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1. Introduction

Network systems (NSs) have become useful tools to describe the real networks which include
internet, transportation network, communication network, and so on. In NSs, the connections are
depend on the couplings of nodes. However, the communication of nodes is inevitably influenced by
the external environment. In fact, only partial information is transmitted successfully in many real
networks [1], indicating that partial couplings are widespread. As a result, much attention should be
attached to partially coupled NSs. However, there are few results on NSs with partial couplings in
existing references, see e.g., [2-5].

Due to the fact that real NSs are usually exposed in complex environment, external perturbations
always arise stochastically in signal transmission. For instance, reference [6] shows that the
probabilistic release of neurotransmitters can result in the randomness of synaptic transmission in
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neural networks. NSs in production and real life will also be disturbed by many other stochastic
factors [7-11]. Hence, it is very natural to consider the stochastic perturbations when NSs are
investigated. In addition, some parameters of NSs may be related to the states of NSs. For example,
the memristor-based neural network is a typical representative network and event-triggered control
also relies on the states of networks, see references [12—16] for more details. It cannot be ignored
that state-dependent parameters will bring the jump of parameters, which introduces difficulties to the
investigation of NSs.

Note that the nodes of NSs usually exhibit collective behaviors. Synchronization of NSs as a typical
collective behavior has been one of the most attractive topics. This is a result of the fact that NSs are
usually used to describe many real-life networks. Synchronization implies all the nodes approach
same state. Subsequently, people have to care about the convergence time of synchronization. If
the synchronization is realized as time tends to infinity, it is clearly impractical owing to the finite
lifetime of equipment. Then, finite-time synchronization (FTS) has attracted signficant interest from
researchers. FTS implies the synchronization can be obtained within a finite time, known as the
settling time. Moreover, it has been demonstrated that FTS exhibits fast convergence and strong
robustness [17-19].

Over the past decade, FTS has been investigated extensively, and many results of FTS have been
established. However, the FTS of delayed NSs is not studied completely due to the fact that the
classic finite-time stability theorem is not suitable for delayed systems, which was pointed out by [20].
Some analytical methods are proposed to solve the FTS of delayed NSs, but those methods still
have some limitations [21, 22]. Some references [21, 22] propose and develop effective analytical
methods. However, the methods of references [21, 22] are only based on the 1-norm. Recently,
some references [23,24] have developed new analytical strategies to solve the FTS of delayed NSs
by considering the activation function with time delays. As is well known, the limited bandwidth of
the transmission channel always causes time delays in the couplings between the nodes. Therefore, the
FTS of NSs with delayed couplings is also worth considering. Moreover, the couplings of NSs may be
discontinuous due to external perturbations, as described in some references, one can refer [25-27] and
so on. Motivated by real-world networks, this paper investigates NSs with discontinuous couplings.

As is well known, the synchronization of NSs is not realized spontaneously, and an external
controller is necessary. In theoretical investigation, continuous control schemes play an important
role, but they are not easy to implement in practical applications. Discontinuous controllers are
effective when they are used in real problems. They include impulsive control, intermittent control,
sampled-data control, and so on. Intermittent control is a typical type of discontinuous control. In
intermittent control, the different control schemes are implemented in different intervals, as shown in
references [28-33]. Intermittent control can help reduce control costs, making it a preferred choice
among researchers.

Inspired by the above analysis, in order to accurately describe real-world networks, we focus on
NSs with state-dependent parameters, intermittent couplings, partial couplings, delayed couplings, and
stochastic perturbations. The main contributions include: 1) General models of NSs are structured
to describe complex real networks, and two special cases are presented; 2) In order to deal with the
intermittent couplings and reduce the control cost, an intermittent control scheme is designed; 3) FTS
of NSs is achieved using a 2-norm Lyapunov functional and a new analytical method. In addition, the
settling time is also estimated.
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The chapter arrangement is given as follows: In Section 2, necessary preliminaries are given.
Section 3 establishes finite-time stochastic synchronization based on the models of this paper. In
Section 4, some numerical examples are provided to illustrate the obtained results. Finally, the
conclusion is summarized in Section 5.

Notations: In this paper, R is the real numbers set, R” denotes the corresponding dimensional
Euclidean space, and R"™" is the set of all m X n real matrices. N = {0,1,2,---}, I,, represents the
m-dimension identity matrix, mathematical expectation is expressed by &[-].

2. Preliminaries

The NSs with intermittent delayed couplings can be described as follows:

M
doi(t) =[Aoi(t) + D(o(2)) f(oi(1)) + 6(2) Z giI'Bij(0i(t — ¢(t)) — oi(t — s(1)))]dt

j=1,j#i
+ hi(o1 (1), 02(0), - - -, (1)) dew(r) (2.1)
where (1) = (o1(1),0n(t), -, o) € R™ is the state vector fori € M = {1,2,---, M}, and

floi®) = (filoa®), L(on®), -, fuloim®)T € R™ is a continuous vector-valued function. If
t e 3/{, 0(r) = 1; otherwise, 6(t) = 0 when t € ék, where 3k = [ton, trks1), ék = [faks1, P2ks2), and {t; }rer 18
a strictly increasing time sequence, satisfying 7, = 0, 1}1_{2 t, = +oo. A = diag(a,ay, -+ ,a,) € R"™".
(1) is a time delay with ¢() < u < 1 and 0 < ¢(r) < &. D(0(1)) = (dij(Tik(1)))nxn, Where dy (o (1))
represents the state-dependent parameter, which satisfies the following condition:

dij, loi()| < Ep,
dijlora(ny) =4 =

dij, lou(®)| > Ex,
where E; > 0 is the switching jump, cfkj, d’kj(k,j € {1,2,...,m}) are constant numbers, and cfkj * dkj.
The elements of G = (g;j))uxm are given as follows: If it has a connection from node j to node

M
i(j # i), then g;; > 0, otherwise g;; = 0; gz = — X g I = diag{yi,y2, ¥} 1s an inner
j=1j#i

coupling matrix. Bj; = diag(b}, b7, - ,b}) is a channel matrix with b}, = 0 or 1 for s =
1,2, ,m. wi(t) = (i), wp(t), -, wim(®))" is an m-dimensional vector Weiner process, and w;(f)
is independent of w; for i # j. hi(o1(?), o2(t), - - - ,om(t)) € R™™ is the unknown coupling, satisfying
hi(t(0), 7(t),--- ,7()) = 0 for 7(r) € R™. For convenience, h;(c((t),0>(t),- -+ ,o(t)) = hi(o(t)) and
hi(t(1), (1), - -+, 7(t)) = hj(7(¢)). The initial values of networks (2.1) are o;(t) = oy for ¢ € [-&,0].

Remark 1. The NSs (2.1) are very general. If 6(t) = 1, ¢(t) = 0, and B;; = I, then the couplings
6(r) ij: 1,2 il Bi (o i(t—¢(t)—oi(t—¢(1)) become ZJ/Z 1 8&ijl'oj(t), which are considered in references
[9,22,23,28]. If 6(t) = 1, ¢c(t) = O, then the couplings degrade as Z?ﬁl gijBijl'c j(t), which are
investigated in references [2, 3]. It is noteworthy that none of the above-mentioned references has
considered intermittent coupling forms (6(t) = 1 or 6(t) = 0 for different cases); instead, they all focus
on continuous coupling forms. Besides, in the above references, the state-dependent parameters, for
example D(o(t)), and stochastic perturbations are not involved simultaneously. As is well known, the
more factors are considered, the more difficulties of synchronization will be introduced.
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Let Cij = gijBij e diag{c}j,c?j,--- ,C:’jl-}, for l,] € M and Ci,' = _Zjﬂ/il,j;ti C,’j. Then, the
networks (2.1) are rewritten as:

M
do(t) = [Aci(?) + D(oi(t)) f(oi(1)) + 6(t) Z ['Cijoj(t — ¢(1))]dt + hi(o(1))dw(?).
j=1
Denote d,; = min{dy;, dy;}, di; = max{dy,dy},dy; = %(c_lkj +dy)), and dy; = $(dyj - d,;) for
k,je{l,2,...,m}. According to the analysis of references [13, 15], one has
M
do(t) = [Aoi(?) + (D + Di(1) f(oi(1) + 6(t) Z ['Cijoj(t — ¢)]dt + hi(oc@®)dw(t),  (2.2)
j=1

where D = (dij)mxms Dil) = (i} O)mxms and £,(1) € [=1, 1],

Lemma 1. [24] The continuous and positive definite function v(t)(t € [0, +0)) satisfies

) —av(t)—c, te€ 3;0
v(r) < ¥
bv(t), t € 0.

Let the condition (k) = (v(O)eZi;(lJ[‘”(IZM‘m)*b(m”"“” + g)e‘p(’%“’?k) — £ <0 hold. Then v(t) = 0 for
t>97.7 is given as

1 a ks—1
T = o, + — In (_V(O)ezso [—a(trs+1—t25)+b(t2542—125)] + 1),
a C

where a > 0,b > 0,c > 0, v(0) > 0 are constants, and k, = min{k|y(k) < 0,k € N}.

In this paper, we are devoted to establishing some conditions for ensuring all the nodes of NSs (2.1)
synchronize with the node (2.3).

dr(r) = [AT(t) + D () f (x(1)))dt, (2.3)
and 7(0) € R™ is the initial value of network (2.3). By the same analysis with (2.2), we also obtain
dr(r) = [AT(t) + (D + Do(0)) f(x(2))]dr, (2.4)
where D.(f) = (d; L (mxn and £7,(0) € [=1,1].
Let 6,() = (1) — (1), f(5,(1)) = f(oi(t)) — f(x(2)). Then from (2.2) and (2.4), we have
doi(r) =[A6i(2) + Df(5:(1)) + 6(t) i I'Cij6;(t — () + Di(0) f(0:i(1)) — D-(0) f (7(1)) + U(1)]d¢
+ hi(8()dw(t), - (2.5)

where ;(6(¢)) = hi(o(t)) — hi(t(¢)), and 2,(¢) is a controller which need to be designed.
The following Assumptions 1-3 are needed to realize the goal of synchronization.

Assumption 1. There exists a € > 0 satisfying ||f(x) — fY)|| < €||x — y|| for any x,y € R™.
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Assumption 2. There are constants L; > 0 satisfying |f;(7)| < L;forteR,i=1,2,--- ,m.

Assumption 3. There exist some h;; > 0 such that

M
trace{ (SN RSN} < D Tufllo;0IP, for i € M.

=1
In this paper, the following definition of finite-time stochastic synchronization is considered.

Definition 1. Network (2.1) is said to realize finite-time stochastic synchronization with network (2.3)
if it has a settling time T such that lirrl} Ell6;I] = 0 and E[)|6;(0)|]] = 0 fort > T, where T > Qs a
—

constant which is said to be settling time.
3. Main results

This section establishes the results of FTS. The following controller (3.1) plays a pivotal role in the
synchronization of NSs (2.1) and (2.3):
_iéit_i. 5it,t€(§,
Wi = | EO0 = nsignd 0, 1€, A
—n,;81gno;(1), teo,

where & > 0,n; > 0 are constants.
Next, based on the controller (3.1), we establish the main results in Theorem 1.
Theorem 1. Let Assumptions 1-3 hold. If the constants € > 0, &;, and n; satisfy the following conditions

1
E@ 1,2 Iy @A+ (I + &) + g +0) Iy ® 1)+ H 1, (3.2)
7 > 21D lleo Linas 3.3)
x(k) = (V(O)ezﬁié b Q)e‘f’“ﬂm-fw -T<o, 34
p p

then under the controller (3.1), the NSs (2.1) are synchronized with network (2.3) within the settling
kse—1 . .

time T = ty, + ﬁln (%V(O)ezszo & + 1), where k, = min{k|y(k) < 0}, n = m}&l{m — 2[|Dlleo Linax }-
1€

The related parameters are given as follows: p = %'f” with € = (Iy ® INC and C = (Cij)pxm>

Ay = —pliagrs — o) + Atager — fager), A = Iy @ A + IDII( + fz)A + 25Uy ® 1) + H ® Ll > 0,

Zﬁl hij = hj’ H = diag(hi,hy,--- ,hy), E = diagé,&, -+, Eu Dl = j:IlTIZE}??mka:l |djk|» Liyax =

max{Li, L, - , Ly} and V(0) = [60)]| + £ [, | eNISR)IIdN.
Proof. We consider the Lyapunov functional V(¢) = V,(f) + V,(¢) and

1

Vl(t)=||5(f)||,Vz(t)=§f e FIEN)dN,

1—=¢(1)

where 6(r) = (67 (1), 63 (1), - -+ ,64,())". For convenience, (67 (1 — (1)), 62 (¢ — (1)), - -+ , 64,(t — (1)) is
also denoted as 6(¢ — ¢(1)).
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When ||6(¢)|| # O and ¢ € d, differentiating V/(¢) along the trajectories of error system (2.5) gives

T s
Vi) = LV + - Z] ST (Ohi(5(1))da(),

where

1

M M
LV =3 Z} [6?(r)(A6i(t> + DF(5:(0)) + ;] TC;i6(t — 6(1)) — £0,(1) — nsign(S:(1))

1 ~ -
+ D0 f(oi(D)) = D(0) f(x(1))) + 5trace{(hi(é(l)))Thi(é(t))}

_ 1 T 7 Ts
AR OhEENRED)) 0)

<

1 < _ M |
V0 ; [6,~T(t)(A6i(t) + Df(6:(1)) + FZI TCi6(t — 5(1) — £6:(1) — misign(6;(t))

1 - -
+ Di(0)f(oi(D) — D) f(x(1))) + Etrace{(hi(d(t)))Thi((s(t))}- (3.5)

Meanwhile, the following inequality (3.6) is derived:

M
Z ST(1)AS(1) = 6" (1) (I ® A)S(2). (3.6)
i=1

Utilizing Assumption 1, it generates
sT(HDF(6:(t)) < =||D 5:0I° + =||D £2116:(0)|1?
Z] [ ODF(6i(1) < 5| ||;|| OIF + 5] ||; 15:(0)l

1

= ZIDIC1 + 387 (1 ® L,)o(), 3.7

From Assumption 2, the mismatched parts are handled as follows:

M
DT ODiOf(i(1) = Do) f(x(0))

i=1

M m m M m m
< > D D s@ddlficoal + D7 > > 18Ol fulre(e))
i=1 j=1 k=1 i=1 j=1 k=1
M m m
<27 > D I0ldylL
i=1 j=1 k=1
) M m
< 2lDllooLmax D, ) 1630 (3.8)
i=1 j=1
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The following inequality is related to the controller (3.1):
—8] (Dmsign(8:(1) < —mi ) 163,(0).
=1
By utilizing Assumption 3, it follows that

1
2

Next, the following inequality is analyzed:

M M
D810 Y Tyt - 6(0) = 8" (OES(t - (1))

i=1 j=1

< l6@IMIEIoE = sNI-

Taking inequalities (3.6)—(3.11) into (3.5), LV;(¢) can be simplified to

1

LVi(h) < Vo

M m
+ 1SS = SOM = " > 01 = 2D L I03,0)|

i=1 j=1

Moreover, the infinitesimal operator of V,(#) is given as
LVo(1) < =pVa(0) + §||5(t)|| = I€lll6¢ = sI-

Then, from inequalities (3.12) and (3.13), it follows that

V) <
LVO <35

1
Vi(®)

i=1 j=I

<
Vi@

n Yl T 16,0

—PVAD S

By considering ||6(2)|| < Zf‘;’l Z']’.’zl |0;(#)] and conditions (3.2) and (3.3), furthermore, one has

n Y X 16:(0)]
15(2)l]

LV() <—pV(t) -

<-pV()—n.

M
> trace{(hi(6(0)) Ru(6(1))} < %6%)(% ® 1,)5(1).
i=1

[5T(t)(IM S A+ %||D||(1 Oy L)+ He I, E)(S(t)

1
81w ® A+ SIDIC + E)y ® 1) + H ® 1, — Z)o(0) + €I - SO
M m
D 201 = 2Dl L)1) = pVae) + 11600l - 1€l = e

5T(r)(1M QA + (%HDH(I + )+ g)(IM oI+ HSI, E)(S(t)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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Similarly, for t € 5, k € N, one can obtain

5T(r)(1M ®A+LIDI1+ ) + )y © 1) + He Im)a(z)

LV(@) < Vo —pVa(2)

< V(@) = (A +p)Va()
< AV(@). (3.15)

In view of the inequalities (3.14) and (3.15), it follows that

—pEV()] =1, t € by,

d
& y
4ol (t)]s{ AEVODL,  ted

Based on condition (3.4) and Lemma 1, lirg EV(H)] = 0 and E[V(?)] = 0 for t > 7 are obtained.
t—
Obviously, lir{rrl Ell|0;II] = 0 and &E[]|0:()||]] = 0 for t > T are also acquired, where
t—

- b, + lll’l (/_) V(O)ezlzial[—.D(I25+1—Izs)+/1(l2s+2—12.y+1)] + 1)
Y n

Then, according to Definition 1, the finite-time stochastic synchronization of networks (2.1) and (2.3)
is realized. o

Remark 2. From the proof of Theorem 1, one can see that the controllers of [23, 24, 29] are invalid to
realize synchronization since the mismatched parameters can not be handled if W,(t) = 0 when t € 0.
Therefore, —n;signo;(t) plays an important role in realizing synchronization of this paper.

Remark 3. Inspired by [23,24], this paper employs 2-norm analytical techniques to establish the FTS
criteria for NSs with time delays, which differs from the approaches in references [21,22]. In those
works, the authors derived FTS of delayed NSs using 1-norm analytical techniques. Moreover, NSs can
be formed using some multi-agent systems such as [11] and so on. When modeling multi-agent systems
with intermittent variables and channel matrices, the results of Theorem I can serve as a reference
for solving the consensus problem of multi-agent systems subject to communication constraints and
intermittent connectivity.

As widely recognized, secure communication is an important application of chaos synchronization.
By Theorem 1, one can construct a simple secure communication strategy. System (2.1) can be applied
to transmit a message to system (2.3) in the following form:

doit) = [Aa(t) + Do) fo (1) + 00) £, .. T B0 (i = (1)
Transmitter : —oi(t — ¢(®)) + WD) ]dt + hi(o1(1), o2(2), - - -, oy (£))dew (1), (3.16)
o= 3 3 Qo) + (1),
dr(n) = [A7(®) + D(z(0)) f(r(1))]ds,

Receiver : (3.17)
{@(t) = o) - 01,

where Q € R is a known matrix, o(f) € R" serves as the chaotic carrier that masks the true message
r(t), and o(r) € R" is the recovered signal from r(z). Let the conditions of Theorem 1 be satisfied.

AIMS Mathematics Volume 10, Issue 9, 20010-20024.
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Then systems (3.16) and (3.17) can reach the FTS. As a result, the recovered signal o(7) is achieved by

(1) = 3; Xty Qoi(t) + (1) = Q1(1) = 3 By Q(oi(1) = 7(0) + (1) — r(r) whent — T
If stochastic perturbations are not considered, then the following model of NSs is investigated:

M
di(t) = Aci(t) + D(ai() f(0i(7)) + 6(7) Z 8ijl Bij(0 j(t = ¢(1)) — oi(t = ¢(1))), (3.18)
=1

1(t) = A1(t) + D(7(2)) f(7(2)). (3.19)
Corollary 1. Let Assumptions 1 and 2 hold. If the constants € > 0, &;, and n; satisfy the conditions

1
=21y @A +(GIDI + 2) + g +0) Iy ® Ly),

n > 2||D”00Lmax’
x(k) = (V(O)ezlé;(l)[—l)(tzsﬂ—tzx)+;1(fzs+2—fzs+1)] + Q)e_P(tZkH_tZk) _n <0,
p p

then under the controller (3.1), the NSs (3.18) are synchronized with network (3.19) within the settling
ke—1 P -

time T = ty, + /1—)1n (gV(O)er=0 plizpn=n)tAlzse=2se)] 4 1) The related parameters A = ||y ® A +

(%||D||(1 +02) + ’é)(lM ® I,,)|| > 0, and the other parameters are given as those in Theorem 1.

If the couplings are based on complete information, then the following model of NSs is investigated.

M
doi(r) = [Aci(t) + D(oy(D)) f(oi(D)) + 6(1) Z il (ot = ¢() — oi(t = s(N))]dt
J=1

+ hi(o())dw(?). (3.20)
Corollary 2. Let Assumptions 1-3 hold. If the constants € > 0, &;, and n; satisfy

| _
221y @A+GIDIL+6) + g + D) Iy ® L) + H® 1,
n; > 2”D||00Lmax,

/\/(k) — (V(O)ezlé;(l)[—ﬁ(tzsn—tzx)+/~1(fzs+2—fzs+1)] + g)e—ﬁ(fzml—tzk) _ Z <0,
p p

then under controller (3.1), the NSs (3.20) are synchronized with network (2.3) within the settling time
~ T . . 1

T = bor, + /1:) In (%V(O)eZif;Ol[—P(t25+1—tzs)+/l(tzs+2—t2y+1)] + 1) The parameter p = % with G = (I, D)G,

A=y ®A+ (%llDll(l +02)+ g)(IM ®1,) + H R L,|| > 0 and the other parameters are given as those

in Theorem 1.

4. Numerical example

This section presents some simulations to illustrate the synchronization criteria.

The parameters of network (2.3) are given as follows: 7(t) = (7,(2), 72(t), 13(t))T, A = —0.5I,
f(x(0)) = (sin(t (1)), tanh(75(?)), tanh(73(2)))”, and D(7(f)) with
0.8, [ni(®l <4,
0.6, [n(I>4,

L In@l<4,
0.5, [ri()] >4,

0.5, In@l <4,

dii(T1(1) = { -0.1, |r;(0)| > 4,

dir(71(0) = { di3(71(1) = {

AIMS Mathematics Volume 10, Issue 9, 20010-20024.
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=0.9, |m(1)| <4,

? do(T2(1)) =
—-1.3, |ma(0)| > 4,
1.5, |m3(0)| <4,
1.6, |r3(0)| >4,

0.8, <4,
dri(T2(2)) = { { (0l < dy3(12(1)) =

L @l >4,

=09, |00 <4,
’ d33(t3(1)) =
_0'75 |T3(t)| > 49

0.1, |0 <4,
0.5, |r(0)] >4,

{0.8, Ir3(2)| < 4,

ds1(75(1)) = { 1.5, |0 > 4.

dxn(13(1) = {

The initial value is taken as 7(0) = (-0.8,0.5,-0.7)7. Then the network (2.3) displays the chaotic
trajectory which can be seen in Figure 1. Assumption 1 is satisfied with £ = 1. Moreover, one can
obtain that Assumption 2 is satisfied with L; = L, = L3 = 1.

Figure 1. Chaotic trajectory of system (2.3) with 7(0) = (-0.8,0.5,-0.7).

Besides the same parameters with network (2.3), the other parameters of NSs (2.1) are taken as
follows: I' = I5,

-2 1 0 0 1
0O -1 0 0 1
G=(2 0 -3 1 O
1 0 0 -2 1
o 1 0 1 =2

hi(o1, 02, ,05) = diag(oi1 — Tis1,1, Tip — Oip12,03 — Oip13) Withi = 1,2,--- |5, and o(¢) = o1(2).
According to the analysis of reference [9], one can obtain trace{(7;(6(1))T h:(5(1))} < 2(/8:(OIP+16:+111%),
that is, Assumption 3 is satisfied. In addition, let the channel matrices be

By, = diag{0, 0, 1}, B\, = diag{0, 1,0}, B;; = diag{1,0, 1}, B4 = diag{0, 0, 1}, B;s = diag{1, 0, 0},
B, = diag{0, 1, 1}, By, = diag{1, 0,0}, B,3 = diag{1, 1,0}, B,y = diag{0,0, 1}, Bys = diag{1,0, 1},
Bs3, = diag{1,0, 1}, B3, = diag{1, 0, 1}, B33 = diag{0, 1, 0}, B34 = diag{1, 0, 0}, B35 = diag{0, 0, 1},
By = diag{1, 1,0}, B4, = diag{0, 1,0}, B4z = diag{1, 1,0}, B4y = diag{1, 1,0}, By4s = diag{1, 1,0},
Bs, = diag{0, 1, 1}, Bs, = diag{0, 1,0}, Bs3 = diag{1, 1,0}, Bs, = diag{1,0, 1}, Bss = diag{0, 1, 0}
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The initial values of o(¢) are o;(t) = o7 for ¢ € [-§,0], and oy are randomly chosen from (-5, 5).
Take ¢(r) = 1, u = 0,5 = 1, and € = 1. In order to illustrate Theorem 1, we also need to validate
the synchronization conditions. By simple computation, p = 10.3325, 1 = 16.2180, &; > 26.5505, and
n; > 1.3 satisfy the conditions (3.2)—(3.4). Take & = 27 and n; = 2. The time sequence {#;}ay 1s taken
as ty1 — tyx = 0.07 and 15442 — tox+1 = 0.03. Then, one can obtain k. = 31. It follows that the settling
time is computed as 7 = 3.1594. By Theorem 1, the FTS of NSs (2.1) and (2.3) can be realized within
7, which is presented by Figures 2—4. From Figures 2—4, it can be observed that as time progresses,
the time response curves of the error variables converge to the vicinity of zero within finite time 7.
Additionally, the chattering of the curves indicates that stochastic disturbances significantly affect the
system.

0.8

0.6

. . . .
0 0.5 1 15 2 2.5
t

Figure 2. Time response of the error variables 6;;(¢) via controller (3.1).

5]
=

1,2,...,5

din(t), i

-1

-2

-3
t

Figure 3. Time response of the error variables 6,5(¢) via controller (3.1).
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Figure 4. Time response of the error variables 6;5(¢) via controller (3.1).

5. Conclusions

In this paper, we consider the FTS of the general NSs model. This model includes intermittent
delayed couplings, partial couplings, stochastic perturbations, and state-dependent parameters. In order
to achieve synchronization, an intermittent control scheme is designed. Then, FTS is achieved, and the
settling time is also estimated via the Lyapunov-based analytical method. The corresponding control
method is applied to two simplified NSs as special cases. Moreover, we conduct numerical simulations
to validate the obtained results.

Note that faults are inevitable in NSs, and fault diagnosis using observers has garnered significant
research interest, as seen in [34]. Building on our work in this paper, future research will explore how
to develop effective fault estimation methods for NSs. In addition, while considering partial couplings
with node communication states, this work naturally raises an important question: How might channel
access rates affect nodal coupling dynamics? This will be another research topic for our future work.
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