Research article Topical Sections

$ \omega $-left approximation dimensions under stable equivalences of adjoint type

  • Published: 01 September 2025
  • MSC : 16E30, 18G25

  • In this paper, we study invariant properties of $ \omega $-left approximation dimensions of modules under the stable equivalences of adjoint type. As applications, we prove that Wakamatsu tilting modules, Wakamatsu tilting conjectures, relative $ n $-torsionfree modules, and generalized Gorenstein dimensions of modules are preserved under those equivalences.

    Citation: Juxiang Sun, Weimin Liu. $ \omega $-left approximation dimensions under stable equivalences of adjoint type[J]. AIMS Mathematics, 2025, 10(9): 19994-20009. doi: 10.3934/math.2025893

    Related Papers:

  • In this paper, we study invariant properties of $ \omega $-left approximation dimensions of modules under the stable equivalences of adjoint type. As applications, we prove that Wakamatsu tilting modules, Wakamatsu tilting conjectures, relative $ n $-torsionfree modules, and generalized Gorenstein dimensions of modules are preserved under those equivalences.



    加载中


    [1] M. Auslander, M. Bridger, Stable module theory, Providence: American Mathematical Sociaty, 1969.
    [2] M. Auslander, I. Reiten, Cohen-Macaulay and Gorenstein Artin algebras, In: Representation theory of finite groups and finite-dimensional algebras, 1991,221–245. https://doi.org/10.1007/978-3-0348-8658-1_8
    [3] M. Auslander, S. O. Smal$\phi$, Preprojective modules over Artin algebras, J. Algebra, 66 (1980), 61–122. https://doi.org/10.1016/0021-8693(80)90113-1 doi: 10.1016/0021-8693(80)90113-1
    [4] M. Auslander, I. Reiten, S. O. Smal$\phi$, Representation theory of Artin algebras, Cambridge: Cambridge University Press, 1995. https://doi.org/10.1017/CBO9780511623608
    [5] Y. H. Bao, J. F. L$\ddot{u}$, Z. B. Zhao, Relative torsionfreeness and Frobenius extension, 2024. https://doi.org/10.48550/arXiv.2409.11892
    [6] A. Beligiannis, I. Reiten, Homological and homotopical aspects of torsion theories, Mem. Am. Math. Soc., 188 (2007), 883. https://doi.org/10.1090/memo/0883 doi: 10.1090/memo/0883
    [7] S. Brenner, M. C. R. Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, In: Representation theory Ⅱ, Berlin: Springer, 1980. https://doi.org/10.1007/BFb0088461
    [8] M. Brou$\acute{\mathrm{e}}$, Equivalences of blocks of group algebras, In: Finite dimensional algebras and related topics, Dordrecht: Springer, 1994. https://doi.org/10.1007/978-94-017-1556-0_1
    [9] A. B. Buan, O. Solberg, Relative cotilting theory and almost complete cotilting modules, Norwegian University of Science and Technology, 1997.
    [10] H. X. Chen, M. Fang, O. Kerner, K. Yamagata, Rigidity dimension of algebras, Math. Proc. Cambridge, 170 (2021), 417–443. https://doi.org/10.1017/S0305004119000513 doi: 10.1017/S0305004119000513
    [11] H. Enomoto, Maximal self-orthogonal modules and a new generalization of tilting modules, 2023. https://doi.org/10.48550/arXiv.2301.13498
    [12] E. E. Enochs, O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z., 220 (1995), 611–633. https://doi.org/10.1007/BF02572634 doi: 10.1007/BF02572634
    [13] E. L. Green, I. Reiten, $\Phi$. Solberg, Dualities on generalized Koszul algebras, American Mathematical Society, 2002.
    [14] Z. Y. Huang, Extension closure of $k$-torsionfree modules, Commun. Algebra, 27 (1999), 1457–1464. https://doi.org/10.1080/00927879908826506 doi: 10.1080/00927879908826506
    [15] Z. Y. Huang, $\omega$-$k$-torsionfree modules and $\omega$-$n$-left approximation dimension, Sci. China Ser. A Math., 44 (2001), 184–192. https://doi.org/10.1007/BF02874420 doi: 10.1007/BF02874420
    [16] Z. Y. Huang, Proper resolutions and Gorenstein categories, J. Algebra, 393 (2013), 142–169. https://doi.org/10.1016/j.jalgebra.2013.07.008 doi: 10.1016/j.jalgebra.2013.07.008
    [17] F. Li, L. G. Sun, Invariants under stable equivalences of Morita type, Acta Math. Sci., 32 (2012), 605–618. https://doi.org/10.1016/S0252-9602(12)60042-3 doi: 10.1016/S0252-9602(12)60042-3
    [18] L. Kadison, On split, separable subalgebras with counitality condition, Hokkaido Math. J., 24 (1995), 527–549. https://doi.org/10.14492/hokmj/1380892607 doi: 10.14492/hokmj/1380892607
    [19] Y. M. Liu, C. C. Xi, Constructions of stable equivalences of Morita Type for finite-dimensional algebras Ⅲ, J. Lond. Math. Soc., 76 (2007), 567–585. https://doi.org/10.1112/jlms/jdm065 doi: 10.1112/jlms/jdm065
    [20] Y. Miyashita, Tilting modules of finite projective dimension, Math. Z., 193 (1986), 113–146. https://doi.org/10.1007/BF01163359 doi: 10.1007/BF01163359
    [21] F. Mantese, I. Reiten, Wakamatsu tilting modules, J. Algebra, 278 (2004), 532–552. https://doi.org/10.1016/j.jalgebra.2004.03.023 doi: 10.1016/j.jalgebra.2004.03.023
    [22] Z. Pogorzaly, A new invariant of stable equivalences of Morita type, Proc. Amer. Math. Soc., 131 (2003), 343–349. https://doi.org/10.1090/S0002-9939-02-06553-X doi: 10.1090/S0002-9939-02-06553-X
    [23] W. Ren, Frobenius functors, stable equivalences and K-theorey of Gorensein projective modules, J. Algebra, 612 (2022), 431–459. https://doi.org/10.1016/j.jalgebra.2022.08.029 doi: 10.1016/j.jalgebra.2022.08.029
    [24] J. X. Sun, G. Q. Zhao, Constructions of symmetric separable equivalences and applications, 2025. https://doi.org/10.48550/arXiv.2508.14401
    [25] T. Wakamatsu, On modules with trivial self-extensions, J. Algebra, 114 (1988), 106–114. https://doi.org/10.1016/0021-8693(88)90215-3 doi: 10.1016/0021-8693(88)90215-3
    [26] J. Wei, Tilting invariance of the Auslander-Reiten conjecture, Math. Res. Lett., 17 (2010), 171–176. https://doi.org/10.4310/MRL.2010.v17.n1.a13 doi: 10.4310/MRL.2010.v17.n1.a13
    [27] J. Wei, Auslander bounds and homological conjectures, Rev. Mat. Iberoam., 27 (2011), 871–884. https://doi.org/10.4171/RMI/655 doi: 10.4171/RMI/655
    [28] C. C. Xi, Representation dimension and quasi-hereditary algebras, Adv. Math., 168 (2002), 193–212. https://doi.org/10.1006/aima.2001.2046 doi: 10.1006/aima.2001.2046
    [29] C. C. Xi, Stable equivalences of adjoint type, Forum Math., 20 (2008), 81–-97. https://doi.org/10.1515/forum.2008.004 doi: 10.1515/forum.2008.004
    [30] J. B. Zhang, J. L. Zheng, Extension dimensions of derived and stable equivalent algebras, J. Algebra, 646 (2024), 17–48. https://doi.org/10.1016/j.jalgebra.2024.01.035 doi: 10.1016/j.jalgebra.2024.01.035
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(741) PDF downloads(146) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog