Research article

Finite-time stochastic synchronization of network systems with intermittent delayed couplings

  • Published: 01 September 2025
  • MSC : 93C10, 93D40

  • This article investigates finite-time synchronization (FTS) of network systems (NSs) with intermittent delayed couplings and stochastic perturbations. A channel matrix is introduced to describe the partial couplings of NSs, and state-dependent parameters are also considered to characterize the weight matrices. In order to deal with the intermittent couplings and reduce the control cost, an intermittent control scheme is designed. Based on the 2-norm Lyapunov function and new analytical methods, FTS is achieved, and the settling time is also estimated. Besides, two special cases are presented which indicate that our models are more general than some existing models. Finally, the synchronization criteria are verified by some simulations.

    Citation: Wanli Zhang. Finite-time stochastic synchronization of network systems with intermittent delayed couplings[J]. AIMS Mathematics, 2025, 10(9): 20010-20024. doi: 10.3934/math.2025894

    Related Papers:

  • This article investigates finite-time synchronization (FTS) of network systems (NSs) with intermittent delayed couplings and stochastic perturbations. A channel matrix is introduced to describe the partial couplings of NSs, and state-dependent parameters are also considered to characterize the weight matrices. In order to deal with the intermittent couplings and reduce the control cost, an intermittent control scheme is designed. Based on the 2-norm Lyapunov function and new analytical methods, FTS is achieved, and the settling time is also estimated. Besides, two special cases are presented which indicate that our models are more general than some existing models. Finally, the synchronization criteria are verified by some simulations.



    加载中


    [1] C. Huang, D. W. C. Ho, J. Q. Lu, Partial-information-based distributed filtering in two-targets tracking sensor networks, IEEE T. Circuits-Ⅰ, 59 (2012), 820–832. https://doi.org/10.1109/TCSI.2011.2169912 doi: 10.1109/TCSI.2011.2169912
    [2] J. Q. Lu, C. D. Ding, J. G. Lou, J. D. Cao, Outer synchronization of partially coupled dynamical networks via pinning impulsive controllers, J. Franklin I., 352 (2015), 5024–5041. https://doi.org/10.1016/j.jfranklin.2015.08.016 doi: 10.1016/j.jfranklin.2015.08.016
    [3] R. M. Zhang, D. Q. Zeng, J. H. Park, Y. J. Liu, S. M. Zhong, Pinning event-triggered sampling control for synchronization of T-S fuzzy complex networks with partial and discrete-time couplings, IEEE T. Fuzzy Syst., 27 (2019), 2368–2380. https://doi.org/10.1109/TFUZZ.2019.2898373 doi: 10.1109/TFUZZ.2019.2898373
    [4] Y. Y. Li, J. Zhang, J. Q. Lu, J. G. Lou, Finite-time synchronization of complex networks with partial communication channels failure, Inform. Sci., 634 (2023), 539–549. https://doi.org/10.1016/j.ins.2023.03.077 doi: 10.1016/j.ins.2023.03.077
    [5] J. Zhang, J. Q. Lu, J. L. Qiu, J. L. Liang, Prescribed-time synchronization of complex networks with switching partial information transmission, IEEE T. Circuits-Ⅱ, 71 (2024), 2724–2728. https://doi.org/10.1109/TCSII.2024.3351941 doi: 10.1109/TCSII.2024.3351941
    [6] S. Haykin, Neural networks: A comprehensive foundation, Prentice Hall PTR, New Jersey, 1994. https://dl.acm.org/doi/abs/10.5555/541500
    [7] K. Sivaranjani, R. Rakkiyappan, Delayed impulsive synchronization of nonlinearly coupled markovian jumping complex dynamical networks with stochastic perturbations, Nonlinear Dyn., 88 (2017), 1917–1934. https://doi.org/10.1007/s11071-017-3353-0 doi: 10.1007/s11071-017-3353-0
    [8] X. Wang, R. Xu, T. W. Huang, J. Kurths, Event-triggered adaptive containment control for heterogeneous stochastic nonlinear multiagent systems, IEEE T. Neur. Net. Lear., 35 (2024), 8524–8534. https://doi.org/10.1109/TNNLS.2022.3230508 doi: 10.1109/TNNLS.2022.3230508
    [9] X. S. Yang, J. D. Cao, Finite-time stochastic synchronization of complex networks, Appl. Math. Model., 34 (2010), 3631–3641. https://doi.org/10.1016/j.apm.2010.03.012 doi: 10.1016/j.apm.2010.03.012
    [10] J. X. Zhao, Y. H. Wang, P. T. Gao, X. X. Wang, Links synchronization control for complex networks with stochastic links dynamics, J. Appl. Math. Comput., 70 (2024), 2343–2360. https://doi.org/10.1007/s12190-024-02051-1 doi: 10.1007/s12190-024-02051-1
    [11] Q. H. Zhang, J. G. Lu, $H_{\infty}$ consensus control for high-order fully actuated multi-agent systems with external disturbances, Int. J. Syst. Sci., 2025. https://doi.org/10.1080/00207721.2025.2492301 doi: 10.1080/00207721.2025.2492301
    [12] X. Wang, N. Pang, Y. W. Xu, T. W. Huang, J. Kurths, On state-constrained containment control for nonlinear multiagent systems using event-triggered input, IEEE T. Syst. Man Cy.-S., 54 (2024), 2530–2538. https://doi.org/10.1109/TSMC.2023.3345365 doi: 10.1109/TSMC.2023.3345365
    [13] Y. G. Bao, Y. J. Zhang, B. Y. Zhang, Fixed-time synchronization of coupled memristive neural networks via event-triggered control, Appl. Math. Comput., 411 (2021), 126542, https://doi.org/10.1016/j.amc.2021.126542 doi: 10.1016/j.amc.2021.126542
    [14] T. Yang, M. S. Chen, P. J. Long, W. L. Zhang, Finite-time bipartite synchronization of T-S fuzzy coupled neural networks via quantized adaptive control, Asian J. Control, 26 (2024), 1721–1733. https://doi.org/10.1002/asjc.3295 doi: 10.1002/asjc.3295
    [15] X. S. Yang, D. W. C. Ho, Synchronization of delayed memristive neural networks: Robust analysis approach, IEEE T. Cybernetics, 46 (2016), 3377–3387. https://doi.org/10.1109/TCYB.2015.2505903 doi: 10.1109/TCYB.2015.2505903
    [16] W. Zhang, Q. Huang, X. Wang, H. Q. Li, H. Y. Li, Bipartite consensus for quantization communication multi-agents systems with event-triggered random delayed impulse control, IEEE T. Circuits-Ⅰ, 2024, 1–12. https://doi.org/10.1109/TCSI.2024.3468447 doi: 10.1109/TCSI.2024.3468447
    [17] S. P. Bhat, D. S. Bernstein, Finite-time stability of homogeneous systems, In Proceedings of the IEEE American Control Conference, IEEE, 1997, 2513–2514. https://doi.org/10.1109/ACC.1997.609245
    [18] S. Bowong, F. M. M. Kakmeni, Chaos control and duration time of a class of uncertain chaotic systems, Phys. Lett. A, 316 (2003), 206–217. https://doi.org/10.1016/S0375-9601(03)01152-6 doi: 10.1016/S0375-9601(03)01152-6
    [19] V. T. Haimo, Finite time controllers, SIAM J. Control Optim., 24 (1986), 760–770. https://doi.org/10.1137/0324047 doi: 10.1137/0324047
    [20] D. Efimov, A. Polyakov, E. Fridman, W. Perruquetti, J. P. Richard, Comments on finite-time stability of time-delay systems, Automatica, 50 (2014), 1944–1947. https://doi.org/10.1016/j.automatica.2014.05.010 doi: 10.1016/j.automatica.2014.05.010
    [21] X. S. Yang, Can neural networks with arbitrary delays be finite-timely synchronized? Neurocomputing, 143 (2014), 275–281. https://doi.org/10.1016/j.neucom.2014.05.064 doi: 10.1016/j.neucom.2014.05.064
    [22] X. S. Yang, Q. Song, J. L. Liang, B. He, Finite-time synchronization of coupled discontinuous neural networks with mixed delays and nonidentical perturbations, J. Franklin I., 352 (2015), 4382–4406. https://doi.org/10.1016/j.jfranklin.2015.07.001 doi: 10.1016/j.jfranklin.2015.07.001
    [23] R. Q. Tang, X. S. Yang, P. Shi, Z. R. Xiang, L. B. Qing, Finite-time stabilization of uncertain delayed T-S fuzzy systems via intermittent control, IEEE T. Fuzzy Syst., 32 (2024), 116–125. https://doi.org/10.1109/TFUZZ.2023.3292233 doi: 10.1109/TFUZZ.2023.3292233
    [24] R. Q. Tang, S. Yuan, X. S. Yang, P. Shi, Z. R. Xiang, Finite-time synchronization of intermittently controlled reaction-diffusion systems with delays: A weighted LKF method, Commun. Nonlinear Sci. Numer. Simul., 127 (2023), 107571. https://doi.org/10.1016/j.cnsns.2023.107571 doi: 10.1016/j.cnsns.2023.107571
    [25] C. Hu, H. B. He, H. J. Jiang, Synchronization of complex-valued dynamic networks with intermittently adaptive coupling: A direct error method, Automatica, 112 (2020), 108675. https://doi.org/10.1016/j.automatica.2019.108675 doi: 10.1016/j.automatica.2019.108675
    [26] E. G. Tian, Y. Zou, H. T. Chen, Finite-time synchronization of complex networks with intermittent couplings and neutral-type delays, IEEE/CAA J. Automatic., 10 (2023), 2026–2028. https://doi.org/10.1109/JAS.2023.123171 doi: 10.1109/JAS.2023.123171
    [27] J. A. Wang, R. R. Cai, J. R. Zhang, J. Zhang, M. J. Li, Z. C. Zhao, Fixed-time pinning synchronization of intermittently coupled complex network via economical controller, Neural Process. Lett., 56 (2024), 51. https://doi.org/10.1007/s11063-024-11441-2 doi: 10.1007/s11063-024-11441-2
    [28] C. Xu, X. S. Yang, J. Q. Lu, J. W. Feng, F. E. Alsaadi, T. Hayat, Finite-time synchronization of networks via quantized intermittent pinning control, IEEE T. Cybernetics, 48 (2018), 3021–3027. https://doi.org/10.1109/TCYB.2017.2749248 doi: 10.1109/TCYB.2017.2749248
    [29] X. T. Geng, J. W. Feng, N. Li, Y. Zhao, C. B. Yi, J. Y. Wang, Finite-time stochastic synchronization of multiweighted directed complex networks via intermittent control, IEEE T. Circuits Syst., 70 (2023), 2964–2968. https://doi.org/10.1109/TCSII.2023.3253825 doi: 10.1109/TCSII.2023.3253825
    [30] Z. P. Wang, X. Zhang, J. F. Qiao, H. N. Wu, T. W. Huang, Synchronization of reaction-diffusion neural networks with random time-varying delay via intermittent boundary control, Neurocomputing, 556 (2023), 126645. https://doi.org/10.1016/j.neucom.2023.126645 doi: 10.1016/j.neucom.2023.126645
    [31] T. Yang, L. Cao, W. L. Zhang, Practical generalized finite-time synchronization of duplex networks with quantized and delayed couplings via intermittent control, AIMS Math., 9 (2024), 20350–20366. https://doi.org/10.3934/math.2024990 doi: 10.3934/math.2024990
    [32] L. Cao, W. L. Zhang, H. Guo, Finite-time cluster synchronisation of complex networks with multi-weights and nonlinear couplings via semi-intermittent control, Int. J. Syst. Sci., 2025. https://doi.org/10.1080/00207721.2025.2450095 doi: 10.1080/00207721.2025.2450095
    [33] F. C. Kong, R. T. Tao, S. B. Zhu, J. H. Lü, Intermittent control-based practical fixed-time synchronization of T-S fuzzy complex networks, IEEE Trans. Fuzzy Syst., 33 (2025), 894–907. https://doi.org/10.1109/TFUZZ.2024.3496738 doi: 10.1109/TFUZZ.2024.3496738
    [34] Q. H. Zhang, J. G. Lu, Z. Zhu, R. J. Cui, Fault estimation for singular fractional-order systems based on $H_{\infty}$ unknown input observers, Ocean Eng., 335 (2025), 121656. https://doi.org/10.1016/j.oceaneng.2025.121656 doi: 10.1016/j.oceaneng.2025.121656
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(667) PDF downloads(91) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog