1/(1/g + @). Clearly, 1 < p<g < ooand 1/g =1/p — a. Note that

1 lerey < AU ey < e Ay < L ey
Applying Remark 2 and Lemma 2.1, it is clear that
Moo ) < 1 e € 1 @y M f (2), % € R

This together with the bounds for M, yields that

08,0 (f, ©lawy < 16" Ml1wllg” Lty ll Mo fllLa)

3.1)
< Cogll Nl llg @ llfllr®y £ Coglltllnr@llg @l fITwri@)-

Hence, to prove the boundedness, it is adequate to establish that

’ 1-1/g- 1/g+ ’
N o (f, 8)) sy < Ca,q(llbllup(g) Q”b’“L/l((IR)a”f,”Ll(R)”g lo® + IblLp@llg e @l fllwiw).  (3.2)

Let E be the set of all points x € R for which 9, ,(f, g) is differentiable at x. In view of Lemma 4,
we have R\ E| = 0. Let F = {x € R : |D,|b(x) — b(y)|| = |b'(x)|, Yy € R}. It was shown in [9] that
R\ F|=0.LetG ={xeR:MM,,(f,g)(x) > 0}). By Lemma 4 we see that for almost every x € G,

Mo (f, 8))'(x) = 0. (3.3)

Moreover, for almost every x € G, there exists r € R,(f, g)(x) \ {0} such that

Qr)i-e

1 7
Mo (f,8)) (x) = f Ib(x) — b(x + DI (x + Dg(x — 2) + f(x + )¢’ (x — 2))dz
1 Axtr
T2 f  (Dudb() = b@)] + DoJb(x) = bDf(R)g(2x — 2)dz.

(3.4)
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Note that b € Lip(R). By the fundamental theorem of calculus and Lemma 2(i), one gets

'(21‘% Ir b(x) = b(x + 2| f"(x + 2)g(x — 2)dz

1 r X+2Z
<@y | | vou

X+r

1
<l [ oo [ W@l G s

X—=r

<A N @llg o @y Melb'1(x).

|f'(x + 2)g(x — 2)ldz

Hence, we obtain that for almost every x € R,

[ o (S 2) (%) < zllg,”L‘(R)(”f,”Ll(R)Malb/l(x) + ”b”Lip(R)Maf(x))- (3.5)

By (3.5) and the L? bounds for M,, one gets

1.0 (f> ) oy < 20 Nrllg 1@l Melb oy + 216l Lip@lg I @ IM o fllLaw)
< Co gl lin@llg @b’ ey + 2101 Lipellg Nl @l f 1l g
1-1/g—- 1/q+
< Cog(Ibll pe) ”Ilb’lILI’ZRfllf’IIL1<R)IIg'IILl(R> + 1Dl Lip@ g Nl @lLf lwrr w))-

This proves (3.2).

Next, we prove the continuity part in Theorem 1. Let a € [0, 1), ﬁ < g < oo, f € WH(R), and
g € WHM(R). Let {fi};21 € WH(R) be such that f; — f in W'(R) and {g;},»1 ¢ W"!(R) be such that
gj — gin WM (R) as j — oo. By the sublinearity of 9, ,, one obtains

D0 (fj> 8)(X) = Ny o (f, O < Ny o(fj = 1> 85 = &)X) + My o(fj = f, 8)(X) + Wya(f 8 — &)

Consequently, in conjunction with Section (3.1) implies that

1Mo (f55 &) — My o (f, Dllzaw)
< Coq(llf; = fllwiwlg; — gllwiiw + lIgllwiiw) + 1L llwamllg; — gllwiiw) — 0 as j — oo.

Thus, to establish continuity, it is sufficient to demonstrate that
My (s €)= My o(f, &) e — 0 as j — oo. (3.6)

Presume that (3.6) is incorrect. We may assume, without loss of generality, that

10 (£, 80) = Moo (f, ) sy > ¢, Vj=1 (3.7

for some ¢ > 0. By our assumption, there exists C > 0 such that

fillwiiw +llgillwie <C, ¥Vj>1. (3.8)

Through the proof of the boundedness segment and (3.8), we have that for any j > 1 and almost every
x €R,

[N, (f> 8)) (O < 2018l ) (1f 2 ) MalD'|(X) + 11Dl ip) M fi(X))

39
< 2C M|’ |(x) + 2C11b I Lipeey Mo f (x) + 2C b Lipy Ma(f; = (). G2
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Let p=1/(1/q + @). Clearly, 1/g =1/p—aand 1 < p < g < co. Note that

IMo(fi = llaw) < Coallfi = fllrwy < Coallfi — fllwriw — 0 as j — oo.

This yields that there exists {j;}x>1, satisfying the condition that

” i Mo(fj = 1) < i IMo(fie = lla) < 1.
k=1 k=1

LI(R)
By (3.9), we see that

[Ny (fi 8))' (X) = (Do (f, 8)) (X))
< 2C*M,|b'|(x) +2C ”b”Lip(R)(Maf (x) + Z M (fj = f )(X)) + 1Mo (f, 8)) ()] =2 D(x).
k=1

Note that ® € LY(R). By Lemma 5 and the dominated convergence theorem, we have (3.6). This
completes the proof of Theorem 1. O

4. Conclusions

In this paper we study the endpoint Sobolev regularity of the bilinear maximal commutator and its
fractional variant 9t, , with @ € [0, 1) and the symbol function 5. We prove that the above commutator
M, . is bounded and continuous from W"!(R) x W"(R) to W'(R) if ¢ € (+, o) and b € Lip(R) with
b’ € L'(R). Our main result essentially answered a question motivated by Wang and Liu in 2022.
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